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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)



Selected topics

Topic Course on Probabilistic Methods (week 5) Linyuan Lu, University of South Carolina – 3 / 26

■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviations (1-2 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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The second moment method

■ Lovász Local Lemma
■ Property B
■ k-coloring of R
■ Ramsey numbers R(k, k)
■ Ramsey numbers R(3, k)
■ Directed cycles
■ Linear Arboricity



Lovász Local Lemma
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■ A1, A2, . . . , An: n events in an arbitrary probability
spaces.



Lovász Local Lemma

Topic Course on Probabilistic Methods (week 5) Linyuan Lu, University of South Carolina – 5 / 26

■ A1, A2, . . . , An: n events in an arbitrary probability
spaces.

■ A dependency digraph D = (V,E): if for each Ai, Ai is
mutually independent to all the events {Aj : AiAj 6∈ E}.

Lovász Local Lemma, general case: If there are real
number x1, . . . , xn such that 0 ≤ xi < 1 and
Pr(Ai) ≤ xi

∏

(i,j)∈E(1− xj) for all 1 ≤ i ≤ n. Then

Pr
(

∧n
i=1Āi

)

≥
n
∏

i=1

(1− xi) > 0.



Proof
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Proof: Inductively prove that for any S ⊂ [n], |S| = s < n,
i 6∈ S,

Pr
[

Ai | ∧j∈SĀj

]

≤ xi.
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Trivial for s = 0. Assuming it for all s′ < s, we prove it for s.
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Proof: Inductively prove that for any S ⊂ [n], |S| = s < n,
i 6∈ S,

Pr
[

Ai | ∧j∈SĀj

]

≤ xi.

Trivial for s = 0. Assuming it for all s′ < s, we prove it for s.

Let S1 = {j ∈ S : (i, j) ∈ E(G)} and S2 = S \ S1. Then

Pr
[

Ai | ∧j∈SĀj

]

=
Pr

[

Ai ∧ (∧j∈S1
Āj) | ∧j∈S2

Āj

]
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Proof: Inductively prove that for any S ⊂ [n], |S| = s < n,
i 6∈ S,

Pr
[

Ai | ∧j∈SĀj

]

≤ xi.

Trivial for s = 0. Assuming it for all s′ < s, we prove it for s.

Let S1 = {j ∈ S : (i, j) ∈ E(G)} and S2 = S \ S1. Then

Pr
[

Ai | ∧j∈SĀj

]

=
Pr

[

Ai ∧ (∧j∈S1
Āj) | ∧j∈S2

Āj

]

Pr
[

∧j∈S1
Āj | ∧j∈S2

Āj

]

Pr
[

Ai ∧ (∧j∈S1
Āj) | ∧j∈S2

Āj

]

≤ Pr
[

Ai | ∧j∈S2
Āj

]

= Pr[Ai] ≤ xi
∏

(i,j)∈E(G)

(1− xj).
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Write S1 = {j1, j2, . . . , jr}.

Pr
[

∧j∈S1
Āj | ∧j∈S2

Āj

]

=
r
∏

l=1

(

1− Pr
[

Ajl | Ājl+1
∧ · · · ∧ Ajr ∧j∈S2

Āj

])

≥
r
∏

l=1

(1− xjl)

≥
∏

(i,j)∈E(G)

(1− xj).

Thus,
Pr

[

Ai | ∧j∈SĀj

]

≤ xi.
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Pr
[

∧n
i=1Āi

]

= (1− Pr[A1])(1− Pr[A2|Ā1]) · · ·
· · ·

(

1− Pr
[

An| ∧n−1
i=1 Āi

])

≥
n
∏

i=1

(1− xi).

The proof is finished. �



Symmetric Case
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Lovász Local Lemma, symmetric case: Let
A1, A2, . . . , An be events in an arbitrary probability space.
Suppose that each event Ai is mutually independent of a set
of all the other event Aj but at most d, and that Pr(Ai) ≤ p
for all 1 ≤ i ≤ n. If ep(d+ 1) < 1, then Pr(∧n

i=1Āi) > 0.



Property B
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Theorem: Let H = (V,E) be a hypergraph in which every
edge has at least k elements, and suppose that each edge of
H intersects at most d other edges. If e(d+ 1) ≤ 2k−1, then
H has property B.
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Theorem: Let H = (V,E) be a hypergraph in which every
edge has at least k elements, and suppose that each edge of
H intersects at most d other edges. If e(d+ 1) ≤ 2k−1, then
H has property B.

Proof: Color each vertex in two colors randomly and
independently. For each edge f ∈ E, let Af be the event
that f is monochromatic. Then

Pr(Af) = 21−|f | ≤ 21−k.

Af is independent to all event but at most d. Aplly LLL. �
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Let c : R → {1, 2, . . . , k} be a k-coloring of R. A set T ⊂ R

is multicolored if c(T ) = {1, 2, . . . , k}.
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Let c : R → {1, 2, . . . , k} be a k-coloring of R. A set T ⊂ R

is multicolored if c(T ) = {1, 2, . . . , k}.
Theorem: Let m and k be two positive intergers satisfying

e(m(m− 1) + 1)k(1− 1

k
)m ≤ 1.

Then, for any set S of m real numbers there is a k-coloring
so that each translantion x+ S (for x ∈ R) is multicolored.
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Let c : R → {1, 2, . . . , k} be a k-coloring of R. A set T ⊂ R

is multicolored if c(T ) = {1, 2, . . . , k}.
Theorem: Let m and k be two positive intergers satisfying

e(m(m− 1) + 1)k(1− 1

k
)m ≤ 1.

Then, for any set S of m real numbers there is a k-coloring
so that each translantion x+ S (for x ∈ R) is multicolored.

The condition is satisfied if m > (3 + o(1))k log k.
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First we use LLL to prove “For any finite set X ⊂ R, there is
a k-coloring so that x+ S (for all x ∈ X) is multi-colored.”
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First we use LLL to prove “For any finite set X ⊂ R, there is
a k-coloring so that x+ S (for all x ∈ X) is multi-colored.”

Let Y = ∪x∈X(x+ S). Color numbers in Y in k-colors
randomly and independently. Let Ax be the event that
x+ S is not multi-colored.

Pr(Ax) ≤ k(1− 1

k
)m.
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First we use LLL to prove “For any finite set X ⊂ R, there is
a k-coloring so that x+ S (for all x ∈ X) is multi-colored.”

Let Y = ∪x∈X(x+ S). Color numbers in Y in k-colors
randomly and independently. Let Ax be the event that
x+ S is not multi-colored.

Pr(Ax) ≤ k(1− 1

k
)m.

Ax depends on Ay if (x+ S) ∩ (y + S) 6= ∅. Equivalently,
y − x ∈ S − S. There are at most m(m− 1) such events.

d ≤ m(m− 1).



continue
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Apllying LLL, we get

Pr(∧x∈XĀx) > 0.

Then by Tikhonov’s theorem, [k]R is compact. For any
x ∈ R, let

Cx = {c ∈ [k]R : x+ S is multi-colored}.
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Apllying LLL, we get

Pr(∧x∈XĀx) > 0.

Then by Tikhonov’s theorem, [k]R is compact. For any
x ∈ R, let

Cx = {c ∈ [k]R : x+ S is multi-colored}.

Now Cx is a closed set and ∩x∈XCx 6= ∅ for any finite X.
Then ∩x∈RCx 6= ∅. �
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Theorem (Spencer, 1975)

R(k, k) ≥ (1 + o(1))

√
2

e
k2k/2.
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√
2
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Theorem (Spencer, 1975)

R(k, k) ≥ (1 + o(1))

√
2

e
k2k/2.

Theorem (Spencer, 1975)

R(3, k) ≥ ck2

log2 k
.

Best bounds for R(r, k) (for fixed r and k large),

c

(

k

log k

)(r+1)/2

< R(r, k) < (1 + o(1))
kr−1

logr−2 k
.
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Theorem (Spencer, 1975)

R(3, k) ≥ ck2

log k
.
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Theorem (Spencer, 1975)

R(3, k) ≥ ck2
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Proof: Consider G(n, p). Two bad events:

■ For S ∈
(

[n]
3

)

, let AS be the event of G|S is a triangle;
Pr(AS) = p3.
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independent set of G; Pr(Bt) = (1− p)(
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Theorem (Spencer, 1975)

R(3, k) ≥ ck2

log k
.

Proof: Consider G(n, p). Two bad events:

■ For S ∈
(

[n]
3

)

, let AS be the event of G|S is a triangle;
Pr(AS) = p3.

■ For T ∈
(

[n]
k

)

, let BT be the event that T is an

independent set of G; Pr(Bt) = (1− p)(
k

2).

■ Dependence graph: dSS ≤ 3n, dST ≤ 3
(

n
k−2

)

,

dTS ≤
(

k
2

)

n, and dTT ≤
(

k
2

)(

n
k−2

)

.
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By LLL, we only require

p3 ≤ x(1− x)3n(1− y)3(
n

k−2)

(1− p)(
k

2) ≤ y(1− x)(
k

2)n(1− y)(
k

2)(
n

k−2).
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By LLL, we only require

p3 ≤ x(1− x)3n(1− y)3(
n

k−2)

(1− p)(
k

2) ≤ y(1− x)(
k

2)n(1− y)(
k

2)(
n

k−2).

We can choose p = c1n
−1/2, k = c2n

1/2 log n, x = c3n
−3/2,

and y = c4/
(

n
k

)

.
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By LLL, we only require

p3 ≤ x(1− x)3n(1− y)3(
n

k−2)

(1− p)(
k

2) ≤ y(1− x)(
k

2)n(1− y)(
k

2)(
n

k−2).

We can choose p = c1n
−1/2, k = c2n

1/2 log n, x = c3n
−3/2,

and y = c4/
(

n
k

)

.

This gives R(3, k) > c5k
2/ log2 k. �



R(4, k)

Topic Course on Probabilistic Methods (week 5) Linyuan Lu, University of South Carolina – 17 / 26

Best bounds for R(r, k) (for fixed r and k large),

c

(

k

log k

)(r+1)/2

< R(r, k) < (1 + o(1))
kr−1

logr−2 k
.

Erdős conjecture $250: Prove

R(4, k) > c′
k3

logc k

for some constants c′, c > 0.
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Best bounds for R(r, k) (for fixed r and k large),

c

(

k

log k

)(r+1)/2

< R(r, k) < (1 + o(1))
kr−1

logr−2 k
.

Erdős conjecture $250: Prove

R(4, k) > c′
k3

logc k

for some constants c′, c > 0.

The best lower bound is using LLL; R(4, k) > c′ k2.5

log2.5 k
.
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■ D = (V,E): a simple directed graph.
■ δ: minimum outdegree.
■ ∆: maximum indegree.
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■ D = (V,E): a simple directed graph.
■ δ: minimum outdegree.
■ ∆: maximum indegree.

Theorem [Alon and Linial (1989) If
e(∆δ + 1)(1− 1/k)δ < 1, then D contains a (directed,
simple) cycle of length 0 mod k.
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■ D = (V,E): a simple directed graph.
■ δ: minimum outdegree.
■ ∆: maximum indegree.

Theorem [Alon and Linial (1989) If
e(∆δ + 1)(1− 1/k)δ < 1, then D contains a (directed,
simple) cycle of length 0 mod k.

Proof: First we can assume every out-degree is δ by
deleting some edges if necessary. Consider f : V → Zk. Bad
event Av: no u ∈ Γ+(v) with f(u) = f(v) + 1.

Pr(Av) = (1− 1/k)δ.

Each event depends on at most δ∆ others. Apply LLL. �
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■ Linear forest: disjoint union of paths.
■ Linear arboricity la(G): the minimum number of linear

forests, whose union is E(G).
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■ Linear forest: disjoint union of paths.
■ Linear arboricity la(G): the minimum number of linear

forests, whose union is E(G).

The Linear Arboricity Conjecture (Akiyama, Exoo,
Harary [1981]): For every d-regular graph G,

la(G) = ⌈d+ 1

2
⌉.



Linear Arboricity

Topic Course on Probabilistic Methods (week 5) Linyuan Lu, University of South Carolina – 19 / 26

■ Linear forest: disjoint union of paths.
■ Linear arboricity la(G): the minimum number of linear

forests, whose union is E(G).

The Linear Arboricity Conjecture (Akiyama, Exoo,
Harary [1981]): For every d-regular graph G,

la(G) = ⌈d+ 1

2
⌉.

If the conjecture is true, then it is tight.

la(G) ≥ nd

2(n− 1)
>

d

2
.
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■ G = (V,E): a directed graph.
■ G is d-regular if d+(v) = d−(v) = d for any vertex v.
■ Linear directed forest: disjoint union of directed paths.
■ Dilinear arboricity dla(G): the minimum number of

linear directed forests, whose union is E(G).
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■ G = (V,E): a directed graph.
■ G is d-regular if d+(v) = d−(v) = d for any vertex v.
■ Linear directed forest: disjoint union of directed paths.
■ Dilinear arboricity dla(G): the minimum number of

linear directed forests, whose union is E(G).

The Linear Arboricity Conjecture for directed graph
(Nakayama, Peroche [1981]): For every d-regular
directed graph G, dla(G) = d+ 1.
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■ G = (V,E): a directed graph.
■ G is d-regular if d+(v) = d−(v) = d for any vertex v.
■ Linear directed forest: disjoint union of directed paths.
■ Dilinear arboricity dla(G): the minimum number of

linear directed forests, whose union is E(G).

The Linear Arboricity Conjecture for directed graph
(Nakayama, Peroche [1981]): For every d-regular
directed graph G, dla(G) = d+ 1.

DLA conjecture for d implies LA conjecture for 2d.
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Proposition: Let H = (V,E) be a graph with maximum

degree d, and let V = V1 ∪ V2 ∪ · · · ∪ Vr be a partition of V .

If |Vi| ≥ 2ed, then there is an independent set of vertices W
that contains a vertex from each Vi.
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Proposition: Let H = (V,E) be a graph with maximum

degree d, and let V = V1 ∪ V2 ∪ · · · ∪ Vr be a partition of V .

If |Vi| ≥ 2ed, then there is an independent set of vertices W
that contains a vertex from each Vi.

Proof: WLOG, we assume

|V1| = |V2| = · · · = |Vr| = ⌈2ed⌉ = g.

Pick from each Vi a vertex randomly and independently. Let
W be the random set of the vertices picked. For each edge
f , let Af be the event that both ends in W . The maximum
degree in the dependence graph is at most 2gd− 1. We
have e · 2gd · 1

g2 =
2ed
g < 1. Apply LLL. �
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The directed girth of a digraph is the minimum length of a
directed cycle in it.



With large girth

Topic Course on Probabilistic Methods (week 5) Linyuan Lu, University of South Carolina – 22 / 26

The directed girth of a digraph is the minimum length of a
directed cycle in it.

Theorem Let G = (U, F ) be a d-regular digraph with
directed girth g ≥ 8ed. Then

dla(G) = d+ 1.
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The directed girth of a digraph is the minimum length of a
directed cycle in it.

Theorem Let G = (U, F ) be a d-regular digraph with
directed girth g ≥ 8ed. Then

dla(G) = d+ 1.

Proof: Using Hall’s matching theorem, we can partition F
into d pairwise disjoint 1-regular spanning subgraphs
F1, . . . , Fd of G.



Continue
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Each Fi is a union of vertex disjoint directed cycles. Let
V1, . . . , Vr are the sets of edges of all cycles. Then

F = V1 ∪ · · · ∪ Vr.
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Each Fi is a union of vertex disjoint directed cycles. Let
V1, . . . , Vr are the sets of edges of all cycles. Then

F = V1 ∪ · · · ∪ Vr.

By the girth condition, |Vi| ≥ 8ed.
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Each Fi is a union of vertex disjoint directed cycles. Let
V1, . . . , Vr are the sets of edges of all cycles. Then

F = V1 ∪ · · · ∪ Vr.

By the girth condition, |Vi| ≥ 8ed.

Apply the proposition to the line-graph H of G. Note H is
4d− 2-regular.
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Each Fi is a union of vertex disjoint directed cycles. Let
V1, . . . , Vr are the sets of edges of all cycles. Then

F = V1 ∪ · · · ∪ Vr.

By the girth condition, |Vi| ≥ 8ed.

Apply the proposition to the line-graph H of G. Note H is
4d− 2-regular.

There exists an independent set M1 of H. Now
M1, F1 \M1, . . . , Fd \M1 forms d+ 1 linear directed forests.
�
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Theorem [Alon 1988] There is an absolute constant c > 0
such that for every d-regular directed graph G

dla(G) ≤ d+ cd3/4 log1/2 d.
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Theorem [Alon 1988] There is an absolute constant c > 0
such that for every d-regular directed graph G

dla(G) ≤ d+ cd3/4 log1/2 d.

Corollary There is an absolute constant c > 0 such that for
every d-regular graph G

dla(G) ≤ d

2
+ cd3/4 log1/2 d.
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Theorem [Alon 1988] There is an absolute constant c > 0
such that for every d-regular directed graph G

dla(G) ≤ d+ cd3/4 log1/2 d.

Corollary There is an absolute constant c > 0 such that for
every d-regular graph G

dla(G) ≤ d

2
+ cd3/4 log1/2 d.

The error terms can be improved to cd2/3 log1/3 d.
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Pick a prime p. Color each vertex randomly and uniformly
into p colors. I.e., consider a random map

f : V → Zp.
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Pick a prime p. Color each vertex randomly and uniformly
into p colors. I.e., consider a random map

f : V → Zp.

Define for i ∈ Zp,

Ei = {(u, v) ∈ E : f(v) = f(u) + i}.

Let Gi = (V,Ei) and

■ ∆+
i : the maximum out-degree of Gi.

■ ∆−
i : the maximum in-degree of Gi.

■ ∆i: the maximum of ∆+
i and ∆−

i .
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√
log d.
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There exists a f satisfying

■ All Gi are almost regular: ∆i ≤ d
p + 3

√

d/p
√
log d.

■ Gi has large girth ≥ p for i 6= 0.

■ All Gi can be completed to a ∆i-regular directed graph
without deceasing the girth.

dla(G) ≤ 2∆0 +

p−1
∑

i=1

(∆i + 1) ≤ d+ d/p+ p+ C
√

dp log d.

Now choose p ∼ d1/2.
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