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Introduction
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The topic course is mostly based the textbook “The
probabilistic Method” by Noga Alon and Joel Spencer (third
edition 2008, John Wiley & Sons, Inc. ISBN 9780470170205
or fourth edition ISBN-13: 978-1119061953.)



Selected topics
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■ Linearity of Expectation (2 weeks)
■ Alterations (1 week)
■ The second moment method (1 week)
■ The Local Lemma (1-2 weeks)
■ Correlation Inequalities (1 week)
■ Large deviation inequalities (3 weeks)
■ Poisson Paradigm (1 week)
■ Random graphs (2 weeks)
■ Discrepancy (1 week)
■ Entropy (1 week)



Subtopics
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Random graphs

■ Erdős-Rényi model
■ Evolution of G(n, p)
■ Galton-Watson process
■ Graph branching process
■ Barely subcritical regimes



Erdős-Rényi model
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G(n, p): Erdős-Rényi random graphs

- n nodes
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G(n, p): Erdős-Rényi random graphs

- n nodes
- For each pair of vertices, create an edge independently
with probability p.
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G(n, p): Erdős-Rényi random graphs

- n nodes
- For each pair of vertices, create an edge independently
with probability p.

An example G(3, 12):



The birth of random graph theory
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Paul Erdős and A. Rényi, On the evolution of random graphs
Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.



The birth of random graph theory
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Evolution of G(n, p)
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p

0 the empty graph.
disjoint union of trees.

c
n cycles of any size.
1
n the double jumps.
c′

n one giant component, others are trees.
log n
n G(n, p) is connected.

Ω( log nn )
connected and almost regular.

Ω(nǫ−1) finite diameter.
Θ(1) dense graphs, diameter is 2.
1 the complete graph.



Evolution of G(n, p)
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Range I p = o(1/n)
The random graph Gn,p is the disjoint union of trees. In
fact, trees on k vertices, for k = 3, 4, . . . only appear when
p is of the order n−k/(k−1).
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Range I p = o(1/n)
The random graph Gn,p is the disjoint union of trees. In
fact, trees on k vertices, for k = 3, 4, . . . only appear when
p is of the order n−k/(k−1).

Furthermore, for p = cn−k/(k−1) and c > 0, let τk(G)
denote the number of connected components of G formed
by trees on k vertices and λ = ck−1kk−2/k!. Then,

Pr(τk(Gn,p) = j) →
λje−λ

j!

for j = 0, 1, . . . as n → ∞.
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Range II p ∼ c/n for 0 < c < 1

■ In this range of p, Gn,p contains cycles of any given
size with probability tending to a positive limit.
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Range II p ∼ c/n for 0 < c < 1

■ In this range of p, Gn,p contains cycles of any given
size with probability tending to a positive limit.

■ All connected components of Gn,p are either trees or
unicyclic components. Almost all (i.e., n− o(n))
vertices are in components which are trees.
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Range II p ∼ c/n for 0 < c < 1

■ In this range of p, Gn,p contains cycles of any given
size with probability tending to a positive limit.

■ All connected components of Gn,p are either trees or
unicyclic components. Almost all (i.e., n− o(n))
vertices are in components which are trees.

■ The largest connected component of Gn,p is a tree and
has about 1

α(log n− 5
2 log log n) vertices, where

α = c− 1− log c.



Evolution of G(n, p)
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Range III p ∼ 1/n+ µ/n, the double jump

■ If µ < 0, the largest component has size
(µ− log(1 + µ))−1 log n+O(log log n).
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Range III p ∼ 1/n+ µ/n, the double jump

■ If µ < 0, the largest component has size
(µ− log(1 + µ))−1 log n+O(log log n).

■ If µ = 0, the largest component has size of order n2/3.
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Range III p ∼ 1/n+ µ/n, the double jump

■ If µ < 0, the largest component has size
(µ− log(1 + µ))−1 log n+O(log log n).

■ If µ = 0, the largest component has size of order n2/3.

■ If µ > 0, there is a unique giant component of size αn
where µ = −α−1 log(1− α)− 1.
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Range III p ∼ 1/n+ µ/n, the double jump

■ If µ < 0, the largest component has size
(µ− log(1 + µ))−1 log n+O(log log n).

■ If µ = 0, the largest component has size of order n2/3.

■ If µ > 0, there is a unique giant component of size αn
where µ = −α−1 log(1− α)− 1.

■ Bollobás showed that a component of size at least
n2/3 in Gn,p is almost always unique if p exceeds
1/n+ 4(log n)1/2n−4/3.
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Range IV p ∼ c/n for c > 1

■ Except for one “giant” component, all the other
components are relatively small, and most of them are
trees.
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■ Except for one “giant” component, all the other
components are relatively small, and most of them are
trees.

■ The total number of vertices in components which are
trees is approximately n− f(c)n+ o(n).
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Range IV p ∼ c/n for c > 1

■ Except for one “giant” component, all the other
components are relatively small, and most of them are
trees.

■ The total number of vertices in components which are
trees is approximately n− f(c)n+ o(n).

■ The largest connected component of Gn,p has
approximately f(c)n vertices, where

f(c) = 1−
1

c

∞
∑

k=1

kk−1

k!
(ce−c)k.
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Range V p = c log n/n with c ≥ 1

■ The graph Gn,p almost surely becomes connected.
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Range V p = c log n/n with c ≥ 1

■ The graph Gn,p almost surely becomes connected.

■ If

p =
log n

kn
+

(k − 1) log log n

kn
+

y

n
+ o(

1

n
),

then there are only trees of size at most k except for
the giant component. The distribution of the number
of trees of k vertices again has a Poisson distribution
with mean value e−ky

k·k! .



Evolution of G(n, p)
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Range VI p ∼ ω(n) log n/n where ω(n) → ∞.
In this range, Gn,p is not only almost surely connected, but
the degrees of almost all vertices are asymptotically equal.



Galton-Watson process
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Galton-Watson branching process: Let Z be a
distribution over the non-negative integers. Starting with a
single node, it gives Z children nodes. Each of children
nodes have Z children independently. The process continues,
each new offspring having an independent number Z of
children.
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Galton-Watson branching process: Let Z be a
distribution over the non-negative integers. Starting with a
single node, it gives Z children nodes. Each of children
nodes have Z children independently. The process continues,
each new offspring having an independent number Z of
children.

■ Z1, Z2, . . . , Zt, . . . : a countable sequence of independent
identically distributed variables, each have distribution Z.

■ Yt: the number of living children at time t.

Y0 = 1

Yt = Yt−1 + Zt − 1.



Galton-Watson process
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Let T be the total number of nodes in Galton-Watson
process. There are two essentially different cases.

■ Yt > 0 for all t ≥ 0. In this case the Calton-Watson
process goes on forever and T = ∞.
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Let T be the total number of nodes in Galton-Watson
process. There are two essentially different cases.

■ Yt > 0 for all t ≥ 0. In this case the Calton-Watson
process goes on forever and T = ∞.

■ Yt = 0 for some t ≥ 0. In this case, T is the least integer
for which YT = 0. The Galton-Watson process stops
with T nodes.



Poisson branching process
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Let Z be the Poisson distribution with the expectation c.
Write T = T po

c .
Theorem: If c ≤ 1, then T is finite with probability one. If
c > 1, then T is infinite with probability y = y(c), where y is
the unique positive real satisfying

e−cy = 1− y.
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Let Z be the Poisson distribution with the expectation c.
Write T = T po

c .
Theorem: If c ≤ 1, then T is finite with probability one. If
c > 1, then T is infinite with probability y = y(c), where y is
the unique positive real satisfying

e−cy = 1− y.

Proof: Suppose c < 1.

Pr(T > t) ≤ Pr(
t

∑

i=1

Zi ≥ t) < e−kt,

for some constant k. limt→∞ Pr(T > t) = 0.



Continue
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Suppose c ≥ 1. Let z = 1− y = Pr(T < ∞). Then

z =
∞
∑

i=0

Pr(Z1 = i)zi =
∞
∑

i=0

e−c c
i

zi
i! = ec(z−1).
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Suppose c ≥ 1. Let z = 1− y = Pr(T < ∞). Then

z =
∞
∑

i=0

Pr(Z1 = i)zi =
∞
∑

i=0

e−c c
i

zi
i! = ec(z−1).

Hence 1− y = e−cy. When c = 1, this equation has a unique
solution y = 0. When c > 1, there are two solutions 1 and
y(c).
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Suppose c ≥ 1. Let z = 1− y = Pr(T < ∞). Then

z =
∞
∑

i=0

Pr(Z1 = i)zi =
∞
∑

i=0

e−c c
i

zi
i! = ec(z−1).

Hence 1− y = e−cy. When c = 1, this equation has a unique
solution y = 0. When c > 1, there are two solutions 1 and
y(c). By Chernoff’s equality, for any t

Pr(
t

∑

i=1

Zi ≤ t) < e−
(c−1)2t

2c .

There is a t0 so that
∑

t≥t0
e−

(c−1)2t
2c < 1. Thus,

y > Pr(T = ∞ | T ≥ t0)Pr(T ≥ t0) > 0. �



Graph branching process

Topic Course on Probabilistic Methods (week 11) Linyuan Lu, University of South Carolina – 19 / 25



Graph branching process

Topic Course on Probabilistic Methods (week 11) Linyuan Lu, University of South Carolina – 19 / 25

Let C(v) denote the component of G(n, p), containing a
vertex v. Explore C(v) using Breadth First Search (BFS). In
this procedure all vertices will be live, dead, or neutral. The
live vertices will be contained in a queue Q.
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Let C(v) denote the component of G(n, p), containing a
vertex v. Explore C(v) using Breadth First Search (BFS). In
this procedure all vertices will be live, dead, or neutral. The
live vertices will be contained in a queue Q.

Algorithm for computing C(v):
Push v into Q. Mark all vertices but v neutral.
while( Q is not empty){
Pop Q and get w, mark w dead
foreach(w′ neutral){
if (ww′ is an edge of G(n, p)){
mark w′ live and push it into Q

}
}

} Return the set of all dead vertices.



Analysis
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In the graph branching process, let Yt be the size of the
queue at time t and Nt be the set of neutral vertices. Let Nt

be the set of neutral vertices.

Zt ∼ B(Nt−1, p).

Nt ∼ B(n− 1, (1− p)t).

If T = t it is necessary that Nt = n− t. We have

Pr(|C(v)| = t) ≤ Pr(B(n− 1, (1− p)t) = n− t).

Or, equivalently,

Pr(|C(v)| = t) ≤ Pr(B(n− 1, 1− (1− p)t) = t− 1).



Comparison
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Theorem: For any positive real c and any fixed integer k

lim
n→∞

Pr(|C(v)| = k in G(n,
c

n
)) = Pr(T po

c = k).
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Theorem: For any positive real c and any fixed integer k

lim
n→∞

Pr(|C(v)| = k in G(n,
c

n
)) = Pr(T po

c = k).

Proof: Let Γ be the set of k-tuples ~z = (z1, z2, . . . , zk) of
nonnegative integers such that the recursion y0 = 1,
yt = yt−1 + zt − 1 has yt > 0 for t < k and yk = 0.

Pr(T gr = k) =
∑

Pr(Zgr
i = zi, 1 ≤ i ≤ k)

Pr(T po = k) =
∑

Pr(Zpo
i = zi, 1 ≤ i ≤ k).

Here both sums are over ~z ∈ Γ.



Continue
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Since Zi−1 = n−O(1) and B(Zi, p) approaches the Poisson
distribution, we have

lim
n→∞

Pr(B(N gr
i−1, p) = zi) = Pr(Zpo

i = zi).



Continue
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Since Zi−1 = n−O(1) and B(Zi, p) approaches the Poisson
distribution, we have

lim
n→∞

Pr(B(N gr
i−1, p) = zi) = Pr(Zpo

i = zi).

Pr(T gr = k) =
∑

Pr(Zgr
i = zi, 1 ≤ i ≤ k)

=
∑

k
∏

i=1

Pr(B(N gr
i−1, p) = zi)

→
∑

k
∏

i=1

Pr(B(Zpo
i = zi)

= Pr(T po = k). �



Poisson branching process
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Theorem: For any positive real c and any integer k,

Pr(T po
c = k) = e−ck (ck)

k−1

k!
.
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Theorem: For any positive real c and any integer k,

Pr(T po
c = k) = e−ck (ck)

k−1

k!
.

Proof: We have Pr(T po
c = k) = limn→∞ Pr(|C(v)| = k) in

G(n, p) with p = c/n.

Pr(C(v) = k) ≈

(

n

k − 1

)

kk−2pk−1(1− p)k(n−k)

→
e−ck(ck)k−1

k!
. �



p = c
n, 0 ≤ c < 1
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With Poisson approximation,

Pr(|C(v)| ≥ u) ≤ (1+o(1))Pr(T po
c ≥ u) ≈

∞
∑

k=u

e−ck (ck)
k−1

k!
.
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With Poisson approximation,

Pr(|C(v)| ≥ u) ≤ (1+o(1))Pr(T po
c ≥ u) ≈

∞
∑

k=u

e−ck (ck)
k−1

k!
.

Setting u = (c− 1− ln c)−1 lnn+ C ln lnn, we have
Pr(|C(v)| ≥ u) ≤ o( 1

n lnn).
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With Poisson approximation,

Pr(|C(v)| ≥ u) ≤ (1+o(1))Pr(T po
c ≥ u) ≈

∞
∑

k=u

e−ck (ck)
k−1

k!
.

Setting u = (c− 1− ln c)−1 lnn+ C ln lnn, we have
Pr(|C(v)| ≥ u) ≤ o( 1

n lnn).

Thus, the size of largest component in G(n, p) is at most
(c− 1− ln c)−1 lnn+ O(ln lnn).
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With Poisson approximation,

Pr(|C(v)| ≥ u) ≤ (1+o(1))Pr(T po
c ≥ u) ≈

∞
∑

k=u

e−ck (ck)
k−1

k!
.

Setting u = (c− 1− ln c)−1 lnn+ C ln lnn, we have
Pr(|C(v)| ≥ u) ≤ o( 1

n lnn).

Thus, the size of largest component in G(n, p) is at most
(c− 1− ln c)−1 lnn+ O(ln lnn).

Most of them are trees. Then number of trees of size k is

(1 + o(1))e−ck (ck)
k−1

k!
n.
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Let p = (1− ǫ)/n with ǫ = λn−1/3.
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Let p = (1− ǫ)/n with ǫ = λn−1/3.

(c− 1− ln c)−1 = (−ǫ− ln(1− ǫ))−1

≈
2

ǫ2

= 2n2/3λ−2.
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Let p = (1− ǫ)/n with ǫ = λn−1/3.

(c− 1− ln c)−1 = (−ǫ− ln(1− ǫ))−1

≈
2

ǫ2

= 2n2/3λ−2.

The size of the largest component approaches
Kn2/3λ−2 lnn.
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