Math576: Combinatorial Game Theory Lecture note III

Linyuan Lu

University of South Carolina

Fall, 2020

Disclaimer

The slides are solely for the convenience of the students who are taking this course. The students should buy the textbook. The copyright of many figures in the slides belong to the authors of the textbook: Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy.

vame 1

FOR YOUR MATHEMATICAL PLAYS

The Game of Kayles

- Two players: "Left" and "Right".
- Game board: a row of well-spaced pins.
- Rules: Two players take turns. Either player can knock down any desired pin or any two adjacent pins.

Ending positions: Whoever gets stuck is the loser.

Analyse of Kayles

Since Kayles is an impartial game, the game values are $* m$ for some integer m. Let $\mathcal{G}(n)$ be the nim value of a row of n pins. It satisfies the following the cursive formula:

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b))
$$

where $0 \leq a, b$ and $a+b=n-1$ or $n-2$.

Analyse of Kayles

Since Kayles is an impartial game, the game values are $* m$ for some integer m. Let $\mathcal{G}(n)$ be the nim value of a row of n pins. It satisfies the following the cursive formula:

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b))
$$

where $0 \leq a, b$ and $a+b=n-1$ or $n-2$.
We have $\mathcal{G}(0)=0, \mathcal{G}(1)=1, \mathcal{G}(2)=2$,

$$
\begin{aligned}
\mathcal{G}(3) & =\operatorname{mex}(\mathcal{G}(0) \stackrel{*}{+} \mathcal{G}(2), \mathcal{G}(1) \stackrel{*}{+} \mathcal{G}(1), \mathcal{G}(1) \stackrel{*}{+} \mathcal{G}(0)) \\
& =\operatorname{mex}(2,0,1)=3
\end{aligned}
$$

Kayles Game values

$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 1 & 4 & 3 & 2 & 1 & 4 & 2 & 6\end{array}$
$12 \begin{array}{llllllllllll}4 & 1 & 2 & 7 & 1 & 4 & 3 & 2 & 1 & 4 & 6 & 7\end{array}$
41285
47218
67
$\begin{array}{llllllllllll}4 & 1 & 2 & 3 & 1 & 4 & 7 & 2 & 1 & 8 & 2 & 7\end{array}$
36
412
$\begin{array}{lllllllll}4 & 1 & 2 & 8 & 1 & 4 & 7 & 2 & 1\end{array}$
$\begin{array}{llllllllllll}4 & 1 & 2 & 8 & 1 & 4 & 7 & 2 & 1 & 8 & 2 & 7\end{array}$
$\begin{array}{llllllllllll}4 & 1 & 2 & 8 & 1 & 4 & 7 & 2 & 1 & 8 & 2 & 7\end{array}$
96
$\begin{array}{lllllll}4 & 1 & 2 & 8 & 1 & 4 & 7\end{array}$

\mathcal{P}-position and \mathcal{N}-postition

Impartial games can only have two outcome classes:

- \mathcal{P}-positions (a value of 0): Previous player winning;
- \mathcal{N}-positions (values $* n(n \neq 0))$: Next player winning.

\mathcal{P}-position and \mathcal{N}-postition

Impartial games can only have two outcome classes:

- \mathcal{P}-positions (a value of 0): Previous player winning;
- \mathcal{N}-positions (values $* n(n \neq 0))$: Next player winning.

We say an impartial game has the nim-sequence

$$
a . b c d \ldots
$$

if

$$
\mathcal{G}(0)=a, \mathcal{G}(1)=b, \mathcal{G}(2)=c, \mathcal{G}(3)=d, \ldots
$$

\mathcal{P}-position and \mathcal{N}-postition

Impartial games can only have two outcome classes:

- \mathcal{P}-positions (a value of 0): Previous player winning;
- \mathcal{N}-positions (values $* n(n \neq 0))$: Next player winning.

We say an impartial game has the nim-sequence

$$
a . b c d \ldots
$$

if

$$
\mathcal{G}(0)=a, \mathcal{G}(1)=b, \mathcal{G}(2)=c, \mathcal{G}(3)=d, \ldots
$$

For example, Kayles has nim-equence

$$
0.12314321426412714321467 \cdots
$$

Substraction games

We may modify the game of Nim by requiring that in any move the number of beans taken away is at most three. This game is denoted by $S(1,2,3)$.

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(n-1), \mathcal{G}(n-2), \mathcal{G}(n-3))
$$

Substraction games

We may modify the game of Nim by requiring that in any move the number of beans taken away is at most three. This game is denoted by $S(1,2,3)$.

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(n-1), \mathcal{G}(n-2), \mathcal{G}(n-3))
$$

The nim sequence of $S(1,2,3)$ is

$$
0.123012301230123 \ldots
$$

Substraction games

We may modify the game of Nim by requiring that in any move the number of beans taken away is at most three. This game is denoted by $S(1,2,3)$.

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(n-1), \mathcal{G}(n-2), \mathcal{G}(n-3)) .
$$

The nim sequence of $S(1,2,3)$ is

$$
0.123012301230123 \ldots
$$

In general, $S(1,2, \ldots, k)$ is the modified Nim game by requiring that in any move the number of beans taken away is at most k.

Substraction games

We may modify the game of Nim by requiring that in any move the number of beans taken away is at most three. This game is denoted by $S(1,2,3)$.

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(n-1), \mathcal{G}(n-2), \mathcal{G}(n-3)) .
$$

The nim sequence of $S(1,2,3)$ is

$$
0.123012301230123 \ldots
$$

In general, $S(1,2, \ldots, k)$ is the modified Nim game by requiring that in any move the number of beans taken away is at most k. The nim sequence of $S(1,2, \ldots, k)$ is

$$
0.12 \cdots k 012 \cdots k 012 \cdots k \ldots
$$

General substraction games

In general, we can require that a heap may be reduced only by one of the numbers $s_{1}, s_{2}, s_{3}, \ldots$. We call this a substraction game $S\left(s_{1}, s_{2}, s_{3}, \ldots\right)$.

General substraction games

In general, we can require that a heap may be reduced only by one of the numbers $s_{1}, s_{2}, s_{3}, \ldots$. We call this a substraction game $S\left(s_{1}, s_{2}, s_{3}, \ldots\right)$.

For example, consider the Game $S(2,5,6)$:

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(n-2), \mathcal{G}(n-5), \mathcal{G}(n-6)) .
$$

General substraction games

In general, we can require that a heap may be reduced only by one of the numbers $s_{1}, s_{2}, s_{3}, \ldots$. We call this a substraction game $S\left(s_{1}, s_{2}, s_{3}, \ldots\right)$.

For example, consider the Game $S(2,5,6)$:

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(n-2), \mathcal{G}(n-5), \mathcal{G}(n-6)) .
$$

The nim sequence of $S(2,5,6)$ is

$$
0.011021302100110213021 \ldots
$$

It has a period 11.

Substraction Games

Nim-Sequences for Substraction Games:

Subtraction set (with optional extras)	nim-sequence	period
$1(357911 \ldots)$	0̇i01...	2
$2(6101418 \ldots)$	0̇0110011...	4
$12(45781011 \ldots)$	0̇12012...	3
$3(9152127 \ldots)$	0்00111000111...	6
$23(7812131718 \ldots)$	0்011200112...	5
$123(5679101113 \ldots)$	0்123்0123...	4
$4(12202836 \ldots)$	0̇000111100001111...	8
$14(6911141619 \ldots)$	0̇101201012...	5
$24(38910141516 \ldots)$	0.01122001122...	6
$34(101117182425 \ldots)$	Ȯ001112́0001112...	7
$134(681011131517 \ldots)$	0̇1012320101232...	7
$1234(678911121314 \ldots)$	Ó123401234...	5

Substraction Games

Nim-Sequences for Substraction Games:

Subtraction set (with optional extras)	nim-sequence	period
$5(15253545 \ldots$)	0̇0000111110000011111...	10
$25(91216192326 \ldots)$	000110210011021. .	
$35(4111213192021 \ldots)$	0̇001112200011122...	
$235(4910111216171819$	0̇011223̇0011223..	
$45(13142223313240 \ldots)$	0̇00011112000011112...	
$145(379111213151719 \ldots)$	0 0101232301012323.	
$245(3910111216171819 \ldots)$	0̇011223̇0011223...	
$12345(789101113141516 \ldots)$	0̇12345012345...	

Substraction Games

Nim-Sequences for Substraction Games:

Subtraction set (with optional extras)	nim-sequence	period
$6(18304254 \ldots)$	0̇00000111111000000111111...	12
$16(8131520222729 \ldots)$	0̇1010120101012. .	7
$126(589121315161920 \ldots)$	0̇1201230120123...	7
$36(4512131415212223 \ldots)$	0்00111222000111222...	9
$136(810121517192124 \ldots)$	0̇10101232̇010101232...	9
$236(711121516202124 \ldots)$	0̇01120312001120312...	9
$46(514151624252634 \ldots)$	0̇0001111220000111122...	10
$246(3510111213141819 \ldots)$	0̇0112233̇00112233...	8
$1246(7910121415171820 \ldots)$	0́120123401201234...	8
$56(1617272838394950 \ldots)$	0்000011111200000111112...	11
$156(3810121416171921 \ldots)$	0̇1010123232̇01010123232...	11
$256(913161720242728 \ldots)$	0́011021302i00110213021...	11
$2356(410111213141819 \ldots)$	0̇0112233̇00112233...	8
$1456(3810121314151719 \ldots)$	0̇10123234̇010123234...	9
$12456(8911121415161819 \ldots)$	0̇120123453̇0120123453...	10
$123456(8910111213151617 \ldots)$	0̇123456்0123456...	7

Substraction Games

Nim-Sequences for Substraction Games:

Subtraction	nim-sequence	period
$7(21354963 \ldots)$	0̇000000111111100000001111111...	14
$27(111620252934 \ldots)$	0̇01100112001100112.	9
$37(131723173337 \ldots)$	00011102210001110221...	10
$47(5615161718262728 \ldots)$	0̇000111122200001111222..	11
$147(912151720232528 \ldots)$	0́101201201012012...	8
$247(1013161922252831 \ldots)$	00112203102102...	3
$347(5613141516172324 \ldots)$	00011122230001112223.	10
$1347(5911121315171920 \ldots)$	0̇1012323̇01012323...	8
$2347(8913141518192024 \ldots)$	0̇011220314200112203142...	11
$57(617181929303141 \ldots)$	0́00001111122்000001111122.	12
$257(1115172024272933 \ldots)$	0்011021322031001122332̇...	22
$357(4613141516172324 \ldots)$	00011122230001112223...	10
$2357(4611121314151620 \ldots)$	0̇01122334001122334. .	9
$2457(3611121314151620 \ldots)$	0̇01122334̇001122334. .	9

Substraction Games

Nim-Sequences for Substraction Games:

Subtraction set (with optional extras)	nim-sequence	period
67 (19 $203233454658 \ldots)$	0̇000001111112்0000001111112.	13
$167(3579111315171819 \ldots)$	Ó10101232323010101232323...	12
$267(1115192024283233 \ldots)$	0̇011001120312்0011001120312.	13
$1267(4910121415171820 \ldots)$	0́120123401201234...	8
$367(4513141516172324 \ldots)$	0̇00111222330001112223...	10
$1467(912141719202225 \ldots)$	0̇101201232012்0101201232012...	13
$2467(3511121314151620 \ldots)$	0̇01122334001122334...	9
$13467(5911131415161719 \ldots)$	0̇101232345்0101232345...	10
$2567(1014171819222629 \ldots)$	0̇01102132233̇001102132233...	12
$12567(4910121315161718 \ldots)$	0́1201234534்01201234534...	11
$14567(3911131415161719 \ldots)$	0̇101232345̇0101232345...	10
$1234567(910111213141517 \ldots)$	0̇1234567̇01234567...	8

Ferguson's Pairing Property

$\mathcal{G}(n)=1$ if and only if $\mathcal{G}\left(n-s_{1}\right)=0$, where s_{1} is the least member of the substraction set.

For example, the nim-sequence for $S(2,5,6)$ has its zeros and ones paired as:

Proof

$$
\begin{aligned}
& \mathcal{G}(n)=1 \text { and } \\
& \mathcal{G}\left(n-s_{1}\right) \neq 0
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{G}\left(n-s_{1}\right)=0 \text { and } \\
\mathcal{G}(n) \neq 1
\end{gathered}
$$

respectively imply

$$
\begin{gathered}
\mathcal{G}\left(n-s_{1}-s_{k}\right)=0 \text { for } \\
\text { some } s_{k}, \\
\text { which implies inductively } \\
\mathcal{G}\left(n-s_{k}\right)=1, \\
\text { which implies } \mathcal{G}(n) \neq 1 .
\end{gathered}
$$

$\mathcal{G}\left(n-s_{k}\right)=1$ for some s_{k}, which implies inductively

$$
\mathcal{G}\left(n-s_{k}-s_{1}\right)=0,
$$

which implies

$$
\mathcal{G}\left(n-s_{1}\right) \neq 0
$$

Dawson's Chess

- Two players: "White" and "Black".
- Game board: a $3 \times n$ chessboard with White pawns on the first rank and Black pawns on the third.
■ Rules: Two players take turns. Pawns move (forwards) and capture (forwards) and capture (diagonally) as in Chess. If a pawn of the opponent can be captured, then it must be captured immediately.
■ Ending positions: Whoever gets stuck is the loser.

Analysis of Dawson's Chess

Observe that "queening" can never arise in this game. After White moves a-pawn, Black must capture this with b-pawn, White must then recapture it. If Black now advances his f-pawn, White captures it, Black recaptures it, and White recaptures it.

Dawson's chess is similar to Kayles. It is a kind of take-and-break game. So the game values are $* m$.

Values of Dawson's Chess

Let $\mathcal{G}(-1)=\mathcal{G}(0)=0$. Then
$\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b):-1 \leq a, b$ and $a+b=n-3$.

Values of Dawson's Chess

$$
\text { Let } \mathcal{G}(-1)=\mathcal{G}(0)=0 \text {. Then }
$$

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b):-1 \leq a, b \text { and } a+b=n-3
$$

$$
\mathcal{G}(1)=1, \mathcal{G}(2)=\operatorname{mex}(\mathcal{G}(0) \stackrel{*}{+} \mathcal{G}(1))=\operatorname{mex}(0)=1, \text { and }
$$

$$
\mathcal{G}(3)=\operatorname{mex}(\mathcal{G}(-1)+\mathcal{G}(1), \mathcal{G}(0)+\mathcal{G}(0))=\operatorname{mex}(0,1)=2 .
$$

$$
\mathcal{G}(4)=\operatorname{mex}(\mathcal{G}(-1)+\mathcal{G}(2), \mathcal{G}(0)+\mathcal{G}(1))=\operatorname{mex}(1,1)=0 .
$$

Values of Dawson's Chess

$$
\text { Let } \mathcal{G}(-1)=\mathcal{G}(0)=0 \text {. Then }
$$

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b):-1 \leq a, b \text { and } a+b=n-3
$$

$$
\mathcal{G}(1)=1, \mathcal{G}(2)=\operatorname{mex}(\mathcal{G}(0) \stackrel{*}{+} \mathcal{G}(1))=\operatorname{mex}(0)=1, \text { and }
$$

$$
\mathcal{G}(3)=\operatorname{mex}(\mathcal{G}(-1)+\mathcal{G}(1), \mathcal{G}(0)+\mathcal{G}(0))=\operatorname{mex}(0,1)=2 .
$$

$$
\mathcal{G}(4)=\operatorname{mex}(\mathcal{G}(-1)+\mathcal{G}(2), \mathcal{G}(0)+\mathcal{G}(1))=\operatorname{mex}(1,1)=0 .
$$

Other take-and-break games

Dawson's Chess can be turned into a game with heaps:

- A single pin may be removed.
- Two pins at the end of a longer row may be removed.
- Any three adjacent pins may be removed and leave two shorter rows.

Dawson's Chess can be written symbolically as $\mathbf{. 1 3 7}$. Here

$\mathbf{1}$	2^{0}	for removal of one bean,
$\mathbf{3}$	$2^{1}+2^{0}$	for removal of two beans,
$\mathbf{7}$	$2^{2}+2^{1}+2^{0}$	for removal of three beans.

Other take-and-break games

Dawson's Chess can be turned into a game with heaps:

- A single pin may be removed.
- Two pins at the end of a longer row may be removed.
- Any three adjacent pins may be removed and leave two shorter rows.

Dawson's Chess can be written symbolically as $\mathbf{. 1 3 7}$. Here

$\mathbf{1}$	2^{0}	for removal of one bean,
$\mathbf{3}$	$2^{1}+2^{0}$	for removal of two beans,
$\mathbf{7}$	$2^{2}+2^{1}+2^{0}$	for removal of three beans.

Kayles Game can be coded as .77 since we can remove 1 or 2 beans in any way.

Code digits interpretation

A take-and-break game is coded by. $\mathbf{d}_{1} \mathbf{d}_{\mathbf{2}} \mathbf{d}_{\mathbf{3}} \ldots$ where the code digit

$$
d_{k}=2^{a}+2^{b}+2^{c}+\cdots \text { for removal of } \mathrm{k} \text { beans }
$$

Value of \mathbf{d}_{k}	Conditions for removal of k beans from a single heap.
$\mathbf{0}$	Not permitted.
$\mathbf{1}$	If the beans removed are the whole heap.
$\mathbf{2}$	Only if some beans remain and are left as a single heap.
$\mathbf{3}$	Provided the remaining beans, if any, are left in one heap.
$\mathbf{4}$	Only if some beans remain and are left as exactly two non-empty heaps.
$\mathbf{5}$	Provided the remaining beans, if any, are left as two non-empty heaps.
$\mathbf{6}$	Only if some beans remain and are left as one or two heaps.
$\mathbf{7}$	Provided the remaining beans are left in at most two heaps.
$\mathbf{8}$	Only if some beans remain and are left in just three non-empty heaps.
etc.	

Dawson’s Kayles

Dawson's Kayles is the take-and-break game .07, which means you are allowed to take any two adjacent beans from a row of size 2 , one end of the row, or in the middle.

Dawson's Kayles

Dawson's Kayles is the take-and-break game .07, which means you are allowed to take any two adjacent beans from a row of size 2 , one end of the row, or in the middle.

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b): a+b=n-2) .
$$

$$
\mathcal{G}(.07)=0.0112031103322405223301130211045274 \cdots
$$

The value is the same as that of the Dawson's Chess game with $n-1$ pairs of pawns.

Dawson's Kayles

Dawson's Kayles is the take-and-break game .07, which means you are allowed to take any two adjacent beans from a row of size 2 , one end of the row, or in the middle.

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b): a+b=n-2) .
$$

$$
\mathcal{G}(.07)=0.0112031103322405223301130211045274 \cdots
$$

The value is the same as that of the Dawson's Chess game with $n-1$ pairs of pawns.

$$
\mathcal{G}(.17)=0.1102130113223415322311031201144264 \cdots
$$

The values are obtained from Dawson's Kayles by mim-adding 1 when n is odd.

Guiles

Guiles: to remove a heap of 1 or 2 beans completely, or to take two beans from a sufficient large heap and partition what remains into two smaller non-empty heaps. Guiles is just the game . 15 .

Guiles

Guiles: to remove a heap of 1 or 2 beans completely, or to take two beans from a sufficient large heap and partition what remains into two smaller non-empty heaps. Guiles is just the game . 15 .
$\mathcal{G}(0)=0, \mathcal{G}(1)=\mathcal{G}(2)=1$, for $n \geq 3$,

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b): 1 \leq a, b \text { and } a+b=n-2) .
$$

Guiles

Guiles: to remove a heap of 1 or 2 beans completely, or to take two beans from a sufficient large heap and partition what remains into two smaller non-empty heaps. Guiles is just the game . 15 .
$\mathcal{G}(0)=0, \mathcal{G}(1)=\mathcal{G}(2)=1$, for $n \geq 3$,

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b): 1 \leq a, b \text { and } a+b=n-2) .
$$

$$
\mathcal{G}(n)=0 . \dot{1} 10112212 \dot{2}
$$

Guiles has a period 10 .

Treblecross

Treblecross: a Tic-Tac-Toe game played on a $1 \times n$ strip in which both player use the same symbol (X). The first person to complete a line of three consecutive crosses wins.

Treblecross

Treblecross: a Tic-Tac-Toe game played on a $1 \times n$ strip in which both player use the same symbol (X). The first person to complete a line of three consecutive crosses wins. Analysis: It is stupid to move next to or next but one to a pre-existing cross, since your opponent wins immediately. If we consider only sensible moves we can therefore regard each X as also occupying the two neighbors of the square in which it lies (one of which may be off the board), and no two of these 3 -square regions may overlap.

Treblecross is just the game . 007 .

Treblecross

Treblecross: a Tic-Tac-Toe game played on a $1 \times n$ strip in which both player use the same symbol (X). The first person to complete a line of three consecutive crosses wins. Analysis: It is stupid to move next to or next but one to a pre-existing cross, since your opponent wins immediately. If we consider only sensible moves we can therefore regard each X as also occupying the two neighbors of the square in which it lies (one of which may be off the board), and no two of these 3 -square regions may overlap.

Treblecross is just the game . 007 .

$$
\mathcal{G}(.007)=0.001112203311104333222440552223305 \cdots
$$

Grundy's Game

Grundy's Game is a breaking game in which the only legal move is to split a single heap into two smaller ones of different sizes. The game ends when all the heaps will have size 1 or 2 . The player who splits the last heap is the winner.

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b): a \neq b \geq 1, a+b=n) .
$$

Grundy's Game

Grundy's Game is a breaking game in which the only legal move is to split a single heap into two smaller ones of different sizes. The game ends when all the heaps will have size 1 or 2 . The player who splits the last heap is the winner.

$$
\mathcal{G}(n)=\operatorname{mex}(\mathcal{G}(a) \stackrel{*}{+} \mathcal{G}(b): a \neq b \geq 1, a+b=n) .
$$

$$
\begin{array}{rlllllllllllllllllllll}
n=0-19 & 0 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & & 0 & 2 & 1 & 3 & 2 & 1 & 3 & 2 & 4 & 3 \\
20-39 & 0 & 4 & 3 & 0 & 4 & 3 & 0 & 4 & 1 & 2 & & 1 & 1 & 2 & 4 & 1 & 2 & 4 & 1 & 2 & 4 \\
40-59 & 1 & 5 & 4 & 1 & 5 & 4 & 1 & 5 & 4 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 5 & 2 & 1 & 3 \\
60-79 & 2 & 1 & 3 & 2 & 4 & 3 & 2 & 4 & 3 & 2 & 4 & 3 & 2 & 4 & 3 & 2 & 4 & 3 & 2 & 4 \\
80-100 & 5 & 2 & 4 & 5 & 2 & 4 & 3 & 7 & 4 & 3 & 7 & 4 & 3 & 7 & 4 & 3 & 5 & 2 & 3 & 5
\end{array}
$$

