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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviations (1-2 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Alteration

■ Ramsey number R(r, r)
■ Combinatorial geometry
■ Ramsey number R(k, r)
■ Property B problem revisited



Alteration method
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Suppose that the “random” structure does not have
all desired properties but many have a few
“blemishes”. With a small alteration we remove the
blemishes, giving the desired structures.
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Theorem: R(r, r) > (1 + o(1))1er2
r/2.
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Theorem: R(r, r) > (1 + o(1))1er2
r/2.

Proof: Color the edges of Kn in two colors with equal
probability randomly and independently. Let X be the
number of monochromatic Kr. Then

E(X) =

(

n

r

)

21−(
r

2
).

If X < n
2 , then we can delete at most n

2 to destroy all
monochromatic Kr. Thus, R(r, r) > n

2 .

This gives R(r, r) > (1 + o(1))1er2
r/2. �
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■ S: a set of n points in the unit square [0, 1]2.
■ T (S): the minimum area of a triangle whose vertices are

three distinct points of S.

Komlós, Pintz, Szemerédi (1982): There exists a set S
of n points in the unit square such that T (S) = Ω( log nn2 ).
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■ S: a set of n points in the unit square [0, 1]2.
■ T (S): the minimum area of a triangle whose vertices are

three distinct points of S.

Komlós, Pintz, Szemerédi (1982): There exists a set S
of n points in the unit square such that T (S) = Ω( log nn2 ).

Here we prove a weak result: ∃S such that T (S) ≥ 1
100n2 .

Proof: Select 2n random points uniformly and
independently from [0, 1]2.

■ P,Q,R: three random points.
■ µ := ∆PQR: the area of PQR.
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Pr(x ≤ |PQ| ≤ x+∆x) ≤ π(x+∆x)2 − πx2 ≈ 2πx∆x.

If µ ≤ ǫ, then R is in the region of a rectangle of width 4ǫ
x

and length at most
√
2.
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Pr(x ≤ |PQ| ≤ x+∆x) ≤ π(x+∆x)2 − πx2 ≈ 2πx∆x.

If µ ≤ ǫ, then R is in the region of a rectangle of width 4ǫ
x

and length at most
√
2.

Pr(µ ≤ ǫ) ≤
∫

√
2

0

(2πx)(
4
√
2ǫ

x
)dx = 16πǫ.

Let X be the number of triangles with areas < 1
100n2 .

E(X) ≤
(

2n

3

)

16π

100n2
< n.

Delete one vertex from each small triangle and leave at least
n vertices. Now no triangle has area less that 1

100n2 . �
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Theorem: For any 0 < p < 1, we have
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Theorem: For any 0 < p < 1, we have

R(k, t) > n−
(

n

k

)

p(
k

2
) −

(

n

t

)

(1− p)(
t

2
).

Proof: Color each edge independently in red or blue; the
probability of being red is p while the probability of being
blue is 1− p. Let X be the number of red Kk and Y be the
number of blue Kt.

E(X) =

(

n

k

)

p(
k

2
)

E(Y ) =

(

n

t

)

(1− p)(
t

2
).
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For k = 3, this alteration method gives R(3, t) ≥
(

t
ln t

)3/2
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For k = 3, this alteration method gives R(3, t) ≥
(

t
ln t

)3/2
.

The Lovasz Local Lemma gives R(3, t) ≥
(
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.

Best lower bound: Kim (1995) and best upper bound:
Shearer (1983).
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.
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For k = 3, this alteration method gives R(3, t) ≥
(

t
ln t

)3/2
.

The Lovasz Local Lemma gives R(3, t) ≥
(

t
ln t

)2
.

Best lower bound: Kim (1995) and best upper bound:
Shearer (1983).

ct2

ln t
≤ R(3, t) ≤ (1 + o(1))

t2

ln t
.

Before Shearer’s result, Ajtai-Komlós and Szemerédi
(1980) proved R(3, t) ≤ c′t2

ln t .
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Let m(r) denote the minimum possible number of edges of
an r-uniform hypergraph that does not have property B.
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Property B problem revisited:
Let m(r) denote the minimum possible number of edges of
an r-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

m(r) ≥ Ω

(

( r

ln r

)1/2

2r
)

.

Proof: For a fixed r-uniform hypergraph H = (V,E) with
|E| = k2r−1. Let p ∈ [0, 1] satisfying k(1− p)r + k2p < 1.
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Here is a two-round coloring process.

■ First round: Color each vertex independently in red or
blue with equal probability. It ends with a coloring with
expected k monochromatic edges. Let U be the set of
vertices in some monochromatic edges.
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Here is a two-round coloring process.

■ First round: Color each vertex independently in red or
blue with equal probability. It ends with a coloring with
expected k monochromatic edges. Let U be the set of
vertices in some monochromatic edges.

■ Second round: Consider vertices in U sequentially in
the (random) order of V . A vertex u ∈ U is still
dangerous if there is some monochromatic edge in the
first coloring and for which no vertex has yet changed
color.

◆ If u is not dangerous, do nothing.
◆ If u is still dangerous; with probability p, flip the

color of u.



Claim

Topic Course on Probabilistic Methods (week 3) Linyuan Lu, University of South Carolina – 13 / 17

Claim: The algorithm fails with probability at most
k(1− p)r + k2p.
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■ e was red in the first coloring and remained red through
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Claim: The algorithm fails with probability at most
k(1− p)r + k2p.

Bad events: An edge e is red in the final coloring if

■ e was red in the first coloring and remained red through
the final coloring; call this event Ae.

■ e was not red in the first coloring but was red in the final
coloring; call this event Ce.

Pr(Ae) = 2−r(1− p)r.

2
∑

e∈E(H)

Pr(Ae) = k(1− p)r.
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For two edge e, f , we say e blames f if

■ e ∩ f = {v} for some v.
■ In the first coloring f was blue and in the final coloring e

was red.
■ v was the last vertex of e that changed color from blue

to red.
■ When v changed its color f was still entire blue.
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For two edge e, f , we say e blames f if

■ e ∩ f = {v} for some v.
■ In the first coloring f was blue and in the final coloring e

was red.
■ v was the last vertex of e that changed color from blue

to red.
■ When v changed its color f was still entire blue.

Call this event Bef . Then

∑

e

Pr(Ce) ≤
∑

e6=f

Pr(Bef).
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Let e, f with e ∩ f = {v} be fixed. The random ordering of
V induced a random ordering σ on e ∪ f .
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Let e, f with e ∩ f = {v} be fixed. The random ordering of
V induced a random ordering σ on e ∪ f .

■ i = i(σ) : the number of v′ ∈ e coming before v.
■ j = j(σ) : the number of v′ ∈ f coming before v.
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Let e, f with e ∩ f = {v} be fixed. The random ordering of
V induced a random ordering σ on e ∪ f .

■ i = i(σ) : the number of v′ ∈ e coming before v.
■ j = j(σ) : the number of v′ ∈ f coming before v.

Pr(Bef | σ) ≤ p

2
2−r+1(1− p)j2−r+1+i

(

1 + p

2

)i

.
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Let e, f with e ∩ f = {v} be fixed. The random ordering of
V induced a random ordering σ on e ∪ f .

■ i = i(σ) : the number of v′ ∈ e coming before v.
■ j = j(σ) : the number of v′ ∈ f coming before v.

Pr(Bef | σ) ≤ p

2
2−r+1(1− p)j2−r+1+i

(

1 + p

2

)i

.

We have

Pr(Bef) ≤ 21−2rpE[(1 + p)i(1− p)j].

≤ 21−2rp.
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The failure probability is at most

2
∑

e∈E(H)

(Pr(Ae) +Pr(Ce)) ≤ k(1− p)r + k2p < ke−pr + k2p.
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The failure probability is at most

2
∑

e∈E(H)

(Pr(Ae) +Pr(Ce)) ≤ k(1− p)r + k2p < ke−pr + k2p.

The function f(p) = ke−pr + k2p reaches its minimum at

p = ln(r/k)
r . The minimum value is less than 1 if

k < (1 + o(1))

√

2r

ln r
.

�
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Spencer modified the Radhakrishnan-Srinivasan’s proof
slightly. To assign a random ordering of the vertex in V , it is
sufficient to assign each vertex v a birth time xv ∈ [0, 1].
The birth time xv is assigned uniformly and independently.
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Spencer modified the Radhakrishnan-Srinivasan’s proof
slightly. To assign a random ordering of the vertex in V , it is
sufficient to assign each vertex v a birth time xv ∈ [0, 1].
The birth time xv is assigned uniformly and independently.

Pr(Bef) ≤
r−1
∑

l=0

(

r − 1

l

)

21−2r

∫ 1

0

xlpl+1(1− xp)r−1dx

= 21−2rp

∫ 1

0

(1 + xp)r−1(1− xp)r−1dx

≤ 21−2rp.

The rest of proof is the same.
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