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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviation inequalities (3 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Large deviation inequality

■ Chernoff inequalities
■ Weighted version
■ McDiarmid’s theorem
■ Another generalization
■ Lower tail versus upper tail
■ More general versions



Large deviation inequality I
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Chernoff inequalities: Suppose X =
∑n

i=1Xi, where Xi

are independent 0-1 random variables with

Pr(Xi = 1) = pi, Pr(Xi = 0) = 1− pi.

Then we have

Pr(X < E(X)− λ) ≤ e−
λ2

2E(X)

Pr(X > E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3)
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A weighted version of Chernoff’s inequality:

- X =
∑n

i=1 aiXi
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- X =
∑n

i=1 aiXi

- 0 ≤ a1, . . . , an ≤ M

- X1, . . . , Xn: independent, 0-1, with Pr(Xi = 1) = pi
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A weighted version of Chernoff’s inequality:

- X =
∑n

i=1 aiXi

- 0 ≤ a1, . . . , an ≤ M

- X1, . . . , Xn: independent, 0-1, with Pr(Xi = 1) = pi

- E(X) =
∑n

i=1 aipi

- ν =
∑n

i=1 a
2
ipi

Theorem [Chung,Lu] We have

Pr(X < E(X)− λ) ≤ e−λ2/2ν (1)

Pr(X > E(X) + λ) ≤ e−
λ2

2(ν+Mλ/3) . (2)
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Theorem [McDiarmid]: Suppose X1, X2, . . . , Xn are
independent random variables with Xi − E(Xi) ≤ M for a
positive constant M . Let X =

∑n
i=1Xi. Then

Pr(X − E(X) > λ) ≤ e−
λ2

2(V ar(X)+Mλ/3) .
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Theorem [McDiarmid]: Suppose X1, X2, . . . , Xn are
independent random variables with Xi − E(Xi) ≤ M for a
positive constant M . Let X =

∑n
i=1Xi. Then

Pr(X − E(X) > λ) ≤ e−
λ2

2(V ar(X)+Mλ/3) .

Note: If Pr(Xi = ai) = pi and Pr(Xi = 0) = 1− pi, then
Var(X) = a2ipi(1− pi) ≤ ν. Thus

Pr(X − E(X) > λ) ≤ e−
λ2

2(ν+Mλ/3) .
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Theorem [McDiarmid]: Suppose X1, X2, . . . , Xn are
independent random variables with Xi − E(Xi) ≤ M for a
positive constant M . Let X =

∑n
i=1Xi. Then

Pr(X − E(X) > λ) ≤ e−
λ2

2(V ar(X)+Mλ/3) .

Note: If Pr(Xi = ai) = pi and Pr(Xi = 0) = 1− pi, then
Var(X) = a2ipi(1− pi) ≤ ν. Thus

Pr(X − E(X) > λ) ≤ e−
λ2

2(ν+Mλ/3) .

This theorem implies inequality of upper tail in previous
Theorem.
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Theorem [Chung, Lu] Suppose Xi are independent
random variables satisfying Xi ≤ M , for 1 ≤ i ≤ n. Let
X =

∑n
i=1Xi and ‖X‖ =

√

∑n
i=1 E(X

2
i ). Then we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(‖X‖2+Mλ/3) .
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Theorem [Chung, Lu] Suppose Xi are independent
random variables satisfying Xi ≤ M , for 1 ≤ i ≤ n. Let
X =

∑n
i=1Xi and ‖X‖ =

√

∑n
i=1 E(X

2
i ). Then we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(‖X‖2+Mλ/3) .

This theorem implies McDiarmid’s Theorem.
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Theorem [Chung, Lu] Suppose Xi are independent
random variables satisfying Xi ≤ M , for 1 ≤ i ≤ n. Let
X =

∑n
i=1Xi and ‖X‖ =

√

∑n
i=1 E(X

2
i ). Then we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(‖X‖2+Mλ/3) .

This theorem implies McDiarmid’s Theorem.

Let X ′
i = Xi − E(Xi), and X ′ = X − E(X).

X − E(X) = X ′ − E(X ′)

‖X ′‖2 =
n

∑

i=1

E(X ′2
i ) = Var(X).
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Theorem [Chung, Lu] Suppose Xi are independent
random variables satisfying Xi ≥ 0, for 1 ≤ i ≤ n. Let
X =

∑n
i=1Xi and ‖X‖ =

√

∑n
i=1 E(X

2
i ). Then we have

Pr(X ≤ E(X)− λ) ≤ e
− λ2

2‖X‖2 .
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Theorem [Chung, Lu] Suppose Xi are independent
random variables satisfying Xi ≥ 0, for 1 ≤ i ≤ n. Let
X =

∑n
i=1Xi and ‖X‖ =

√

∑n
i=1 E(X

2
i ). Then we have

Pr(X ≤ E(X)− λ) ≤ e
− λ2

2‖X‖2 .

Proof: Let X ′
i = −Xi and X ′ = −X. Applying the upper

tail to X ′ with M = 0, we get

Pr(X ≤ E(X)− λ) = Pr(X ′ ≥ E(X ′) + λ)

≤ e
− λ2

2‖X′‖2 = e
− λ2

2‖X‖2 .



A special function

Topic Course on Probabilistic Methods (week 7) Linyuan Lu, University of South Carolina – 10 / 21

g(y) = 2
∞
∑

k=2

yk−2

k!
=

2(ey − 1− y)

y2
.
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y2
.

Facts:

■ g(0) = 1.
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y2
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Facts:

■ g(0) = 1.
■ g(y) ≤ 1, for y < 0.
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g(y) = 2
∞
∑

k=2

yk−2

k!
=

2(ey − 1− y)

y2
.

Facts:

■ g(0) = 1.
■ g(y) ≤ 1, for y < 0.
■ g(y) is monotone increasing, for y ≥ 0.
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g(y) = 2
∞
∑

k=2

yk−2

k!
=

2(ey − 1− y)

y2
.

Facts:

■ g(0) = 1.
■ g(y) ≤ 1, for y < 0.
■ g(y) is monotone increasing, for y ≥ 0.
■ For y < 3, we have

g(y) = 2
∞
∑

k=2

yk−2

k!
≤

∞
∑

k=2

yk−2

3k−2
=

1

1− y/3
.
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E(etX) =
n
∏

i=1

E(etXi)
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∏

i=1

E(etXi)

=
n
∏

i=1

E(
∞
∑

k=0

tkXk
i

k!
)



Proof of upper tail

Topic Course on Probabilistic Methods (week 7) Linyuan Lu, University of South Carolina – 11 / 21

E(etX) =
n
∏

i=1

E(etXi)

=
n
∏

i=1

E(
∞
∑

k=0

tkXk
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1

2
t2X2

i g(tXi))
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E(etX) =
n
∏

i=1

E(etXi)

=
n
∏

i=1

E(
∞
∑

k=0

tkXk
i

k!
)

=
n
∏

i=1

E(1 + tE(Xi) +
1

2
t2X2

i g(tXi))

≤
n
∏

i=1

(1 + tE(Xi) +
1

2
t2E(X2

i )g(tM))

≤
n
∏

i=1

etE(Xi)+
1
2 t

2E(X2
i )g(tM)

= etE(X)+ 1
2 t

2g(tM)‖X‖2.
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Hence, for t satisfying tM < 3, we have
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Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)
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Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)
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Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλ+ 1
2 t

2g(tM)‖X‖2
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Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλ+ 1
2 t

2g(tM)‖X‖2

≤ e−tλ+ 1
2 t

2‖X‖2 1
1−tM/3 .
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Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλ+ 1
2 t

2g(tM)‖X‖2

≤ e−tλ+ 1
2 t

2‖X‖2 1
1−tM/3 .

Choose t = λ
‖X‖2+Mλ/3 . We have 1− Mt

3 = ‖X‖2
‖X‖2+Mλ/3 .
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Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλ+ 1
2 t

2g(tM)‖X‖2

≤ e−tλ+ 1
2 t

2‖X‖2 1
1−tM/3 .

Choose t = λ
‖X‖2+Mλ/3 . We have 1− Mt

3 = ‖X‖2
‖X‖2+Mλ/3 .

P r(X > E(X) + λ) ≤ e−tλ+t2‖X‖2 1
2(1−Mt/3)
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Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλ+ 1
2 t

2g(tM)‖X‖2

≤ e−tλ+ 1
2 t

2‖X‖2 1
1−tM/3 .

Choose t = λ
‖X‖2+Mλ/3 . We have 1− Mt

3 = ‖X‖2
‖X‖2+Mλ/3 .

P r(X > E(X) + λ) ≤ e−tλ+t2‖X‖2 1
2(1−Mt/3)

= e
− λ2

‖X‖2+Mλ/3
+ λ2

(‖X‖2+Mλ/3)2
‖X‖2 ‖X‖2+Mλ/3

2‖X‖2
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Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλ+ 1
2 t

2g(tM)‖X‖2

≤ e−tλ+ 1
2 t

2‖X‖2 1
1−tM/3 .

Choose t = λ
‖X‖2+Mλ/3 . We have 1− Mt

3 = ‖X‖2
‖X‖2+Mλ/3 .

P r(X > E(X) + λ) ≤ e−tλ+t2‖X‖2 1
2(1−Mt/3)

= e
− λ2

‖X‖2+Mλ/3
+ λ2

(‖X‖2+Mλ/3)2
‖X‖2 ‖X‖2+Mλ/3

2‖X‖2

= e
− λ2

2(‖X‖2+Mλ/3) . �
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Theorem [Chung, Lu] Let Xi denote independent random
variables satisfying Xi ≤ E(Xi) + ai +M , for 1 ≤ i ≤ n.
For, X =

∑n
i=1Xi, we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
∑n

i=1 a2
i
+Mλ/3) .

Proof: Let X ′
i = Xi − E(Xi)− ai and X ′ =

∑n
i=1X

′
i. We

claim
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Pr(X ≥ E(X) + λ) = Pr(X ′ ≥ E(X ′) + λ)
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Pr(X ≥ E(X) + λ) = Pr(X ′ ≥ E(X ′) + λ)

≤ e
− λ2

2(‖X′‖2+Mλ/3)
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Pr(X ≥ E(X) + λ) = Pr(X ′ ≥ E(X ′) + λ)

≤ e
− λ2

2(‖X′‖2+Mλ/3)

= e
− λ2

2(Var(X)+
∑n

i=1 a2
i
+Mλ/3) .

It remains to verify

X ′ − E(X ′) = X − E(X).

‖X ′‖2 = Var(X) +
n

∑

i=1

a2i .

�
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Theorem [Chung, Lu] Suppose Xi are independent
random variables satisfying Xi ≤ E(Xi) +Mi, for
0 ≤ i ≤ n. We order Xi’s so that Mi are in an increasing
order. Let X =

∑n
i=1Xi. Then for any 1 ≤ k ≤ n, we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
∑n

i=k(Mi−Mk)
2+Mkλ/3) .
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Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
∑n

i=k(Mi−Mk)
2+Mkλ/3) .

Compared with McDiarmid’s inequality
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random variables satisfying Xi ≤ E(Xi) +Mi, for
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Theorem [Chung, Lu] Suppose Xi are independent
random variables satisfying Xi ≤ E(Xi) +Mi, for
0 ≤ i ≤ n. We order Xi’s so that Mi are in an increasing
order. Let X =

∑n
i=1Xi. Then for any 1 ≤ k ≤ n, we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
∑n

i=k(Mi−Mk)
2+Mkλ/3) .

Compared with McDiarmid’s inequality

- M is replaced by Mk.
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∑n
i=k(Mi −Mk)

2.
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Theorem [Chung, Lu] Suppose Xi are independent
random variables satisfying Xi ≤ E(Xi) +Mi, for
0 ≤ i ≤ n. We order Xi’s so that Mi are in an increasing
order. Let X =

∑n
i=1Xi. Then for any 1 ≤ k ≤ n, we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
∑n

i=k(Mi−Mk)
2+Mkλ/3) .

Compared with McDiarmid’s inequality

- M is replaced by Mk.
- Additional cost

∑n
i=k(Mi −Mk)

2.
- McDiarmid’s inequality is a special case with k = n.
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For fixed k, we choose M = Mk and
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For fixed k, we choose M = Mk and

ai =

{

0 if 1 ≤ i ≤ k
Mi −Mk if k ≤ i ≤ n

Xi − E(Xi) ≤ Mi ≤ ai +Mk. for 1 ≤ k ≤ n.
n

∑

i=1

a2i =
n

∑

i=k

(Mi −Mk)
2.

Apply previous theorem with these ai’s. �



An application

Topic Course on Probabilistic Methods (week 7) Linyuan Lu, University of South Carolina – 17 / 21

Example: Consider the sum X =
∑n

i=1Xi.



An application

Topic Course on Probabilistic Methods (week 7) Linyuan Lu, University of South Carolina – 17 / 21

Example: Consider the sum X =
∑n

i=1Xi.

- X1, X2, . . . , Xn: independent random variables.



An application

Topic Course on Probabilistic Methods (week 7) Linyuan Lu, University of South Carolina – 17 / 21

Example: Consider the sum X =
∑n

i=1Xi.

- X1, X2, . . . , Xn: independent random variables.
- For 1 ≤ i ≤ n− 1, we have

Pr(Xi = 0) = 1− p and Pr(Xi = 1) = p.



An application

Topic Course on Probabilistic Methods (week 7) Linyuan Lu, University of South Carolina – 17 / 21

Example: Consider the sum X =
∑n

i=1Xi.

- X1, X2, . . . , Xn: independent random variables.
- For 1 ≤ i ≤ n− 1, we have

Pr(Xi = 0) = 1− p and Pr(Xi = 1) = p.

- Xn is special.

Pr(Xn = 0) = 1− p and Pr(Xn =
√
n) = p.



An application

Topic Course on Probabilistic Methods (week 7) Linyuan Lu, University of South Carolina – 17 / 21
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i=1Xi.

- X1, X2, . . . , Xn: independent random variables.
- For 1 ≤ i ≤ n− 1, we have

Pr(Xi = 0) = 1− p and Pr(Xi = 1) = p.

- Xn is special.

Pr(Xn = 0) = 1− p and Pr(Xn =
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E(X) =
n

∑

i=1

E(Xi)

= (n− 1)p+
√
np.
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E(X) =
n

∑

i=1

E(Xi)

= (n− 1)p+
√
np.

Var(X) =
n

∑

i=1

Var(Xi)

= (n− 1)p(1− p) + np(1− p)

= (2n− 1)p(1− p).
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Applying McDiarmid’s Theorem

- M = (1− p)
√
n

We have

Pr(X ≥ E(X) + λ) ≤ e−
λ2

2((2n−1)p(1−p)+(1−p)
√
nλ/3) .

In particular, for constant p ∈ (0, 1) and λ = Θ(n
1
2+ǫ), we

have
Pr(X ≥ E(X) + λ) ≤ e−Θ(nǫ).
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Applying last Theorem

- M1 = . . . = Mn−1 = (1− p)
- Mn =

√
n(1− p)

We choose k = n− 1,

Var(X) + (Mn −Mn−1)
2 ≤ (1− p2)n.

Pr(Xi ≥ E(X) + λ) ≤ e
− λ2

2((1−p2)n+(1−p)2λ/3) .

For constant p ∈ (0, 1) and λ = Θ(n
1
2+ǫ), we have

Pr(X ≥ E(X) + λ) ≤ e−Θ(n2ǫ).
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