Math576 Combinatorial Game Theory Homework 2 solution

1. Let $C(2, n)$ be the game value of the rectangle $2 \times n$ in the Cut Cake game. Prove $C(2, n)=\left\lfloor\frac{n}{2}\right\rfloor-1$ for all $n \geq 2$.
Proof: We use induction on n.
Initial cases, $n=1,2$. We have

$$
\begin{gathered}
C(2,1)=\{\mid 2 C(1,1)\}=\{\mid 0\}=-1 \\
C(2,2)=\{2 C(2,1) \mid 2 C(1,2)\}=\{-2 \mid 2\}=0 .
\end{gathered}
$$

Now we assume that $C(2, k)=\left\lfloor\frac{k}{2}\right\rfloor-1$ for all $1 \leq k \leq n+1$. For $n+1$, the left option for $C(2, n+1)$ are

$$
C(2, k)+C(2, n+1-k)
$$

for some $1 \leq k \leq n$. By inductive hypothesis, it has the value

$$
\left\lfloor\frac{k}{2}\right\rfloor-1+\left\lfloor\frac{n+1-k}{2}\right\rfloor-1= \begin{cases}\left\lfloor\frac{n+1}{2}\right\rfloor-2 & \text { if } k \text { is even } \\ \left\lfloor\frac{n+1}{2}\right\rfloor-3 & \text { if } k \text { is odd }\end{cases}
$$

The maximum value of left options is $\left\lfloor\frac{n+1}{2}\right\rfloor-2$. The right option has value

$$
2 C(1, n+1)=2 n
$$

We have

$$
C(2, n)=\left\{\left.\left\lfloor\frac{n+1}{2}\right\rfloor-2 \right\rvert\, 2 n\right\}=\left\lfloor\frac{n+1}{2}\right\rfloor-1
$$

The inductive proof is finished.
2. Two players are playing the cut cake game. The current game position consists of three rectangles: $8 \times 4,5 \times 3,3 \times 8$. What is the game value? If it is Left's turn now, what is his best move?
Solution: Note that $C(8,4)=-1, C(5,3)=-1$, and $C(3,8)=3$. The game value is

$$
(-1)+(-1)+3=1
$$

One of Left's best move is cut the third cake in half. After his move, the game value became:

$$
(-1)+(-1)+1+1=0
$$

Left can win.
3. Find the game value of the rectangle 990×448 in the Maundy Cake game.

Solution: Write

$$
\begin{aligned}
& 990 \rightarrow 495 \rightarrow 165 \rightarrow 55 \rightarrow 11 \rightarrow 1 \\
& 448 \rightarrow 224 \rightarrow 112 \rightarrow 56 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 1
\end{aligned}
$$

By the theorem we proved in the lecture, this Maundy Cake game has the value

$$
7+1=8
$$

4. For each case, find a pair of two fuzzy games G and H so that

- $G+H>0$.
- $G+H=0$.
- $G+H<0$.
- $G+H \| 0$.

Solution: Consider the following Hackenbush games:

5. Two players are playing the Cut Cake game over an non-rectangle cake. What's the game value of the following cake?

Solution: There are two options of Left.

Below are two options of Right.

We calculate the following game values:

Therefore, the game value of the orignal board is

$$
\{(-1)+0,(-1)+0 \mid 0+1,1+0\}=\{-1 \mid 1\}=0
$$

