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■ In 1996 Deep Blue (IBM) played against Garry Kasparov:
won one, drew two, and lost three.

■ In 1997, after heavily upgraded, Deep Blue won six-game
rematch 3.5 : 2.5 against Kasparov.

■ in 2016, AlphaGo (Google) beat Lee Sedol in a five-game
match.

Will AI outsmart human being? How soon? How to play
games smarter?
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Textbook:
Course Material

■ Chapter 1-5, part of
Chapter 7.

■ Conways’ Game of Life
■ Puzzles

Assessment

■ Homework
■ Two midterm exam
■ Final project
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The slides are solely for the
convenience of the students
who are taking this course.
The students should buy the
textbook. The copyright of
many figures in the slides
belong to the authors of
the textbook: Elwyn R.

Berlekamp, John H. Con-

way, and Richard K. Guy.
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■ Number of players?
■ Type of Games?
■ Rules?
■ Ending positions?
■ Winning Strategies?



Blue-Red Hackenbush
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■ Two players: “Left” and “Right”.

■ Game board: blue-red graphs connected to the ground.

■ Rules: Two players take turns. Right deletes one red
edge and also remove any piece no longer connected to
the ground. Left does the similar move but deletes one
blue edge.

■ Ending positions: Whoever gets stuck is the loser.
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Who wins?

Tweedledum Tweedeldee (I) Tweedledum Tweedeldee (II)

The second player has a winning strategy: copy the move of
the first player.
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A game have the value 0 if the second player has a winning
strategy.

The sum of two games G and H, denoted by G+H, is a
game that player can choose one of the game board to play
at his/her turn.

For any game G, let −G be the mirror image of G. Then

G+ (−G) = 0.

Two games G and H have the same value if

G+ (−H) = 0.
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What are the values of the following games?
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Observation: If each edge in a red-blue Hackenbush game
G is connected to the ground via its own color, then the
other player cannot delete its opponent’s edges. Therefore
the value of G is the number of blue edges minus the
number of red edges.
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Observation: If each edge in a red-blue Hackenbush game
G is connected to the ground via its own color, then the
other player cannot delete its opponent’s edges. Therefore
the value of G is the number of blue edges minus the
number of red edges.

14− 11 = 3 9− 7 = 2



Half move

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 11 / 47

1

2



Half move

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 11 / 47

1

2

Show that the following game is a zero-game.
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ւ ց
Left first Right first

0 1

{0 | 1} =
1

2

More notation:

{ | } = 0

{0 | } = 1

{1 | } = 2

{ | 0} = −1

{ | −1} = −2

{n | } = n+ 1

{n | n+ 1} = n+
1

2
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What are the values of the following games?

1

4

3

4
11

2

1

4
1
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■ Two players: “Left” and “Right”.

■ Game board: several skiers on a rectangular board

■ Rules: Two players take turns. Left may move any skier
a square or more Eastwards, or Right any one of his,
Westwards, provided there is no active skier in the way.
Such a move may take a skier off the slope; in this case
he takes no further part in the game. Alternatively a
skier on the square immediately above one containing a
skier of the opposing team, may jump over him on the
the square immediately below, provided this is empty. A
man jumped over will never jump over anyone else.

■ Ending positions: Whoever gets stuck is the loser.
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5− 3 = 2 {2 | 3} = 21

2

5+2-8=-1



A 3× 5 board
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Don’t take the average!
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{2
1

2
| 4

1

2
} = 3

Why?
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If the options in

{a, b, c, . . . | d, e, f, . . .}

are all numbers, we say the number x fits if x is greater than
each of a, b, c, . . . and less than each of d, e, f, . . ..
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If the options in

{a, b, c, . . . | d, e, f, . . .}

are all numbers, we say the number x fits if x is greater than
each of a, b, c, . . . and less than each of d, e, f, . . ..

Simplicity Rule: If there’s any number that fits, the
answer’s the simplest number that fits.

For example,

{0 | 1} =
1

2
,

{−1
1

2
| 3} = 0,

{
1

2
| 1} =

3

4
,

{2
1

2
| 4

1

2
} = 3.
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Toads-and-Frogs
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■ Two players: “Left” and “Right”.

■ Game board: Some Toads and Frogs on a rectangular
board.

■ Rules: Two players take turns. Left moves one of Toads
Eastwards. Right moves one of Frogs Westwards. The
creature (Toad or Frog) may jump over an opposing
creature, onto an empty square.

■ Ending positions: Whoever gets stuck is the loser.
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Working out a horse
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Game of CutCake
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■ Two players: “Left” and “Right”.

■ Game board: A rectangular cake.

■ Rules: Two players take turns. Left may cut any
rectangle into two smaller ones along the North-South
lines while Right cut it along the the East-West lines.

■ Ending positions: Whoever gets stuck is the loser.



Game Values in Cutcake
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■ Two players: “Left” and “Right”.

■ Game board: A rectangular cake.

■ Rules: Two players take turns. Left may cut any
rectangle into any number of smaller equal ones along
the North-South lines while Right cut it along the the
East-West lines.

■ Ending positions: Whoever gets stuck is the loser.
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■ Two players: “Left” and “Right”.

■ Game board: A rectangular cake.

■ Rules: Two players take turns. Left may cut any
rectangle into any number of smaller equal ones along
the North-South lines while Right cut it along the the
East-West lines.

■ Ending positions: Whoever gets stuck is the loser.

For example, a 4× 9 cake may be cut into

■ nine 4× 1 or three 4× 3 by Left;
■ four 1× 9 or two 2× 9 by Right.



Maundy Cake Values
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Let M(r, l) be the value of Maundy Cake of dimension r× l.
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Let M(r, l) be the value of Maundy Cake of dimension r× l.

r = 999: 333 : 111 : 37 : 1
l = 1000: 500 : 250 : 125 : 25 : 5 : 1

M(999, 1000) = 5 + 1.

r = 1000: 500 : 250 : 125 : 25 : 5 : 1
l = 1001: 143 : 13 : 1

M(1000, 1001) = (−25) + (−5) + (−1) = −31.



Four possible game outputs
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G > 0 or G is positive if player Left can always win.
G < 0 or G is negative if player Right can always win.
G = 0 or G is zero if second player can always win.
G‖0 or G is fuzz if first player can always win.



Combination of outputs

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 31 / 47

■ G ≥ 0 means that Left has a winning strategy provided
Right plays first.



Combination of outputs

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 31 / 47

■ G ≥ 0 means that Left has a winning strategy provided
Right plays first.

■ G ≥ 0 means that Right has a winning strategy provided
Left plays first.



Combination of outputs

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 31 / 47

■ G ≥ 0 means that Left has a winning strategy provided
Right plays first.

■ G ≥ 0 means that Right has a winning strategy provided
Left plays first.

■ G |⊲ 0 means that Left has a winning strategy provided
Left plays first.



Combination of outputs

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 31 / 47

■ G ≥ 0 means that Left has a winning strategy provided
Right plays first.

■ G ≥ 0 means that Right has a winning strategy provided
Left plays first.

■ G |⊲ 0 means that Left has a winning strategy provided
Left plays first.

■ G ⊳ | 0 means that Right has a winning strategy provided
Right plays first.



Hackenbush Hotchpotch
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■ Two players: “Left” and “Right”.

■ Game board: blue-red-green graphs connected to the
ground.

■ Rules: Two players take turns. Right deletes one red
edge or one green edge and also remove any piece no
longer connected to the ground. Left does the similar
move but deletes one blue edge or one green edge.

■ Ending positions: Whoever gets stuck is the loser.
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Let GL be the typical left options and GR be the typical
right options. Then

G = {GL | GR}.
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Let GL be the typical left options and GR be the typical
right options. Then

G = {GL | GR}.

For two arbitrary games G = {GL | GR} and
H = {HL | HR}, the sum of the games is defined as

G+H = {GL +H,G+HL | GR +H,G+HR}.
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■ If G ≥ 0 and H ≥ 0 then G+H ≥ 0.

■ If G ≤ 0 and H ≤ 0 then G+H ≤ 0.

■ If G |⊲ 0 and H ≥ 0 then G+H |⊲ 0.

■ If G ⊳ | 0 and H ≤ 0 then G+H ⊳ | 0.

We only prove the first property here. Assume Right plays
first. If Right plays on G, then Left responds in G since Left
has a winning strategy in G. If Right plays on H, then Left
responds in H since Left has a winning strategy in H. In
ether case, Left can win. Thus, G+H ≥ 0.



Outcome of sum of games
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H = 0 H > 0 H < 0 H‖0
G = 0 G+H = 0 G+H > 0 G+H < 0 G+H‖0
G > 0 G+H > 0 G+H > 0 G+H?0 G+H |⊲ 0
G < 0 G+H < 0 G+H?0 G+H < 0 G+H ⊳ | 0
G‖0 G+H‖0 G+H |⊲ 0 G+H ⊳ | 0 G+H?0

Here G+H?0 are unrestricted.
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Use the negative game −H = {−HR | −HL}. One can
define G = H, G > H, G < H, and G‖H. For example,
define G > H if G+ (−H) > 0.
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Use the negative game −H = {−HR | −HL}. One can
define G = H, G > H, G < H, and G‖H. For example,
define G > H if G+ (−H) > 0.

We have

H = K H > K H < K H‖K
G = H G = K G > K G < K G‖K
G > H G > K G > K G?K G |⊲ K

G < H G < K G?K G < K G ⊳ |K

G‖H G‖K G |⊲ K G ⊳ |K G?K
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Flower is dwarfed by Very Small Hollyhocks of Either Sign.

−
1

2n
< flower <

1

2n
for any n.



Small positive Hackenbush
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This house has a positive value but is smaller than any
positive number.

0 < house <
1

2n
for any n.
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∗ is less than any positive number, greater than any negative
number, and fuzz with 0.



The game value ∗

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 39 / 47

∗ = {0 | 0}.

How big is the star ∗?
∗ is less than any positive number, greater than any negative
number, and fuzz with 0.

For any number x, let x∗ = x+ ∗. We have

{x | x} = x ∗ .



Game of Col
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■ Two players: “Left” and “Right”.

■ Game board: a partial colored planar map.

■ Rules: Two players take turns to paint regions of the
map. Each player, when in his turn to move, paint one
region of the map, Left using the color blue and Right
using the color red. No two regions having a common
frontier may be painted in the same color.

■ Ending positions: Whoever gets stuck is the loser.



Example 1 of Col Game

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 41 / 47

The region belonging to Left only is blue-tinted while the
one belonging to Right only is red-tinted.
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{∗,−1, 1 | 1} = {1 | 1} = 1 ∗ .



Alternative version of Col
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We can also represent regions by nodes and adjacency by
edges.
: nodes available for both Left and Right.

: nodes available for Left only.

: nodes available for Right only.



Some Col Values
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Theorem Every position of Col has the value z or z∗ for
some number z.
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Theorem Every position of Col has the value z or z∗ for
some number z.

Proof: It is sufficient to show

GL + ∗ ≤ G ≤ GR + ∗.

The statement follows from induction.



Seating Couples
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■ Two players: “Left” and “Right”.

■ Game board: some dinning tables of various sizes.

■ Rules: Two players take turns to seat couples for a
dinner. Left prefers to seat a lady to the left of her
partner, while Right thinks it proper only to seat her to
the right. No gentleman may be seated next to a lady
other than his own partner.

■ Ending positions: Whoever gets stuck is the loser.
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LnL, a row of n empty chairs between two of Left’s guests,
RnR, a row of n empty chairs between two of Right’s, and
LnR or RnL, a row of n empty chairs between one of Left’s
guests and one of Right’s.
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LnL, a row of n empty chairs between two of Left’s guests,
RnR, a row of n empty chairs between two of Right’s, and
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Recursive formular:

LnL = {LaL+ LbL | LaR + RbL}
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LnL, a row of n empty chairs between two of Left’s guests,
RnR, a row of n empty chairs between two of Right’s, and
LnR or RnL, a row of n empty chairs between one of Left’s
guests and one of Right’s.

Recursive formular:

LnL = {LaL+ LbL | LaR + RbL}

RnR = {RaL+ LbR | RaR +RbR} = −LnL

LnR = {LaL+ LbR | LaR +RbR} = RnL.

n 0 1 2 3 4 5 6 7 8 9 10 11 . . .

LnL − 0 −1 −1 ∗ −1

2
−1

2
0 −1

4
−1

4
∗ −1

8
. . .

LnR 0 0 0 ∗ ∗ ∗ 0 0 0 ∗ ∗ ∗ . . .

RnR − 0 1 1 ∗ 1

2

1

2
0 1

4

1

4
∗ 1

8
. . .
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