Math576 Combinatorial Game Theory Homework 4 Solution

1. Simplify the following game values.
(a) $\{0, \downarrow \mid 0, *, \uparrow\}$
(b) $\{* \mid 0, *\}$
(c) $\{\downarrow, 0 \mid 0, \uparrow *\}$
(d) $\{\uparrow \mid \Uparrow\}$
(e) $\{0, * \mid * 2, \uparrow\}$

Solution:

$$
\begin{gathered}
\{0, \downarrow \mid 0, *, \uparrow\}=\{0 \mid 0, *\}=\downarrow *, \quad \text { deleting dominated option. } \\
\{* \mid 0, *\}=\{* \mid 0\}=\downarrow \text { bypassing right reversible move } * . \\
\{\downarrow, 0 \mid 0, \uparrow *\}=\{0 \mid 0, \uparrow *\}=*, \quad \text { adding gifted horse } \uparrow * \text { to } *=\{0,0\} . \\
\{\uparrow \mid \uparrow\}=\{0, \uparrow \mid \Uparrow\}=\{0 \mid \Uparrow\}=3 . \uparrow *, \quad \uparrow \text { is a gifted horse to }\{0 \mid \Uparrow\}=3 . \uparrow * . \\
\{0, * \mid * 2, \uparrow\}=\{0, * \mid * 2\}=\{0 \mid * 2\}=\uparrow * 3, \quad * \text { is the gift horse for } \uparrow * 3 .
\end{gathered}
$$

2. Prove that $\{* 2 \mid 0\}=\downarrow * 3$.

Proof $\downarrow * 3=\{* \mid 0\}+\{0, *, * 2 \mid 0, *, * 2\}$
$=\{* 2, \downarrow, \downarrow *, \downarrow * 2 \mid * 3, \downarrow, \downarrow *, \downarrow * 2\}$
$=\{* 2 \mid \downarrow, \downarrow *, \downarrow * 2\} \quad$ deleting dominated options
$=\{* 3 \mid 0\}$ deleting two gift horse options or bypassing them.
3. Two player play the Kayles game. There are three blocks of pins with sizes $7,8,9$ respectively. What is the game value? What is the winning move for the first player?
Solution: The game value is

$$
* 2+*+* 4=* 7 \text {. }
$$

The first player can win by knocking down the second pins in the block of 9 , i.e, breaking into two blocks of size 1 and size 7 . Now the game value is

$$
* 2+*+(*+* 2)=0
$$

So this player wins.
4. Find the nim sequence for the substraction game $S(2,3,6,8)$. What is the period of this nim sequence?
Solution: The subtraction game $S(2,3,6,8)$ has the nim sequence

$$
\overline{00112031220312}
$$

with period 14 .
5. Explain what rules is for the Take-and-Break Games .34, then find the nim sequence.
Solution: The Take-and-Break Game . 34 means

- The player can take away the heap consisting of one bean.
- The player can take away one bean away from the top of the heap more than one bean.
- The player can take away 2 beans from any heap more than 4 beans and split the remaining of the heap into two non-empty heaps.

The nim sequence is

$$
0.101201 \overline{03121203}
$$

with period 8 starting at $n=7$.

