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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)



Selected topics
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviations (1-2 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Correlation Inequalities

■ Four Functions Theorem
■ 4FT on distributive lattice
■ FKG inequalities



Correlation Inequalities
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■ (Ω,F , P ): a probability space.
■ A,B: two events.
■ A and B are independent if

Pr(AB) = Pr(A)Pr(B).

■ A and B are positively correlated if

Pr(AB) ≥ Pr(A)Pr(B).

■ A and B are negatively correlated if

Pr(AB) ≤ Pr(A)Pr(B).



Four Functions Theorem
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■ N := {1, 2, 3 . . . , n}
■ P (N): the power set of N .
■ α, β, γ, δ : P (N) → R

+

■ For A ⊂ P (N), and φ ∈ {α, β, γ, δ}, let
φ(A) =

∑
A∈A φ(A).
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■ N := {1, 2, 3 . . . , n}
■ P (N): the power set of N .
■ α, β, γ, δ : P (N) → R

+

■ For A ⊂ P (N), and φ ∈ {α, β, γ, δ}, let
φ(A) =

∑
A∈A φ(A).

Theorem [Ahlswede, Daykin (1978)]: If for any
A,B ⊂ N ,

α(A)β(B) ≤ γ(A ∪ B)δ(A ∩B),

then for any A,B ⊂ P (N),

α(A)β(B) ≤ γ(A ∪ B)δ(A ∩ B),



Proof
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Simplification:

■ Modifying α so that α(A) = 0 for all A 6∈ A.

■ Modifying β so that β(B) = 0 for all B 6∈ B.

■ Modifying γ so that γ(C) = 0 for all C 6∈ A ∪ B.

■ Modifying δ so that δ(D) = 0 for all D 6∈ A ∩ B.
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Simplification:

■ Modifying α so that α(A) = 0 for all A 6∈ A.

■ Modifying β so that β(B) = 0 for all B 6∈ B.

■ Modifying γ so that γ(C) = 0 for all C 6∈ A ∪ B.

■ Modifying δ so that δ(D) = 0 for all D 6∈ A ∩ B.

α(A)α(B) ≤ γ(A ∪ B)δ(A ∩B)

still holds. It is sufficient to prove for A = B = P (N).



Induction on n
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Initial case n = 1: P (N) = {∅, N}. Use index 0 for ∅ and 1
for N . We have

α0β0 ≤ γ0δ0

α0β1 ≤ γ1δ0

α1β0 ≤ γ1δ0

α1β1 ≤ γ1δ1.

We need prove

(α0 + α1)(β0 + β1) ≤ (γ0 + γ1)(δ0 + δ1).

It can be directly verified.



Inductive step
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Suppose it holds for n− 1 and let us prove it for n ≥ 2. Let
N ′ = N \ {n} and for each φ ∈ {α, β, γ, δ} and
A ∈ N ′define

φ′(A) = φ(A) + φ(A ∪ {n}).

Note that φ(P (N)) = φ′(P (N ′)). Apply inductive
hypothesis for functions α′, β′, γ′, and δ′. It suffices to check

α′(A)α′(B) ≤ γ′(A ∪ B)δ′(A ∩ B).

This is similar to the case n = 1. �



Distributive lattice
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(L,∨,∧) is a lattice if it satisfies

■ Commutative laws: a ∨ b = b ∨ a, a ∧ b = b ∧ a.
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(L,∨,∧) is a lattice if it satisfies

■ Commutative laws: a ∨ b = b ∨ a, a ∧ b = b ∧ a.

■ Associative laws: a ∨ (b ∨ c) = (a ∨ b) ∨ c,

a ∧ (b ∧ c) = (a ∧ b) ∧ c

■ Absorption laws: a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a.

It is distributive if it further satisfies the distributive laws:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).



4FT on distributive lattice
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Theorem [Ahlswede, Daykin (1978)]: Let L be a
distributive lattice and α, β, γ, δ : L → R

+. If for any
x, y ∈ L,

α(x)α(y) ≤ γ(x ∨ y)δ(x ∧ y),

then for any X, Y ⊂ L,

α(X)α(Y ) ≤ γ(X ∨ Y )δ(X ∧ Y ),
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Theorem [Ahlswede, Daykin (1978)]: Let L be a
distributive lattice and α, β, γ, δ : L → R

+. If for any
x, y ∈ L,

α(x)α(y) ≤ γ(x ∨ y)δ(x ∧ y),

then for any X, Y ⊂ L,

α(X)α(Y ) ≤ γ(X ∨ Y )δ(X ∧ Y ),

Note any distributive lattice can be embedded into P ([n]).
This is a corollary of the previous theorem.



FKG inequalities
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■ A function µ : L → R
+ is log-supermodular if

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y) for all x, y.
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■ A function µ : L → R
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■ f : L → R
+ is increasing if f(x) ≤ f(y) whenever

x ≤ y. It is decreasing if f(x) ≥ f(y) whenever x ≤ y.
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■ A function µ : L → R
+ is log-supermodular if

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y) for all x, y.

■ f : L → R
+ is increasing if f(x) ≤ f(y) whenever
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µ(x).



FKG inequalities

Topic Course on Probabilistic Methods (week 6) Linyuan Lu, University of South Carolina – 12 / 14

■ A function µ : L → R
+ is log-supermodular if

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y) for all x, y.

■ f : L → R
+ is increasing if f(x) ≤ f(y) whenever

x ≤ y. It is decreasing if f(x) ≥ f(y) whenever x ≤ y.

The FKG Inequality [Fortuin-Kasteleyn-Ginibre 1971]:
If µ is log-supermodular and f, g are increasing, then
∑

x∈L

f(x)µ(x)
∑

x∈L

g(x)µ(x) ≤
∑

x∈L

f(x)g(x)µ(x)
∑

x∈L

µ(x).

If one is increasing and the other is decreasing, then
∑

x∈L

f(x)µ(x)
∑

x∈L

g(x)µ(x) ≥
∑

x∈L

f(x)g(x)µ(x)
∑

x∈L

µ(x).



A probabilistic view
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■ (P (N), µ): a probability space where µ is
log-supermodular.

■ An event A is monotone increasing if A ∈ A and A ⊂ B

implies B ∈ A.

Proposition: If both A and B are monotone increasing or
monotone decreasing, then

Pr(AB) ≥ Pr(A)Pr(B).

If one is monotone increasing and the other one is monotone
decreasing, then

Pr(AB) ≤ Pr(A)Pr(B).



Applying to G(n, p)
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In G(n, p), for any graph H,

µ(H) = Pr(H) = p|E(H)|(1− p)|E(H̄)|.

Observe that this µ is log-supermodular. We get a lot of
correlation inequalities on monotone events.



Applying to G(n, p)

Topic Course on Probabilistic Methods (week 6) Linyuan Lu, University of South Carolina – 14 / 14

In G(n, p), for any graph H,

µ(H) = Pr(H) = p|E(H)|(1− p)|E(H̄)|.

Observe that this µ is log-supermodular. We get a lot of
correlation inequalities on monotone events.

Example of monotone events:

■ Triangle-free.
■ Being planar graph.
■ k-connected.
■ Having Hamiltonian cycle.
■ H-free.
■ Diameter less than k.
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