1. [page 195, #4] Determine the value of \(\text{ex}(n, K_{1,r}) \) for all \(r, n \in \mathbb{N} \).

Solution: We would like to determine how many edges a graph \(G \) on \(n \) vertices can have before a \(K_{1,r} \) subgraph is forced. Note that \(G \) has a \(K_{1,r} \) subgraph if and only if \(\Delta(G) \geq r \). Thus, we must determine the maximum number of edges \(G \) can have and still maintain \(\Delta(G) < r \). We consider two cases:

Case 1: \(n \leq r \). Clearly, if \(n \leq r \), we must have \(\Delta(G) < r \). In this case, a complete graph on \(n \) vertices has no \(K_{1,r} \) subgraph and \(\text{ex}(n, K_{1,r}) = \binom{n}{2} \).

Case 2: \(n > r \). In this case, we try to draw edges on the vertices of \(G \) so that \(d(v) = r - 1 \) for all \(v \in V(G) \). While it may not be possible to draw an \(r - 1 \)-regular graph on \(n \) vertices, we are able to draw \(\lfloor \frac{(r-1)n}{2} \rfloor \) edges. Thus \(\text{ex}(n, K_{1,r}) = \lfloor \frac{(r-1)n}{2} \rfloor \).

2. [page 195, #5] Given \(k > 0 \), determine the extremal graphs without a matching of size \(k \).

Solution: Let \(n \in \mathbb{N} \) and \(k > 0 \). We will consider two cases:

Suppose \(n < 2k \). The complete graph \(K_{2n} \) will certainly have no matching of size \(k \). This graph \(K_{2n} \) has \(\binom{n}{2} \) edges, and we certainly cannot better. Thus \(K_{2n} \) is the extremal graph in this case.

Suppose \(n \geq 2k \). We construct the extremal graph in the following way: First, construct a \(K_{k-1} \). Then, draw an edge from each of the remaining \((n - k + 1) \) vertices to each of the edges in the \(K_{k-1} \). Then every edge in a maximal matching will be incident to a vertex in the \(K_{k-1} \). Thus, the size of the maximal matching on this graph is \(k - 1 \). This graph has \(\binom{k-1}{2} + (n - k + 1)(k - 1) \) edges, and it is the extremal graph.

3. [page 195, #9] Show that deleting at most \((m-s)(n-t)/s \) edges from a \(K_{m,n} \) will never destroy all its \(K_{s,t} \) subgraphs.

Solution: Let \(M \cup N \) be the partition of the graph \(G \) obtained from \(K_{m,n} \) by deleting these vertices. On the average, a vertex in \(M \) is losing \((m-s)(n-t)/(sm) \) edges. Picking a set \(S \) of \(s \) vertices with most degrees from \(M \). Consider the induced subgraph \(G[S \cup N] \). We have

\[
|E(G[S \cup N])| \geq s(n-(m-s)(n-t)/(sm)) = (s-1)n+t-s \frac{(n-t)}{m} \geq (s-1)n+t.
\]

Thus in \(G[S \cup N] \), there are a set \(T \) of \(t \) vertices from \(N \) with degree equal \(s \). The induced subgraph \(G[S \cup T] \) is a complete bipartite graph \(K_{s,t} \).
4. Let $1 \leq r \leq n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where $|A| = |B| = n$, and assume that $K_{r,r} \not\subseteq G$. Show that

$$\sum_{x \in A} \binom{d(x)}{r} \leq (r-1) \binom{n}{r}.$$

Use it to deduce $ex(n,K_{r,r}) \leq cn^{2-1/r}$.

Solution: Let $1 \leq r \leq n$ be integers. Let G be a bipartite graph with bipartition $\{A, B\}$, where $|A| = |B| = n$. Assume $K_{r,r} \not\subseteq G$. Let $d(x)$ denote the degree of vertex $x \in A$, and let $N(x)$ denote the neighborhood of x. Note that $N(x)$ contains $\binom{d(x)}{r}$ r-tuples of vertices. If we take the sum of all such r-tuples over the neighborhoods of all $x \in A$, we get $\sum_{x \in A} \binom{d(x)}{r}$. Note that any r-tuple can be counted at most $r-1$ times. Otherwise, we would get a $K_{r,r}$ subgraph. Thus,

$$\sum_{x \in A} \binom{d(x)}{r} \leq (r-1) \binom{n}{r}.$$

Due to the convexity of $\binom{d(x)}{r}$ (for $d(x) > r-1$), $\sum_{x \in A} \binom{d(x)}{r}$ is minimized if the degrees of $x \in A$ are as even as possible. Thus,

$$\sum_{x \in A} \binom{d(x)}{r} \geq n \cdot \binom{|E(G)|/n}{r} \geq n \cdot \frac{|E(G)| (n-r)^r}{r!}$$

Also,

$$(r-1) \binom{n}{r} \leq (r-1) \frac{n^r}{r!}$$

Therefore,

$$n \cdot \frac{|E(G)| (n-r)^r}{r!} \leq (r-1) \frac{n^r}{r!}$$

If we solve this for $|E(G)|$, we conclude that $ex(n,K_{r,r}) \leq cn^{2-1/r}$.

5. Given a graph G with $\epsilon(G) \geq k \in \mathbb{N}$, find a minor $H \prec G$ such that $\delta(H) \geq k \geq |H|/2$.

Solution: Let $k = 1$. Let G be a graph with $\epsilon(G) \geq 1 = k$. That means G has at least one edge. If we let H be a path P_1, H is certainly a minor of G, and $\delta(H) = k = |H|/2 = 1$.

We proceed by induction. Let \(n \in \mathbb{N} \). Suppose for all \(k \leq n - 1 \), for every graph \(G \) with \(\epsilon(G) \geq k \), we can find a minor \(H \prec G \) such that \(\delta(H) \geq k \geq |H|/2 \). Let \(G \) be a graph with \(\epsilon(G) \geq n \). Pick the minimal minor \(H \prec G \) such that \(\delta(H) \geq k \), and let \(x \in H \). Let us create a new graph \(H' \) from \(H \) by removing \(x \). Since \(\delta(H) \geq k \), \(x \) is not isolated, and the neighbors of \(x \) will have degree at least \(k - 1 \) when \(x \) is removed. Since \(\epsilon(H') \geq k - 1 \), by the inductive hypothesis, we can find a minor \(H'' \) of \(H' \) that satisfies \(\delta(H'') \geq k - 1 \). When we add \(x \) back in, we still get \(\delta(H) \geq k \). Since we are adding only one vertex, \(|H''| \) goes up by at most \(\frac{1}{2} \), so \(k \geq |H|/2 \).

6. If a graph \(G_n \) contains no \(K_4 \) and only contains \(o(n) \) independent vertices, then \(|G_n| < \left(\frac{1}{8} + o(1) \right)n^2 \). (Hint: apply Szemerédi’s Regularity Lemma.)

Solution: For any \(\epsilon > 0 \), we apply Szemerédi’s Regularity Lemma to \(G \) to get a regularity partition \(V = V_0 \cup V_1 \cup \ldots \cup V_k \). We define an auxiliary graph \(R \) with the vertex set \(\{V_1, \ldots, V_k\} \). A pair \((V_i, V_j)\) forms an edge of \(R \) if it is a regular pair with edge density at least \(3\epsilon \). We claim:

Claim a: No regularity pair has density \(d > \frac{1}{2} + 2\epsilon \).

Claim b: \(R \) is triangle-free.

Proof of Claim a: If a regular pair \((V_i, V_j)\) has density \(d > \frac{1}{2} + 2\epsilon \). We claim that we can find a \(K_4 \) in \(G \). Call a vertex \(v \in V_i \) good if for any \(B \subset V_j \) with \(|B| > \epsilon|V_j| \), \(v \) has at least \((d - \epsilon)|V_j| \) neighbors in \(B \). All vertices in \(V_i \) but a \(\epsilon \)-fraction are good. Since the independent number of \(G \) is \(o(n) \), there is an edge \(xy \) in \(V_i \) so that both \(x \) and \(y \) are good. This implies \(|N(x) \cap N(y) \cap V_j| > (d - \epsilon)^2|V_j| \). Thus inside \(N(x) \cap N(y) \cap V_j \) contains an edge \(st \). The induced graph on \(\{x, y, s, t\} \) is a \(K_4 \). Contradiction.

Proof of Claim b: Suppose that \(R \) contains a triangle \(V_iV_jV_s \). We can define a vertex \(v \in V_i \) is good in a similarly way. At least \((1 - 2\epsilon)|V_j| \) vertices are good. Pick an edge \(xy \) so that both \(x \) and \(y \) are good in \(V_i \). Consider \(N(x) \cap N(y) \cap V_j \) and \(N(x) \cap N(y) \cap V_s \). Both sets have size at least \((d - \epsilon)^2|V_j| \). Thus we can select an edge \(zw \) so that \(z \in N(x) \cap N(y) \cap V_j \) and \(w \in N(x) \cap N(y) \cap V_s \). Once again, we found a \(K_4 \). Contradiction.

Let \(l = |V_i| \approx \frac{n}{2} \). Since \(R \) is triangle-free, \(R \) has at most \(k^2/4 \) edges. The total number of edge in \(G \) can be bounded by

\[
|G_n| \leq |R|\left(\frac{1}{2} + 2\epsilon\right)l^2 + \left(\frac{k}{2} - |R|\right)3kl^2 + \epsilon kl^2 \\
\leq \left(\frac{1}{8} + 20\epsilon\right)n^2.
\]

Now let \(\epsilon \to 0 \), we have \(|G_n| < \left(\frac{1}{8} + o(1)\right)n^2 \).