Topic Course on Probabilistic Methods (Week 6)
 Correlation Inequalities

Linyuan Lu
University of South Carolina

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviations (1-2 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Correlation Inequalities

- Four Functions Theorem
- 4FT on distributive lattice
- FKG inequalities

Correlation Inequalities

- (Ω, \mathcal{F}, P) : a probability space.
A, B : two events.
A and B are independent if

$$
\operatorname{Pr}(A B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

A and B are positively correlated if

$$
\operatorname{Pr}(A B) \geq \operatorname{Pr}(A) \operatorname{Pr}(B)
$$

A and B are negatively correlated if

$$
\operatorname{Pr}(A B) \leq \operatorname{Pr}(A) \operatorname{Pr}(B)
$$

Four Functions Theorem

- $N:=\{1,2,3 \ldots, n\}$
- $P(N)$: the power set of N.
- $\alpha, \beta, \gamma, \delta: P(N) \rightarrow \mathbb{R}^{+}$
- For $\mathcal{A} \subset P(N)$, and $\phi \in\{\alpha, \beta, \gamma, \delta\}$, let $\phi(\mathcal{A})=\sum_{A \in \mathcal{A}} \phi(A)$.

Four Functions Theorem

■ $N:=\{1,2,3 \ldots, n\}$
■ $P(N)$: the power set of N.
■ $\alpha, \beta, \gamma, \delta: P(N) \rightarrow \mathbb{R}^{+}$
■ For $\mathcal{A} \subset P(N)$, and $\phi \in\{\alpha, \beta, \gamma, \delta\}$, let

$$
\phi(\mathcal{A})=\sum_{A \in \mathcal{A}} \phi(A)
$$

Theorem [Ahlswede, Daykin (1978)]: If for any $A, B \subset N$,

$$
\alpha(A) \beta(B) \leq \gamma(A \cup B) \delta(A \cap B)
$$

then for any $\mathcal{A}, \mathcal{B} \subset P(N)$,

$$
\alpha(\mathcal{A}) \beta(\mathcal{B}) \leq \gamma(\mathcal{A} \cup \mathcal{B}) \delta(\mathcal{A} \cap \mathcal{B})
$$

Proof

Simplification:

- Modifying α so that $\alpha(A)=0$ for all $A \notin \mathcal{A}$.
- Modifying β so that $\beta(B)=0$ for all $B \notin \mathcal{B}$.

■ Modifying γ so that $\gamma(C)=0$ for all $C \notin \mathcal{A} \cup \mathcal{B}$.

- Modifying δ so that $\delta(D)=0$ for all $D \notin \mathcal{A} \cap \mathcal{B}$.

Proof

Simplification:

- Modifying α so that $\alpha(A)=0$ for all $A \notin \mathcal{A}$.
- Modifying β so that $\beta(B)=0$ for all $B \notin \mathcal{B}$.
- Modifying γ so that $\gamma(C)=0$ for all $C \notin \mathcal{A} \cup \mathcal{B}$.
- Modifying δ so that $\delta(D)=0$ for all $D \notin \mathcal{A} \cap \mathcal{B}$.

$$
\alpha(A) \alpha(B) \leq \gamma(A \cup B) \delta(A \cap B)
$$

still holds. It is sufficient to prove for $\mathcal{A}=\mathcal{B}=P(N)$.

Induction on n

Initial case $n=1: P(N)=\{\emptyset, N\}$. Use index 0 for \emptyset and 1 for N. We have

$$
\begin{aligned}
& \alpha_{0} \beta_{0} \leq \gamma_{0} \delta_{0} \\
& \alpha_{0} \beta_{1} \leq \gamma_{1} \delta_{0} \\
& \alpha_{1} \beta_{0} \leq \gamma_{1} \delta_{0} \\
& \alpha_{1} \beta_{1} \leq \gamma_{1} \delta_{1} .
\end{aligned}
$$

We need prove

$$
\left(\alpha_{0}+\alpha_{1}\right)\left(\beta_{0}+\beta_{1}\right) \leq\left(\gamma_{0}+\gamma_{1}\right)\left(\delta_{0}+\delta_{1}\right)
$$

It can be directly verified.

Inductive step

Suppose it holds for $n-1$ and let us prove it for $n \geq 2$. Let $N^{\prime}=N \backslash\{n\}$ and for each $\phi \in\{\alpha, \beta, \gamma, \delta\}$ and $A \in N^{\prime}$ define

$$
\phi^{\prime}(A)=\phi(A)+\phi(A \cup\{n\}) .
$$

Note that $\phi(P(N))=\phi^{\prime}\left(P\left(N^{\prime}\right)\right)$. Apply inductive hypothesis for functions $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$, and δ^{\prime}. It suffices to check

$$
\alpha^{\prime}(A) \alpha^{\prime}(B) \leq \gamma^{\prime}(A \cup B) \delta^{\prime}(A \cap B) .
$$

This is similar to the case $n=1$.

Distributive lattice

(L, \vee, \wedge) is a lattice if it satisfies
■ Commutative laws: $a \vee b=b \vee a, a \wedge b=b \wedge a$.

Distributive lattice

(L, \vee, \wedge) is a lattice if it satisfies
■ Commutative laws: $a \vee b=b \vee a, a \wedge b=b \wedge a$.
Associative laws: $a \vee(b \vee c)=(a \vee b) \vee c$, $a \wedge(b \wedge c)=(a \wedge b) \wedge c$

Distributive lattice

(L, \vee, \wedge) is a lattice if it satisfies
■ Commutative laws: $a \vee b=b \vee a, a \wedge b=b \wedge a$.

- Associative laws: $a \vee(b \vee c)=(a \vee b) \vee c$,

$$
a \wedge(b \wedge c)=(a \wedge b) \wedge c
$$

- Absorption laws: $a \vee(a \wedge b)=a, a \wedge(a \vee b)=a$.

It is distributive if it further satisfies the distributive laws:

$$
\begin{aligned}
& a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c), \\
& a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) .
\end{aligned}
$$

4FT on distributive lattice

Theorem [Ahlswede, Daykin (1978)]: Let L be a distributive lattice and $\alpha, \beta, \gamma, \delta: L \rightarrow \mathbb{R}^{+}$. If for any $x, y \in L$,

$$
\alpha(x) \alpha(y) \leq \gamma(x \vee y) \delta(x \wedge y)
$$

then for any $X, Y \subset L$,

$$
\alpha(X) \alpha(Y) \leq \gamma(X \vee Y) \delta(X \wedge Y)
$$

4FT on distributive lattice

Theorem [Ahlswede, Daykin (1978)]: Let L be a distributive lattice and $\alpha, \beta, \gamma, \delta: L \rightarrow \mathbb{R}^{+}$. If for any $x, y \in L$,

$$
\alpha(x) \alpha(y) \leq \gamma(x \vee y) \delta(x \wedge y)
$$

then for any $X, Y \subset L$,

$$
\alpha(X) \alpha(Y) \leq \gamma(X \vee Y) \delta(X \wedge Y)
$$

Note any distributive lattice can be embedded into $P([n])$. This is a corollary of the previous theorem.

FKG inequalities

A function $\mu: L \rightarrow \mathbb{R}^{+}$is log-supermodular if $\mu(x) \mu(y) \leq \mu(x \vee y) \mu(x \wedge y)$ for all x, y.

FKG inequalities

- A function $\mu: L \rightarrow \mathbb{R}^{+}$is log-supermodular if $\mu(x) \mu(y) \leq \mu(x \vee y) \mu(x \wedge y)$ for all x, y. $f: L \rightarrow \mathbb{R}^{+}$is increasing if $f(x) \leq f(y)$ whenever $x \leq y$. It is decreasing if $f(x) \geq f(y)$ whenever $x \leq y$.

FKG inequalities

- A function $\mu: L \rightarrow \mathbb{R}^{+}$is log-supermodular if $\mu(x) \mu(y) \leq \mu(x \vee y) \mu(x \wedge y)$ for all x, y.
■ $f: L \rightarrow \mathbb{R}^{+}$is increasing if $f(x) \leq f(y)$ whenever $x \leq y$. It is decreasing if $f(x) \geq f(y)$ whenever $x \leq y$.

The FKG Inequality [Fortuin-Kasteleyn-Ginibre 1971]: If μ is log-supermodular and f, g are increasing, then
$\sum_{x \in L} f(x) \mu(x) \sum_{x \in L} g(x) \mu(x) \leq \sum_{x \in L} f(x) g(x) \mu(x) \sum_{x \in L} \mu(x)$.

FKG inequalities

- A function $\mu: L \rightarrow \mathbb{R}^{+}$is log-supermodular if $\mu(x) \mu(y) \leq \mu(x \vee y) \mu(x \wedge y)$ for all x, y.
- $f: L \rightarrow \mathbb{R}^{+}$is increasing if $f(x) \leq f(y)$ whenever $x \leq y$. It is decreasing if $f(x) \geq f(y)$ whenever $x \leq y$.

The FKG Inequality [Fortuin-Kasteleyn-Ginibre 1971]: If μ is log-supermodular and f, g are increasing, then

$$
\sum_{x \in L} f(x) \mu(x) \sum_{x \in L} g(x) \mu(x) \leq \sum_{x \in L} f(x) g(x) \mu(x) \sum_{x \in L} \mu(x) .
$$

If one is increasing and the other is decreasing, then

$$
\sum_{x \in L} f(x) \mu(x) \sum_{x \in L} g(x) \mu(x) \geq \sum_{x \in L} f(x) g(x) \mu(x) \sum_{x \in L} \mu(x) .
$$

A probabilistic view

■ $\quad(P(N), \mu)$: a probability space where μ is log-supermodular.

- An event \mathcal{A} is monotone increasing if $A \in \mathcal{A}$ and $A \subset B$ implies $B \in \mathcal{A}$.

Proposition: If both A and B are monotone increasing or monotone decreasing, then

$$
\operatorname{Pr}(\mathcal{A B}) \geq \operatorname{Pr}(\mathcal{A}) \operatorname{Pr}(\mathcal{B})
$$

If one is monotone increasing and the other one is monotone decreasing, then

$$
\operatorname{Pr}(\mathcal{A B}) \leq \operatorname{Pr}(\mathcal{A}) \operatorname{Pr}(\mathcal{B})
$$

Applying to $G(n, p)$

In $G(n, p)$, for any graph H,

$$
\mu(H)=\operatorname{Pr}(H)=p^{|E(H)|}(1-p)^{|E(\bar{H})|} .
$$

Observe that this μ is log-supermodular. We get a lot of correlation inequalities on monotone events.

Applying to $G(n, p)$

In $G(n, p)$, for any graph H,

$$
\mu(H)=\operatorname{Pr}(H)=p^{|E(H)|}(1-p)^{|E(\bar{H})|} .
$$

Observe that this μ is log-supermodular. We get a lot of correlation inequalities on monotone events.
Example of monotone events:

- Triangle-free.
- Being planar graph.
- k-connected.
- Having Hamiltonian cycle.

■ H-free.
Diameter less than k.

