

Linyuan Lu

University of South Carolina

Univeristy of South Carolina, Spring, 2019

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Large deviation inequality

- Chernoff inequalities
- Weighted version
- McDiarmid's theorem
- Another generalization
- Lower tail versus upper tail
- More general versions

Chernoff inequalities: Suppose $X = \sum_{i=1}^{n} X_i$, where X_i are independent 0-1 random variables with

$$\Pr(X_i = 1) = p_i, \quad \Pr(X_i = 0) = 1 - p_i.$$

Then we have

$$Pr(X < E(X) - \lambda) \leq e^{-\frac{\lambda^2}{2E(X)}}$$
$$Pr(X > E(X) + \lambda) \leq e^{-\frac{\lambda^2}{2(E(X) + \lambda/3)}}$$

-
$$X = \sum_{i=1}^{n} a_i X_i$$

- $X = \sum_{i=1}^{n} a_i X_i$
- $0 \leq a_1, \ldots, a_n \leq M$

- $X = \sum_{i=1}^{n} a_i X_i$
- $0 \leq a_1, \ldots, a_n \leq M$
- X_1, \ldots, X_n : independent, 0-1, with $Pr(X_i = 1) = p_i$

-
$$X = \sum_{i=1}^{n} a_i X_i$$

- $0 \leq a_1, \ldots, a_n \leq M$
- X_1, \ldots, X_n : independent, 0-1, with $Pr(X_i = 1) = p_i$
- $E(X) = \sum_{i=1}^{n} a_i p_i$

-
$$X = \sum_{i=1}^{n} a_i X_i$$

- $0 \leq a_1, \ldots, a_n \leq M$
- X_1, \ldots, X_n : independent, 0-1, with $Pr(X_i = 1) = p_i$
- $E(X) = \sum_{i=1}^{n} a_i p_i$
- $\nu = \sum_{i=1}^{n} a_i^2 p_i$

A weighted version of Chernoff's inequality:

$$- \quad X = \sum_{i=1}^{n} a_i X_i$$

$$- \quad 0 \le a_1, \dots, a_n \le M$$

- X_1, \ldots, X_n : independent, 0-1, with $Pr(X_i = 1) = p_i$
- $E(X) = \sum_{i=1}^{n} a_i p_i$
- $\nu = \sum_{i=1}^{n} a_i^2 p_i$

Theorem [Chung,Lu] We have

$$Pr(X < E(X) - \lambda) \leq e^{-\lambda^2/2\nu}$$
(1)

$$Pr(X > E(X) + \lambda) \leq e^{-\frac{\lambda^2}{2(\nu + M\lambda/3)}}.$$
(2)

Theorem [McDiarmid]: Suppose X_1, X_2, \ldots, X_n are independent random variables with $X_i - E(X_i) \leq M$ for a positive constant M. Let $X = \sum_{i=1}^n X_i$. Then

$$Pr(X - E(X) > \lambda) \le e^{-\frac{\lambda^2}{2(Var(X) + M\lambda/3)}}$$

Theorem [McDiarmid]: Suppose X_1, X_2, \ldots, X_n are independent random variables with $X_i - E(X_i) \leq M$ for a positive constant M. Let $X = \sum_{i=1}^n X_i$. Then

$$Pr(X - E(X) > \lambda) \le e^{-\frac{\lambda^2}{2(Var(X) + M\lambda/3)}}$$

Note: If $Pr(X_i = a_i) = p_i$ and $Pr(X_i = 0) = 1 - p_i$, then $Var(X) = a_i^2 p_i (1 - p_i) \le \nu$. Thus

$$Pr(X - E(X) > \lambda) \le e^{-\frac{\lambda^2}{2(\nu + M\lambda/3)}}$$

Theorem [McDiarmid]: Suppose X_1, X_2, \ldots, X_n are independent random variables with $X_i - E(X_i) \leq M$ for a positive constant M. Let $X = \sum_{i=1}^n X_i$. Then

$$Pr(X - E(X) > \lambda) \le e^{-\frac{\lambda^2}{2(Var(X) + M\lambda/3)}}$$

Note: If $Pr(X_i = a_i) = p_i$ and $Pr(X_i = 0) = 1 - p_i$, then $Var(X) = a_i^2 p_i (1 - p_i) \le \nu$. Thus

$$Pr(X - E(X) > \lambda) \le e^{-\frac{\lambda^2}{2(\nu + M\lambda/3)}}$$

This theorem implies inequality of upper tail in previous Theorem.

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \leq M$, for $1 \leq i \leq n$. Let $X = \sum_{i=1}^n X_i$ and $||X|| = \sqrt{\sum_{i=1}^n E(X_i^2)}$. Then we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\|X\|^2 + M\lambda/3)}}.$$

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \leq M$, for $1 \leq i \leq n$. Let $X = \sum_{i=1}^n X_i$ and $||X|| = \sqrt{\sum_{i=1}^n E(X_i^2)}$. Then we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\|X\|^2 + M\lambda/3)}}.$$

This theorem implies McDiarmid's Theorem.

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \leq M$, for $1 \leq i \leq n$. Let $X = \sum_{i=1}^n X_i$ and $||X|| = \sqrt{\sum_{i=1}^n E(X_i^2)}$. Then we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\|X\|^2 + M\lambda/3)}}.$$

This theorem implies McDiarmid's Theorem.

Let
$$X'_i = X_i - E(X_i)$$
, and $X' = X - E(X)$.
 $X - E(X) = X' - E(X')$
 $||X'||^2 = \sum_{i=1}^n E(X'^2_i) = Var(X).$

Lower tail

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \ge 0$, for $1 \le i \le n$. Let $X = \sum_{i=1}^n X_i$ and $||X|| = \sqrt{\sum_{i=1}^n E(X_i^2)}$. Then we have

$$\Pr(X \le E(X) - \lambda) \le e^{-\frac{\lambda^2}{2\|X\|^2}}.$$

Lower tail

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \ge 0$, for $1 \le i \le n$. Let $X = \sum_{i=1}^n X_i$ and $||X|| = \sqrt{\sum_{i=1}^n E(X_i^2)}$. Then we have

$$\Pr(X \le E(X) - \lambda) \le e^{-\frac{\lambda^2}{2\|X\|^2}}$$

Proof: Let $X'_i = -X_i$ and X' = -X. Applying the upper tail to X' with M = 0, we get

$$\Pr(X \le E(X) - \lambda) = \Pr(X' \ge E(X') + \lambda)$$
$$\le e^{-\frac{\lambda^2}{2\|X'\|^2}} = e^{-\frac{\lambda^2}{2\|X\|^2}}.$$

Facts:

 $\bullet \quad g(0) = 1.$

$$g(y) = 2\sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} = \frac{2(e^y - 1 - y)}{y^2}.$$

Facts:

■ g(0) = 1. ■ $g(y) \le 1$, for y < 0.

Facts:

 $\begin{array}{ll} & g(0)=1.\\ & g(y)\leq 1, \mbox{ for } y<0.\\ & g(y) \mbox{ is monotone increasing, for } y\geq 0. \end{array}$

Facts:

g(0) = 1.
 g(y) ≤ 1, for y < 0.
 g(y) is monotone increasing, for y ≥ 0.
 For y < 3, we have

$$g(y) = 2\sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} \le \sum_{k=2}^{\infty} \frac{y^{k-2}}{3^{k-2}} = \frac{1}{1-y/3}$$

$$\mathbf{E}(e^{tX}) = \prod_{i=1}^{n} \mathbf{E}(e^{tX_i})$$

$$E(e^{tX}) = \prod_{i=1}^{n} E(e^{tX_i})$$

=
$$\prod_{i=1}^{n} E(\sum_{k=0}^{\infty} \frac{t^k X_i^k}{k!})$$

=
$$\prod_{i=1}^{n} E(1 + tE(X_i) + \frac{1}{2}t^2 X_i^2 g(tX_i))$$

$$E(e^{tX}) = \prod_{i=1}^{n} E(e^{tX_i})$$

=
$$\prod_{i=1}^{n} E(\sum_{k=0}^{\infty} \frac{t^k X_i^k}{k!})$$

=
$$\prod_{i=1}^{n} E(1 + tE(X_i) + \frac{1}{2}t^2 X_i^2 g(tX_i))$$

$$\leq \prod_{i=1}^{n} (1 + tE(X_i) + \frac{1}{2}t^2 E(X_i^2)g(tM))$$

$$E(e^{tX}) = \prod_{i=1}^{n} E(e^{tX_i})$$

=
$$\prod_{i=1}^{n} E(\sum_{k=0}^{\infty} \frac{t^k X_i^k}{k!})$$

=
$$\prod_{i=1}^{n} E(1 + tE(X_i) + \frac{1}{2}t^2 X_i^2 g(tX_i))$$

$$\leq \prod_{i=1}^{n} (1 + tE(X_i) + \frac{1}{2}t^2 E(X_i^2) g(tM))$$

$$\leq \prod_{i=1}^{n} e^{tE(X_i) + \frac{1}{2}t^2 E(X_i^2) g(tM)}$$

$$\begin{split} \mathbf{E}(e^{tX}) &= \prod_{i=1}^{n} \mathbf{E}(e^{tX_{i}}) \\ &= \prod_{i=1}^{n} \mathbf{E}(\sum_{k=0}^{\infty} \frac{t^{k}X_{i}^{k}}{k!}) \\ &= \prod_{i=1}^{n} \mathbf{E}(1 + t\mathbf{E}(X_{i}) + \frac{1}{2}t^{2}X_{i}^{2}g(tX_{i})) \\ &\leq \prod_{i=1}^{n} (1 + t\mathbf{E}(X_{i}) + \frac{1}{2}t^{2}\mathbf{E}(X_{i}^{2})g(tM)) \\ &\leq \prod_{i=1}^{n} e^{t\mathbf{E}(X_{i}) + \frac{1}{2}t^{2}\mathbf{E}(X_{i}^{2})g(tM)} \\ &= e^{t\mathbf{E}(X) + \frac{1}{2}t^{2}g(tM) ||X||^{2}}. \end{split}$$

Topic Course on Probabilistic Methods (week 7)

1

Hence, for t satisfying tM < 3, we have

Hence, for t satisfying tM < 3, we have

 $\Pr(X \ge E(X) + \lambda) = \Pr(e^{tX} \ge e^{tE(X) + t\lambda})$

Hence, for t satisfying tM < 3, we have

$$\Pr(X \ge E(X) + \lambda) = \Pr(e^{tX} \ge e^{tE(X) + t\lambda})$$
$$\le e^{-tE(X) - t\lambda}E(e^{tX})$$

Hence, for t satisfying tM < 3, we have

$$\Pr(X \ge \mathcal{E}(X) + \lambda) = \Pr(e^{tX} \ge e^{t\mathcal{E}(X) + t\lambda})$$
$$\leq e^{-t\mathcal{E}(X) - t\lambda} \mathcal{E}(e^{tX})$$
$$< e^{-t\lambda + \frac{1}{2}t^2g(tM) \|X\|^2}$$

Hence, for t satisfying tM<3, we have

$$\Pr(X \ge \operatorname{E}(X) + \lambda) = \Pr(e^{tX} \ge e^{t\operatorname{E}(X) + t\lambda})$$
$$\leq e^{-t\operatorname{E}(X) - t\lambda}\operatorname{E}(e^{tX})$$
$$\leq e^{-t\lambda + \frac{1}{2}t^2g(tM)\|X\|^2}$$
$$\leq e^{-t\lambda + \frac{1}{2}t^2\|X\|^2 \frac{1}{1 - tM/3}}.$$

Hence, for t satisfying tM < 3, we have

$$\Pr(X \ge \operatorname{E}(X) + \lambda) = \Pr(e^{tX} \ge e^{t\operatorname{E}(X) + t\lambda})$$
$$\leq e^{-t\operatorname{E}(X) - t\lambda}\operatorname{E}(e^{tX})$$
$$\leq e^{-t\lambda + \frac{1}{2}t^{2}g(tM) ||X||^{2}}$$
$$\leq e^{-t\lambda + \frac{1}{2}t^{2} ||X||^{2} \frac{1}{1 - tM/3}}.$$

Choose
$$t = \frac{\lambda}{\|X\|^2 + M\lambda/3}$$
. We have $1 - \frac{Mt}{3} = \frac{\|X\|^2}{\|X\|^2 + M\lambda/3}$.

Continue

Hence, for t satisfying tM < 3, we have

$$\Pr(X \ge \operatorname{E}(X) + \lambda) = \Pr(e^{tX} \ge e^{t\operatorname{E}(X) + t\lambda})$$
$$\leq e^{-t\operatorname{E}(X) - t\lambda}\operatorname{E}(e^{tX})$$
$$\leq e^{-t\lambda + \frac{1}{2}t^{2}g(tM)\|X\|^{2}}$$
$$\leq e^{-t\lambda + \frac{1}{2}t^{2}\|X\|^{2} \frac{1}{1 - tM/3}}.$$

Choose
$$t = \frac{\lambda}{\|X\|^2 + M\lambda/3}$$
. We have $1 - \frac{Mt}{3} = \frac{\|X\|^2}{\|X\|^2 + M\lambda/3}$.
 $Pr(X > E(X) + \lambda) \leq e^{-t\lambda + t^2 \|X\|^2 \frac{1}{2(1 - Mt/3)}}$

Continue

Hence, for t satisfying tM < 3, we have

$$\Pr(X \ge \operatorname{E}(X) + \lambda) = \Pr(e^{tX} \ge e^{t\operatorname{E}(X) + t\lambda})$$
$$\leq e^{-t\operatorname{E}(X) - t\lambda}\operatorname{E}(e^{tX})$$
$$\leq e^{-t\lambda + \frac{1}{2}t^{2}g(tM)\|X\|^{2}}$$
$$\leq e^{-t\lambda + \frac{1}{2}t^{2}\|X\|^{2} \frac{1}{1 - tM/3}}.$$

Choose
$$t = \frac{\lambda}{\|X\|^2 + M\lambda/3}$$
. We have $1 - \frac{Mt}{3} = \frac{\|X\|^2}{\|X\|^2 + M\lambda/3}$.
 $Pr(X > E(X) + \lambda) \leq e^{-t\lambda + t^2 \|X\|^2 \frac{1}{2(1 - Mt/3)}}$
 $= e^{-\frac{\lambda^2}{\|X\|^2 + M\lambda/3} + \frac{\lambda^2}{(\|X\|^2 + M\lambda/3)^2} \|X\|^2 \frac{\|X\|^2 + M\lambda/3}{2\|X\|^2}}$

Continue

Hence, for t satisfying tM < 3, we have

$$\Pr(X \ge \operatorname{E}(X) + \lambda) = \Pr(e^{tX} \ge e^{t\operatorname{E}(X) + t\lambda})$$
$$\leq e^{-t\operatorname{E}(X) - t\lambda}\operatorname{E}(e^{tX})$$
$$\leq e^{-t\lambda + \frac{1}{2}t^{2}g(tM)\|X\|^{2}}$$
$$\leq e^{-t\lambda + \frac{1}{2}t^{2}\|X\|^{2} \frac{1}{1 - tM/3}}.$$

Choose
$$t = \frac{\lambda}{\|X\|^2 + M\lambda/3}$$
. We have $1 - \frac{Mt}{3} = \frac{\|X\|^2}{\|X\|^2 + M\lambda/3}$.

$$Pr(X > E(X) + \lambda) \leq e^{-t\lambda + t^2 \|X\|^2 \frac{1}{2(1 - Mt/3)}}$$

= $e^{-\frac{\lambda^2}{\|X\|^2 + M\lambda/3} + \frac{\lambda^2}{(\|X\|^2 + M\lambda/3)^2} \|X\|^2 \frac{\|X\|^2 + M\lambda/3}{2\|X\|^2}}{2\|X\|^2}}$
= $e^{-\frac{\lambda^2}{2(\|X\|^2 + M\lambda/3)}}$.

Theorem [Chung, Lu] Let X_i denote independent random variables satisfying $X_i \leq E(X_i) + a_i + M$, for $1 \leq i \leq n$. For, $X = \sum_{i=1}^n X_i$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=1}^n a_i^2 + M\lambda/3)}}$$

Proof: Let $X'_i = X_i - E(X_i) - a_i$ and $X' = \sum_{i=1}^n X'_i$. We claim

Theorem [Chung, Lu] Let X_i denote independent random variables satisfying $X_i \leq E(X_i) + a_i + M$, for $1 \leq i \leq n$. For, $X = \sum_{i=1}^n X_i$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=1}^n a_i^2 + M\lambda/3)}}$$

Proof: Let $X'_i = X_i - E(X_i) - a_i$ and $X' = \sum_{i=1}^n X'_i$. We claim

- $X'_i \leq M$ for $1 \leq i \leq n$.

Theorem [Chung, Lu] Let X_i denote independent random variables satisfying $X_i \leq E(X_i) + a_i + M$, for $1 \leq i \leq n$. For, $X = \sum_{i=1}^n X_i$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=1}^n a_i^2 + M\lambda/3)}}$$

Proof: Let $X'_i = X_i - E(X_i) - a_i$ and $X' = \sum_{i=1}^n X'_i$. We claim

-
$$X'_i \le M$$
 for $1 \le i \le n$.
- $X' - E(X') = X - E(X)$.

Theorem [Chung, Lu] Let X_i denote independent random variables satisfying $X_i \leq E(X_i) + a_i + M$, for $1 \leq i \leq n$. For, $X = \sum_{i=1}^n X_i$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=1}^n a_i^2 + M\lambda/3)}}$$

Proof: Let $X'_i = X_i - E(X_i) - a_i$ and $X' = \sum_{i=1}^n X'_i$. We claim

-
$$X'_i \leq M$$
 for $1 \leq i \leq n$.
- $X' - E(X') = X - E(X)$.
- $\|X'\|^2 = Var(X) + \sum_{i=1}^n a_i^2$.

Theorem [Chung, Lu] Let X_i denote independent random variables satisfying $X_i \leq E(X_i) + a_i + M$, for $1 \leq i \leq n$. For, $X = \sum_{i=1}^n X_i$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=1}^n a_i^2 + M\lambda/3)}}$$

Proof: Let $X'_i = X_i - E(X_i) - a_i$ and $X' = \sum_{i=1}^n X'_i$. We claim

-
$$X'_i \leq M$$
 for $1 \leq i \leq n$.
- $X' - E(X') = X - E(X)$.
- $\|X'\|^2 = Var(X) + \sum_{i=1}^n a_i^2$.

$\Pr(X \ge E(X) + \lambda) = \Pr(X' \ge E(X') + \lambda)$

$\Pr(X \ge E(X) + \lambda) = \Pr(X' \ge E(X') + \lambda)$ $\le e^{-\frac{\lambda^2}{2(\|X'\|^2 + M\lambda/3)}}$

continue

It remains to verify

$$X' - E(X') = X - E(X).$$

 $||X'||^2 = Var(X) + \sum_{i=1}^{n} a_i^2.$

i=1

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \leq E(X_i) + M_i$, for $0 \leq i \leq n$. We order X_i 's so that M_i are in an increasing order. Let $X = \sum_{i=1}^n X_i$. Then for any $1 \leq k \leq n$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=k}^n (M_i - M_k)^2 + M_k \lambda/3)}}.$$

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \leq E(X_i) + M_i$, for $0 \leq i \leq n$. We order X_i 's so that M_i are in an increasing order. Let $X = \sum_{i=1}^n X_i$. Then for any $1 \leq k \leq n$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=k}^n (M_i - M_k)^2 + M_k \lambda/3)}}$$

Compared with McDiarmid's inequality

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \leq E(X_i) + M_i$, for $0 \leq i \leq n$. We order X_i 's so that M_i are in an increasing order. Let $X = \sum_{i=1}^n X_i$. Then for any $1 \leq k \leq n$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=k}^n (M_i - M_k)^2 + M_k \lambda/3)}}$$

Compared with McDiarmid's inequality

- M is replaced by M_k .

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \leq E(X_i) + M_i$, for $0 \leq i \leq n$. We order X_i 's so that M_i are in an increasing order. Let $X = \sum_{i=1}^n X_i$. Then for any $1 \leq k \leq n$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=k}^n (M_i - M_k)^2 + M_k \lambda/3)}}$$

Compared with McDiarmid's inequality

- M is replaced by M_k .
- Additional cost $\sum_{i=k}^{n} (M_i M_k)^2$.

Theorem [Chung, Lu] Suppose X_i are independent random variables satisfying $X_i \leq E(X_i) + M_i$, for $0 \leq i \leq n$. We order X_i 's so that M_i are in an increasing order. Let $X = \sum_{i=1}^n X_i$. Then for any $1 \leq k \leq n$, we have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2(\operatorname{Var}(X) + \sum_{i=k}^n (M_i - M_k)^2 + M_k \lambda/3)}}$$

Compared with McDiarmid's inequality

- M is replaced by M_k .
- Additional cost $\sum_{i=k}^{n} (M_i M_k)^2$.
- McDiarmid's inequality is a special case with k = n.

For fixed k, we choose $M = M_k$ and

$$a_i = \begin{cases} 0 & \text{if } 1 \le i \le k \\ M_i - M_k & \text{if } k \le i \le n \end{cases}$$

For fixed k, we choose $M = M_k$ and

$$a_i = \begin{cases} 0 & \text{if } 1 \le i \le k \\ M_i - M_k & \text{if } k \le i \le n \end{cases}$$

 $X_i - \mathcal{E}(X_i) \le M_i \le a_i + M_k$. for $1 \le k \le n$.

For fixed k, we choose $M = M_k$ and

$$a_i = \begin{cases} 0 & \text{if } 1 \le i \le k \\ M_i - M_k & \text{if } k \le i \le n \end{cases}$$

$$X_i - E(X_i) \le M_i \le a_i + M_k$$
. for $1 \le k \le n$.
 $\sum_{i=1}^n a_i^2 = \sum_{i=k}^n (M_i - M_k)^2$.

Apply previous theorem with these a_i 's.

Example: Consider the sum $X = \sum_{i=1}^{n} X_i$.

Example: Consider the sum $X = \sum_{i=1}^{n} X_i$.

- X_1, X_2, \ldots, X_n : independent random variables.

Example: Consider the sum $X = \sum_{i=1}^{n} X_i$.

- X_1, X_2, \ldots, X_n : independent random variables.
- For $1 \le i \le n-1$, we have

$$\Pr(X_i = 0) = 1 - p$$
 and $\Pr(X_i = 1) = p$.

Example: Consider the sum $X = \sum_{i=1}^{n} X_i$.

- X_1, X_2, \ldots, X_n : independent random variables.
- For $1 \le i \le n-1$, we have

$$\Pr(X_i = 0) = 1 - p$$
 and $\Pr(X_i = 1) = p$.

- X_n is special.

 $\Pr(X_n = 0) = 1 - p$ and $\Pr(X_n = \sqrt{n}) = p$.

Example: Consider the sum $X = \sum_{i=1}^{n} X_i$.

- X_1, X_2, \ldots, X_n : independent random variables.
- For $1 \le i \le n-1$, we have

$$\Pr(X_i = 0) = 1 - p$$
 and $\Pr(X_i = 1) = p$.

- X_n is special.

 $\Pr(X_n = 0) = 1 - p$ and $\Pr(X_n = \sqrt{n}) = p$.

Expectation and Variance

$$E(X) = \sum_{i=1}^{n} E(X_i)$$
$$= (n-1)p + \sqrt{n}p.$$

Expectation and Variance

$$E(X) = \sum_{i=1}^{n} E(X_i)$$
$$= (n-1)p + \sqrt{n}p$$

$$Var(X) = \sum_{i=1}^{n} Var(X_i)$$

= $(n-1)p(1-p) + np(1-p)$
= $(2n-1)p(1-p).$

Applying McDiarmid's Theorem

Applying McDiarmid's Theorem

- $M = (1-p)\sqrt{n}$

Applying McDiarmid's Theorem

- $M = (1-p)\sqrt{n}$

We have

$$\Pr(X \ge \operatorname{E}(X) + \lambda) \le e^{-\frac{\lambda^2}{2((2n-1)p(1-p) + (1-p)\sqrt{n\lambda/3})}}.$$

Applying McDiarmid's Theorem

- $M = (1-p)\sqrt{n}$

We have

$$\Pr(X \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2((2n-1)p(1-p) + (1-p)\sqrt{n\lambda/3})}}.$$

In particular, for constant $p \in (0, 1)$ and $\lambda = \Theta(n^{\frac{1}{2}+\epsilon})$, we have

$$\Pr(X \ge \operatorname{E}(X) + \lambda) \le e^{-\Theta(n^{\epsilon})}.$$

Applying last Theorem

Applying last Theorem

-
$$M_1 = \ldots = M_{n-1} = (1-p)$$

-
$$M_n = \sqrt{n(1-p)}$$

Applying last Theorem

-
$$M_1 = \ldots = M_{n-1} = (1-p)$$

- $M_n = \sqrt{n(1-p)}$

We choose k = n - 1,

$$\operatorname{Var}(X) + (M_n - M_{n-1})^2 \le (1 - p^2)n.$$

Applying last Theorem

-
$$M_1 = \ldots = M_{n-1} = (1-p)$$

- $M_n = \sqrt{n(1-p)}$

We choose k = n - 1,

$$\operatorname{Var}(X) + (M_n - M_{n-1})^2 \le (1 - p^2)n.$$

$$\Pr(X_i \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2((1-p^2)n + (1-p)^2\lambda/3)}}$$

Applying last Theorem

-
$$M_1 = \ldots = M_{n-1} = (1-p)$$

- $M_n = \sqrt{n(1-p)}$

We choose k = n - 1,

$$\operatorname{Var}(X) + (M_n - M_{n-1})^2 \le (1 - p^2)n.$$

 $\Pr(X_i \ge E(X) + \lambda) \le e^{-\frac{\lambda^2}{2((1-p^2)n + (1-p)^2\lambda/3)}}.$ For constant $p \in (0, 1)$ and $\lambda = \Theta(n^{\frac{1}{2} + \epsilon})$, we have

$$\Pr(X \ge \operatorname{E}(X) + \lambda) \le e^{-\Theta(n^{2\epsilon})}$$

Reference

- C. McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics, edited by M. Habib, C. McDiarmid, J. Ramirez- Alfonsin, and B. Reed, pp. 195248, Algorithms and Combinatorics 16. Berlin: Springer, 1998.
- Chung and Lu, Concentration inequalities and martingale inequalities a survey, Internet Mathematics, 3 (2006), No. 1, 79-127.
- Chung and Lu, Complex Graphs and Networks, (2006) published by AMS, ISBN-10: 0-8218-3657-9, ISBN-13: 978-0-8218-3657-6.

