Topic Course on Probabilistic Methods

(Week 3)
Alterations

Linyuan Lu
University of South Carolina

Introduction

The topic course is mostly based the textbook "The probabilistic Method" by Noga Alon and Joel Spencer (third edition 2008, John Wiley \& Sons, Inc. ISBN 9780470170205 or fourth edition ISBN-13: 978-1119061953.)

Selected topics

■ Linearity of Expectation (2 weeks)

- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)

■ Large deviations (1-2 weeks)

- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)

Subtopics

Alteration

- Ramsey number $R(r, r)$
- Combinatorial geometry
- Ramsey number $R(k, r)$

■ Property B problem revisited

Alteration method

Suppose that the "random" structure does not have all desired properties but many have a few "blemishes". With a small alteration we remove the blemishes, giving the desired structures.

Ramsey number $R(r, r)$

Theorem: $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$.

Ramsey number $R(r, r)$

Theorem: $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$.
Proof: Color the edges of K_{n} in two colors with equal probability randomly and independently. Let X be the number of monochromatic K_{r}. Then

$$
\mathrm{E}(X)=\binom{n}{r} 2^{1-\binom{r}{2}}
$$

Ramsey number $R(r, r)$

Theorem: $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$.
Proof: Color the edges of K_{n} in two colors with equal probability randomly and independently. Let X be the number of monochromatic K_{r}. Then

$$
\mathrm{E}(X)=\binom{n}{r} 2^{1-\binom{r}{2}}
$$

If $X<\frac{n}{2}$, then we can delete at most $\frac{n}{2}$ to destroy all monochromatic K_{r}. Thus, $R(r, r)>\frac{n}{2}$.

Ramsey number $R(r, r)$

Theorem: $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$.
Proof: Color the edges of K_{n} in two colors with equal probability randomly and independently. Let X be the number of monochromatic K_{r}. Then

$$
\mathrm{E}(X)=\binom{n}{r} 2^{1-\binom{r}{2}}
$$

If $X<\frac{n}{2}$, then we can delete at most $\frac{n}{2}$ to destroy all monochromatic K_{r}. Thus, $R(r, r)>\frac{n}{2}$.
This gives $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$. \square

Combinatorial geometry

- S : a set of n points in the unit square $[0,1]^{2}$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Komlós, Pintz, Szemerédi (1982): There exists a set S of n points in the unit square such that $T(S)=\Omega\left(\frac{\log n}{n^{2}}\right)$.

Combinatorial geometry

- S : a set of n points in the unit square $[0,1]^{2}$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Komlós, Pintz, Szemerédi (1982): There exists a set S of n points in the unit square such that $T(S)=\Omega\left(\frac{\log n}{n^{2}}\right)$. Here we prove a weak result: $\exists S$ such that $T(S) \geq \frac{1}{100 n^{2}}$.

Combinatorial geometry

- S : a set of n points in the unit square $[0,1]^{2}$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Komlós, Pintz, Szemerédi (1982): There exists a set S of n points in the unit square such that $T(S)=\Omega\left(\frac{\log n}{n^{2}}\right)$. Here we prove a weak result: $\exists S$ such that $T(S) \geq \frac{1}{100 n^{2}}$.
Proof: Select $2 n$ random points uniformly and independently from $[0,1]^{2}$.

- P, Q, R : three random points.
- $\mu:=\triangle P Q R$: the area of $P Q R$.

Proof

$$
\operatorname{Pr}(x \leq|P Q| \leq x+\Delta x) \leq \pi(x+\Delta x)^{2}-\pi x^{2} \approx 2 \pi x \Delta x
$$

If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4 \epsilon}{x}$ and length at most $\sqrt{2}$.

Proof

$$
\operatorname{Pr}(x \leq|P Q| \leq x+\Delta x) \leq \pi(x+\Delta x)^{2}-\pi x^{2} \approx 2 \pi x \Delta x
$$

If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4 \epsilon}{x}$ and length at most $\sqrt{2}$.

$$
\operatorname{Pr}(\mu \leq \epsilon) \leq \int_{0}^{\sqrt{2}}(2 \pi x)\left(\frac{4 \sqrt{2} \epsilon}{x}\right) d x=16 \pi \epsilon
$$

Proof

$\operatorname{Pr}(x \leq|P Q| \leq x+\Delta x) \leq \pi(x+\Delta x)^{2}-\pi x^{2} \approx 2 \pi x \Delta x$.
If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4 \epsilon}{x}$ and length at most $\sqrt{2}$.

$$
\operatorname{Pr}(\mu \leq \epsilon) \leq \int_{0}^{\sqrt{2}}(2 \pi x)\left(\frac{4 \sqrt{2} \epsilon}{x}\right) d x=16 \pi \epsilon
$$

Let X be the number of triangles with areas $<\frac{1}{100 n^{2}}$.

$$
\mathrm{E}(X) \leq\binom{ 2 n}{3} \frac{16 \pi}{100 n^{2}}<n
$$

Proof

$$
\operatorname{Pr}(x \leq|P Q| \leq x+\Delta x) \leq \pi(x+\Delta x)^{2}-\pi x^{2} \approx 2 \pi x \Delta x .
$$

If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4 \epsilon}{x}$ and length at most $\sqrt{2}$.

$$
\operatorname{Pr}(\mu \leq \epsilon) \leq \int_{0}^{\sqrt{2}}(2 \pi x)\left(\frac{4 \sqrt{2} \epsilon}{x}\right) d x=16 \pi \epsilon
$$

Let X be the number of triangles with areas $<\frac{1}{100 n^{2}}$.

$$
\mathrm{E}(X) \leq\binom{ 2 n}{3} \frac{16 \pi}{100 n^{2}}<n
$$

Delete one vertex from each small triangle and leave at least n vertices. Now no triangle has area less that $\frac{1}{100 n^{2}}$.

Ramsey number $R(k, t)$

Theorem: For any $0<p<1$, we have

$$
R(k, t)>n-\binom{n}{k} p^{\binom{k}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}}
$$

Ramsey number $R(k, t)$

Theorem: For any $0<p<1$, we have

$$
R(k, t)>n-\binom{n}{k} p^{\binom{k}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}} .
$$

Proof: Color each edge independently in red or blue; the probability of being red is p while the probability of being blue is $1-p$. Let X be the number of red K_{k} and Y be the number of blue K_{t}.

$$
\begin{aligned}
& \mathrm{E}(X)=\binom{n}{k} p^{\binom{k}{2}} \\
& \mathrm{E}(Y)=\binom{n}{t}(1-p)^{\left(\begin{array}{c}
\left(\begin{array}{c}
2
\end{array}\right)
\end{array}\right.}
\end{aligned}
$$

Ramsey number $R(3, t)$

For $k=3$, this alteration method gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{3 / 2}$.

Ramsey number $R(3, t)$

For $k=3$, this alteration method gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{3 / 2}$.
The Lovasz Local Lemma gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{2}$.

Ramsey number $R(3, t)$

For $k=3$, this alteration method gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{3 / 2}$.
The Lovasz Local Lemma gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{2}$.
Best lower bound: Kim (1995) and best upper bound: Shearer (1983).

$$
\frac{c t^{2}}{\ln t} \leq R(3, t) \leq(1+o(1)) \frac{t^{2}}{\ln t}
$$

Ramsey number $R(3, t)$

For $k=3$, this alteration method gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{3 / 2}$.
The Lovasz Local Lemma gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{2}$.
Best lower bound: Kim (1995) and best upper bound: Shearer (1983).

$$
\frac{c t^{2}}{\ln t} \leq R(3, t) \leq(1+o(1)) \frac{t^{2}}{\ln t}
$$

Before Shearer's result, Ajtai-Komlós and Szemerédi (1980) proved $R(3, t) \leq \frac{c^{\prime} t^{2}}{\ln t}$.

Recoloring

Property B problem revisited:

Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Recoloring

Property B problem revisited:

Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

$$
m(r) \geq \Omega\left(\left(\frac{r}{\ln r}\right)^{1 / 2} 2^{r}\right) .
$$

Recoloring

Property B problem revisited:

Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.
Theorem [Radhakrishnan-Srinivasan 2000]:

$$
m(r) \geq \Omega\left(\left(\frac{r}{\ln r}\right)^{1 / 2} 2^{r}\right) .
$$

Proof: For a fixed r-uniform hypergraph $H=(V, E)$ with $|E|=k 2^{r-1}$. Let $p \in[0,1]$ satisfying $k(1-p)^{r}+k^{2} p<1$.

Coloring process

Here is a two-round coloring process.
■ First round: Color each vertex independently in red or blue with equal probability. It ends with a coloring with expected k monochromatic edges. Let U be the set of vertices in some monochromatic edges.

Coloring process

Here is a two-round coloring process.
■ First round: Color each vertex independently in red or blue with equal probability. It ends with a coloring with expected k monochromatic edges. Let U be the set of vertices in some monochromatic edges.
■ Second round: Consider vertices in U sequentially in the (random) order of V. A vertex $u \in U$ is still dangerous if there is some monochromatic edge in the first coloring and for which no vertex has yet changed color.

- If u is not dangerous, do nothing.
- If u is still dangerous; with probability p, flip the color of u.

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.
Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_{e}.

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.
Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_{e}.
- e was not red in the first coloring but was red in the final coloring; call this event C_{e}.

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.
Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_{e}.
- e was not red in the first coloring but was red in the final coloring; call this event C_{e}.

$$
\operatorname{Pr}\left(A_{e}\right)=2^{-r}(1-p)^{r}
$$

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.
Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_{e}.
- e was not red in the first coloring but was red in the final coloring; call this event C_{e}.

$$
\begin{gathered}
\operatorname{Pr}\left(A_{e}\right)=2^{-r}(1-p)^{r} \\
2 \sum_{e \in E(H)} \operatorname{Pr}\left(A_{e}\right)=k(1-p)^{r} .
\end{gathered}
$$

Estimating $\operatorname{Pr}\left(C_{e}\right)$

For two edge e, f, we say e blames f if

- $e \cap f=\{v\}$ for some v.
- In the first coloring f was blue and in the final coloring e was red.
- v was the last vertex of e that changed color from blue to red.
- When v changed its color f was still entire blue.

Estimating $\operatorname{Pr}\left(C_{e}\right)$

For two edge e, f, we say e blames f if

- $e \cap f=\{v\}$ for some v.
- In the first coloring f was blue and in the final coloring e was red.
- v was the last vertex of e that changed color from blue to red.
- When v changed its color f was still entire blue.

Call this event $B_{e f}$. Then

$$
\sum_{e} \operatorname{Pr}\left(C_{e}\right) \leq \sum_{e \neq f} \operatorname{Pr}\left(B_{e f}\right) .
$$

continue

Let e, f with $e \cap f=\{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

continue

Let e, f with $e \cap f=\{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.
■ $i=i(\sigma)$: the number of $v^{\prime} \in e$ coming before v.
■ $j=j(\sigma)$: the number of $v^{\prime} \in f$ coming before v.

continue

Let e, f with $e \cap f=\{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.
■ $i=i(\sigma)$: the number of $v^{\prime} \in e$ coming before v.
■ $j=j(\sigma)$: the number of $v^{\prime} \in f$ coming before v.

$$
\operatorname{Pr}\left(B_{e f} \mid \sigma\right) \leq \frac{p}{2} 2^{-r+1}(1-p)^{j} 2^{-r+1+i}\left(\frac{1+p}{2}\right)^{i}
$$

continue

Let e, f with $e \cap f=\{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.
■ $i=i(\sigma)$: the number of $v^{\prime} \in e$ coming before v.
■ $j=j(\sigma)$: the number of $v^{\prime} \in f$ coming before v.

$$
\operatorname{Pr}\left(B_{e f} \mid \sigma\right) \leq \frac{p}{2} 2^{-r+1}(1-p)^{j} 2^{-r+1+i}\left(\frac{1+p}{2}\right)^{i} .
$$

We have

$$
\begin{aligned}
\operatorname{Pr}\left(B_{e f}\right) & \leq 2^{1-2 r} p \mathrm{E}\left[(1+p)^{i}(1-p)^{j}\right] \\
& \leq 2^{1-2 r} p .
\end{aligned}
$$

Estimating k

The failure probability is at most
$2 \sum_{e \in E(H)}\left(\operatorname{Pr}\left(A_{e}\right)+\operatorname{Pr}\left(C_{e}\right)\right) \leq k(1-p)^{r}+k^{2} p<k e^{-p r}+k^{2} p$.

Estimating k

The failure probability is at most

The function $f(p)=k e^{-p r}+k^{2} p$ reaches its minimum at
$p=\frac{\ln (r / k)}{r}$. The minimum value is less than 1 if

$$
k<(1+o(1)) \sqrt{\frac{2 r}{\ln r}} .
$$

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

$$
\operatorname{Pr}\left(B_{e f}\right) \leq \sum_{l=0}^{r-1}\binom{r-1}{l} 2^{1-2 r} \int_{0}^{1} x^{l} p^{l+1}(1-x p)^{r-1} d x
$$

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

$$
\begin{aligned}
\operatorname{Pr}\left(B_{e f}\right) & \leq \sum_{l=0}^{r-1}\binom{r-1}{l} 2^{1-2 r} \int_{0}^{1} x^{l} p^{l+1}(1-x p)^{r-1} d x \\
& =2^{1-2 r} p \int_{0}^{1}(1+x p)^{r-1}(1-x p)^{r-1} d x
\end{aligned}
$$

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

$$
\begin{aligned}
\operatorname{Pr}\left(B_{e f}\right) & \leq \sum_{l=0}^{r-1}\binom{r-1}{l} 2^{1-2 r} \int_{0}^{1} x^{l} p^{l+1}(1-x p)^{r-1} d x \\
& =2^{1-2 r} p \int_{0}^{1}(1+x p)^{r-1}(1-x p)^{r-1} d x \\
& \leq 2^{1-2 r} p
\end{aligned}
$$

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

$$
\begin{aligned}
\operatorname{Pr}\left(B_{e f}\right) & \leq \sum_{l=0}^{r-1}\binom{r-1}{l} 2^{1-2 r} \int_{0}^{1} x^{l} p^{l+1}(1-x p)^{r-1} d x \\
& =2^{1-2 r} p \int_{0}^{1}(1+x p)^{r-1}(1-x p)^{r-1} d x \\
& \leq 2^{1-2 r} p
\end{aligned}
$$

The rest of proof is the same.

