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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviations (1-2 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics

Topic Course on Probabilistic Methods (week 4) Linyuan Lu, University of South Carolina – 4 / 25

The second moment method

■ Variance
■ Chebyshev’s inequality
■ Number of prime factors
■ Counting K4 in G(n, p)
■ Counting balanced graphs
■ Clique number of G(n, 12)
■ Distinct sum
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■ Variance:
Var(X) = E(X − E(X))2 = E(X2)− (E(X))2.

■ Co-Variance: Cov(X, Y ) =
E((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ) .

■ If X and Y are independent, then Cov(X, Y ) = 0.

If X =
∑n

i=1Xi, then

Var(X) =
n

∑

i=1

Var(Xi) +
∑

i6=j

Cov(Xi, Xj).

If X1, . . . , Xn are mutually independent, then
Var(X) =

∑n
i=1Var(Xi).
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■ E(X) = µ,
■ Var(X) = σ2.

Theorem [Chebyshev’s Inequality]: For any positive λ,

Pr(|X − µ| ≥ λσ) ≤ 1

λ2
.
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■ E(X) = µ,
■ Var(X) = σ2.

Theorem [Chebyshev’s Inequality]: For any positive λ,

Pr(|X − µ| ≥ λσ) ≤ 1

λ2
.

Proof:

σ2 = Var(X)

= E((X − µ)2)

≥ λ2σ2Pr(|X − µ| ≥ λσ).
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ν(n): the number of primes p dividing n.

Hardy, Ramanujan [1920]: For “almost all” n,
ν(n) ≈ ln lnn.

Theorem [Turán (1934)]: Let ω(n) → ∞ arbitrarily
slowly. Then the number of x in [n] := {1, 2, . . . , n} such
that

|ν(x)− ln lnn| > ω(n)
√
ln lnn.

is o(n).
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Let x be randomly chosen from [n]. For p prime set

Xp =

{

1 if p | x,
0 otherwise.

Set M = n1/10 and X =
∑

p≤M Xp. Then

ν(x)− 10 ≤ X(x) ≤ ν(x).
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Let x be randomly chosen from [n]. For p prime set

Xp =

{

1 if p | x,
0 otherwise.

Set M = n1/10 and X =
∑

p≤M Xp. Then

ν(x)− 10 ≤ X(x) ≤ ν(x).

E(Xp) =
⌊np⌋
n

=
1

p
+O(

1

n
).

E(X) =
∑

p≤M

(

1

p
+ O(

1

n
)

)

= ln lnn+ O(1).
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Var(Xp) =
1

p

(

1− 1

p

)

+O

(

1

n

)

.
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Var(Xp) =
1

p

(

1− 1

p

)

+O

(

1

n

)

.

Cov(Xp, Xq) = E(XpXq)− E(Xp)E(Xq)

=
⌊n/pq⌋

n
− ⌊n/p⌋

n

⌊n/q⌋
n

≤ 1

pq
−
(

1

p
− 1

n

)(

1

q
− 1

n

)

≤ 1

n

(

1

p
+

1

q

)

.
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Var(Xp) =
1

p

(

1− 1

p

)

+O

(

1

n

)

.

Cov(Xp, Xq) = E(XpXq)− E(Xp)E(Xq)

=
⌊n/pq⌋

n
− ⌊n/p⌋

n

⌊n/q⌋
n

≤ 1

pq
−
(

1

p
− 1

n

)(

1

q
− 1

n

)

≤ 1

n

(

1

p
+

1

q

)

.

Var(X) =
∑

p≤M

Var(Xp)+
∑

p 6=q

Cov(Xp, Xq) = ln lnn+O(1).
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By Chebyshev’s inequality, we have

Pr(|X − ln lnn| > λ
√
ln lnn) < λ−2 + o(1).

�
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By Chebyshev’s inequality, we have

Pr(|X − ln lnn| > λ
√
ln lnn) < λ−2 + o(1).

�

Theorem [Erdős-Kac (1940):] For any fixed λ, we have

lim
n→∞

1

n

∣

∣

∣
{x : 1 ≤ x ≤ n, ν(x) ≥ ln lnn+ λ

√
ln lnn}

∣

∣

∣

=

∫ ∞

λ

1√
2π

e−t2/2dt.
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■ X =
∑

iXi: where Xi are indicator random variables.

■ If E(X) = o(1), then X = 0 almost always.

■ If Var(X) = o(E(X)2), then X ∼ E(X) almost always.
In particular X > 0 almost always.

■ Write Xi ∼ Xj if i 6= j, and the events Xi, Xj are not
independent. Let ∆ =

∑

i∼j Pr(Ai ∧Aj). If E(X) → ∞
and ∆ = o(E(X)2), then X > 0 almost always.

■ Let ∆∗ = maxi
∑

j∼i Pr(Aj|Ai). If E(X) → ∞ and
∆∗ = o(E(X)), then X > 0 almost always.
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- n nodes
- For each pair of vertices, create an edge independently
with probability p.

- The graph with e edges has the probability pe(1− p)(
n

2
)−e.

A property of graphs is a family of graphs closed under
isomorphic.

A function r(n) is called a threshold function for some
property P if

■ If p ≪ r(n), then G(n, p) does not satisfy P almost
always.

■ If p ≫ r(n), then G(n, p) satisfy P almost always.
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ω(G): the number of vertices in the maximum clique of the
graph G.

Theorem: The property ω(G) ≥ 4 has the threshold
function n−2/3.

Proof: For any S ∈
(

[n]
4

)

, let XS be the indicator variable of
the event “S is a clique”.

E(X) =
∑

S

E(XS) =

(

n

4

)

p6 ≈ n4p6

24
.

If p ≪ n−2/3 then E(X) = o(1) and so X = 0 almost surely.
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If p ≫ n−2/3, then E(X) → ∞.
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If p ≫ n−2/3, then E(X) → ∞.

S ∼ T if |S ∩ T | ≥ 2. Thus,

∆∗ = O(n2p5) +O(np3) = o(n4p6) = o(E(X)).

Hence X > 0 almost surely. �
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■ H has v vertices and e edges.

■ ρ(H) = e/v.

■ H is called balanced of for any subgraph H ′,

ρ(H ′) ≤ ρ(H).

■ H is called strictly balanced of for any proper subgraph
H ′,

ρ(H ′) < ρ(H).
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Theorem: Let H be a balanced graph with v vertices and e
edges. Let A(G) be the event that H is a subgraph (not
necessarily induced) of G. Then p = n−v/e is the threshold
function for A.

If H is not balanced then p = n−v/e is the threshed function
for A.

Proof: Write X =
∑

S XS. Then E(X) =
(

n
v

)

pe.

If p ≪ n−v/e, then E(X) = o(1); X = 0 almost surely.

If p ≫ n−v/e, then E(X) → ∞. We have

∆∗ = O(
v

∑

i=2

nv−ipe−(ie/v)) = o(E(X)).
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vertices and e edges and a automorphisms. Let X be the
copies of H in G(n, p). Assume p ≫ n−v/s. Then almost
always

X ∼ nvpe

a
.
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Theorem: Let H be a strictly balanced graph with v
vertices and e edges and a automorphisms. Let X be the
copies of H in G(n, p). Assume p ≫ n−v/s. Then almost
always

X ∼ nvpe

a
.

Theorem: Let H be any fixed graph. For every subgraph
H ′ of H (including H itself) let XH ′ denote the number of
copies of H ′ in G(n, p). Assume p is such that
E(XH ′) → ∞ for every H ′. Then almost surely

XH ∼ E(XH).
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■ ω(G): the clique number of G.

■ f(k) =
(

n
k

)

2−(
k

2
): the expected number of k-cliques.

Theorem: Let k = k(n) satisfying k ∼ 2 log2 n and
f(k) → ∞. Then almost surely ω(G) ≥ k.

Proof: For each k-set S, let XS be the indicator random
variable that S is a clique and X =

∑

|S|=k XS.

E(X) =

(

n

k

)

2−(
k

2
) = f(k).
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∆∗ =
k−1
∑

i=2

(

k

i

)(

n− k

k − i

)

2(
i

2
)−(k

2
).

∆∗

E(|X|) =
k−1
∑

i=2

g(i),

where g(i) =
(ki)(

n−k

k−i)
(nk)

2(
i

2
).



Continue

Topic Course on Probabilistic Methods (week 4) Linyuan Lu, University of South Carolina – 19 / 25

∆∗ =
k−1
∑

i=2

(

k

i

)(

n− k

k − i

)

2(
i

2
)−(k

2
).

∆∗

E(|X|) =
k−1
∑

i=2

g(i),

where g(i) =
(ki)(

n−k

k−i)
(nk)

2(
i

2
). Then

g(i) ≤ max{g(2), g(k − 1)} = o(n−1).

Thus, ∆∗ = o(E(X)). �
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f(k + 1)

f(k)
=

n− k

k + 1
2−k.

For k ∼ 2 log2 n, then

f(k + 1)

f(k)
= n−1+o(1).
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f(k + 1)

f(k)
=

n− k

k + 1
2−k.

For k ∼ 2 log2 n, then

f(k + 1)

f(k)
= n−1+o(1).

Let k0 be the value with f(k0) ≥ 1 > f(k0 + 1). For most of
n, f(k) will jump from very large to very small. With high
probability, ω(G) = k0.
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■ A set x1, . . . , xk of positive integers is said to have
distinct sums if all sums

∑

i∈S
xi, S ⊂ {1, . . . , k}

are distinct.

■ Let f(n) be the largest k for which there is a set
{x1, x2, . . . , xk} ⊂ {1, . . . , n} with distinct sums.

Erdős offered $300 for a proof or disproof that

f(n) ≤ log2 n+O(1).
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Proposition: f(n) ≥ 1 + ⌊log2 n⌋.
Proof: Let k = ⌊log2 n⌋+ 1. For i = 1, 2, . . . , k, set
xi = 2i−1. We have

x1 < x2 < · · · < xk ≤ n.

For ǫ1, . . . , ǫk ∈ {0, 1}, the binary number

ǫkǫk−1 · · · ǫ1

has the value
∑k

i=1 ǫixi.

Since every number has a unique base-2 representation, the
set {x1, x2, . . . , xk} has distinct sums. �
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Proposition: f(n) ≤ log2 n+ log2 log2 n+ O(1).
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Proof: Assume n ≥ 2. Let k = f(n) and x1, x2, . . . , xk be
the set of distinct sums.
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Proposition: f(n) ≤ log2 n+ log2 log2 n+ O(1).
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the set of distinct sums.

All 2k sums are distinct and less than nk. We have

2k ≤ nk.
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Proposition: f(n) ≤ log2 n+ log2 log2 n+ O(1).

Proof: Assume n ≥ 2. Let k = f(n) and x1, x2, . . . , xk be
the set of distinct sums.

All 2k sums are distinct and less than nk. We have

2k ≤ nk.

The function g(k) := 2k

k is an increasing function. At
k = log2 n+ log2 log2 n+ 2, we have

2k

k
=

4n log2 n

log2 n+ log2 log2 n+ 2
> n.

Thus, k ≤ log2 n+ log2 log2 n+ 2. �
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Theorem: f(n) < log2 n+ 1
2 log2 log2 n+O(1).
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Theorem: f(n) < log2 n+ 1
2 log2 log2 n+O(1).

Proof: Fix x1, x2, . . . , xk with distinct sums. Let ǫ1, . . . , ǫk
be uniform independent {0, 1}-random variables. Let

X =
∑k

i=1 ǫixi. We have
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Theorem: f(n) < log2 n+ 1
2 log2 log2 n+O(1).

Proof: Fix x1, x2, . . . , xk with distinct sums. Let ǫ1, . . . , ǫk
be uniform independent {0, 1}-random variables. Let

X =
∑k

i=1 ǫixi. We have

■ E(X) = 1
2

∑k
i=1 xi.
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Theorem: f(n) < log2 n+ 1
2 log2 log2 n+O(1).

Proof: Fix x1, x2, . . . , xk with distinct sums. Let ǫ1, . . . , ǫk
be uniform independent {0, 1}-random variables. Let

X =
∑k

i=1 ǫixi. We have

■ E(X) = 1
2

∑k
i=1 xi.

■ Var(X) = 1
4

∑k
i=1 x

2
i ≤ n2k

4 .
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Theorem: f(n) < log2 n+ 1
2 log2 log2 n+O(1).

Proof: Fix x1, x2, . . . , xk with distinct sums. Let ǫ1, . . . , ǫk
be uniform independent {0, 1}-random variables. Let

X =
∑k

i=1 ǫixi. We have

■ E(X) = 1
2

∑k
i=1 xi.

■ Var(X) = 1
4

∑k
i=1 x

2
i ≤ n2k

4 .

By Chebyshev’s inequality, for any λ > 1,

Pr
[

|X − µ| ≥ λn
√
k/2

]

≤ 1

λ2
.
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By the property of distinct sums, Pr(X = x) is either 0 or
2−k for any integer x. Thus,

Pr
[

|X − µ| < λn
√
k/2

]

≤ λn
√
k + 1

2k
.
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By the property of distinct sums, Pr(X = x) is either 0 or
2−k for any integer x. Thus,

Pr
[

|X − µ| < λn
√
k/2

]

≤ λn
√
k + 1

2k
.

Combining with previous Chebyshev’s inequality, we get

1 ≤ 1

λ2
+

λn
√
k + 1

2k
.

Choose λ =
√
3 and k = log2 n+ 1

2 log2 log2 n+ C with
sufficiently large constant C. The above inequality is not
satisfied. Contradiction! �
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