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The slides are solely for the

convenience of the students

who are taking this course.

The students should buy the

textbook. The copyright of

many figures in the slides

belong to the authors of

the textbook: Elwyn R.
Berlekamp, John H. Con-
way, and Richard K. Guy.



Game of Domineering

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 3 / 33

■ Two players: “Left” and “Right”.

■ Game board: a rectangular checkerboard.

■ Rules: Two players take turns in placing dominoes on a

board. Left orients his dominoes North-South and Right

East-West. Each domino must exactly cover two squares

of the board and no two dominoes may overlap.

■ Ending positions: Whoever gets stuck is the loser.



Values of Domineering
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Some new values

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 5 / 33

= {2 | −1

2
}.
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How big is the game {x | y} where x and y are numbers and

x ≥ y?
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How big is the game {x | y} where x and y are numbers and

x ≥ y?

z > x implies z > {x | y}
z < y implies z < {x | y}

y ≤ z ≤ x implies z || {x | y}.
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How big is the game {x | y} where x and y are numbers and

x ≥ y?

z > x implies z > {x | y}
z < y implies z < {x | y}

y ≤ z ≤ x implies z || {x | y}.

Whereabout of {2 | −1

2
}.
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If x ≥ y, z are numbers, then

z + {x | y} = {z + x | z + y}.
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If x ≥ y, z are numbers, then

z + {x | y} = {z + x | z + y}.

Let u = 1

2
(x+ y), and v = 1

2
(x− y), then

{x | y} = u+ {v | −v} = u± v.

Here ±v is a short notation for {v | −v}, v is called

temperature of {x | y}.
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If x ≥ y, z are numbers, then

z + {x | y} = {z + x | z + y}.

Let u = 1

2
(x+ y), and v = 1

2
(x− y), then

{x | y} = u+ {v | −v} = u± v.

Here ±v is a short notation for {v | −v}, v is called

temperature of {x | y}.

{2 | −1

2
} is hotter than {4 | 3}.



Temperature policy
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In any sum of switches {x | y}, together possibly
with a number, move in any {x | y} having the

largest possible temperature 1

2
(x− y).

Consider the game

z ± a± b± c± · · · (a ≥ b ≥ c ≥ · · · ≥ 0)

if Left starts, it soon become

z + a− b+ c− · · ·

and if Right starts, it soon become

z − a+ b− c+ · · ·



Switch games with *
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Let x and y are two numbers.

{x | y}+ ∗ = {x∗ | y∗} if x ≥ y.

{x | y∗}+ ∗ = {x∗ | y} if x > y.
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Let x and y are two numbers.

{x | y}+ ∗ = {x∗ | y∗} if x ≥ y.

{x | y∗}+ ∗ = {x∗ | y} if x > y.
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Let x and y are two numbers.

{x | y}+ ∗ = {x∗ | y∗} if x ≥ y.

{x | y∗}+ ∗ = {x∗ | y} if x > y.

Note that the second inequality does not hold when x = y.

For example,

{0 | ∗}+ ∗ =↑ ∗

{∗ | 0} =↓ .



Tiniest Games
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Consider the game value of domineering game:

= {0, {2 | 0} | {0 | −2}, {
1

2
| −2}}

= {0 | {0 | −2}}.

Here we bypassed Left’s reversible move and omitted the

Right’s dominated move. The game {0 | {0 | −2}}, called
tiny-two and denoted by +2, is a positive but much smaller

than ↑.



Tiny-x and miny-x
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For any value x ≥ 0, the value +x = {0 | {0 | −x}} is called

tiny-x.

For any value x, as x gets larger, +x gets smaller, rapidly. If

x > y ≥ 0, then

0 < +x ++x + · · · ++x < +y.
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For any value x ≥ 0, the value +x = {0 | {0 | −x}} is called

tiny-x.

For any value x, as x gets larger, +x gets smaller, rapidly. If

x > y ≥ 0, then

0 < +x ++x + · · · ++x < +y.

The negation of +x is −x = {{x | 0} | 0}, called miny-x.

−y < −x +−x + · · ·+−x < 0.
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For any value x ≥ 0, the value +x = {0 | {0 | −x}} is called

tiny-x.

For any value x, as x gets larger, +x gets smaller, rapidly. If

x > y ≥ 0, then

0 < +x ++x + · · · ++x < +y.

The negation of +x is −x = {{x | 0} | 0}, called miny-x.

−y < −x +−x + · · ·+−x < 0.

Note

+0 = {0 | {0 | −0}} = {0 | ∗} =↑ .

−0 = {{0 | 0} | 0} = {∗ | 0} =↓ .



Arithmetic operations
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Two examples:

1+2 = 1 + {0 | {0 | −2}}

= {1 | 1 + {0 | −2}}

= {1 | {1 | −1}}

= {1 | ±1}.
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Two examples:

1+2 = 1 + {0 | {0 | −2}}

= {1 | 1 + {0 | −2}}

= {1 | {1 | −1}}

= {1 | ±1}.

1

2
− 1

4

=
1

2
+ {{

1

4
| 0} | 0}}

= {{
1

4
| 0}+

1

2
|
1

2
}}

= {{
3

4
|
1

2
} |

1

2
}}.



Interpretation
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The game +500 = {0 | {0 | −500}} can be interpreted as

If Left has not yet filed form XYZ, then

Right may issues a formal request that he

do so After such a request has been

issued. On any subsequent turn on which

Left hast still no filed the form, Right may

file a decree compelling Left to forfeit a

penalty of 500 moves.

In any well-played sum of tinies and minies, the games are

completed in order of increasing magnitude.



Tiny Toads-and-Frogs
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Tiny Toads-and-Frogs
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For example,

= − 1

4

.



Miny Toads-and-Frogs
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The occurrence of −x:

Death leap principle: In a Toads-and-Frogs game, if the

only legal moves from some position are jumps, the value is

0.



More Toads-and-Frogs
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If Left moves, who wins?
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If Left moves, who wins?
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After two rounds, it seems that Right win:

∗ − 1 + 0+ ↑ +1 ∗+ ↑= 0
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After two rounds, it seems that Right win:

∗ − 1 + 0+ ↑ +1 ∗+ ↑= 0

But {1

4
|↓} is slightly hotter than {0 | −1

4
}. The correct

values after two rounds is: ∗ − 1 + 1

4
− 1

4
+ 1 ∗+ ↑=↑ .

So Left wins.



Latent heat
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If left starts, who wins this game?



Latent heat
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If left starts, who wins this game?

According to the temperature policy, after two moves:

1

2
−

1

4
+ + 1

4

−
1

4
= + 1

4

.

It seems that Left wins.



Latent heat
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However, Right can responded to Left’s opening by moving

on the third row. The result is

1

2
+ {0 | −

1

4
}+ {0 | −

1

4
} −

1

4
.

After two more moves: 1

2
+ 0− 1

4
− 1

4
= 0. Right wins.
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However, Right can responded to Left’s opening by moving

on the third row. The result is

1

2
+ {0 | −

1

4
}+ {0 | −

1

4
} −

1

4
.

After two more moves: 1

2
+ 0− 1

4
− 1

4
= 0. Right wins.

Temperature policy fails here because + 1

4

possesses latent

heat.
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However, Right can responded to Left’s opening by moving

on the third row. The result is

1

2
+ {0 | −

1

4
}+ {0 | −

1

4
} −

1

4
.

After two more moves: 1

2
+ 0− 1

4
− 1

4
= 0. Right wins.

Temperature policy fails here because + 1

4

possesses latent

heat.

The temperature policy works with games whose options are

like

x, x+ ∗, x+ ↑, x+ ∗2, x+ ↑ +∗

for any number x, since these have no latent heat.



Seating Boys and Girls
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■ Two players: “Left” and “Right”.

■ Game board: some dinning tables of various sizes.

■ Rules: Two players take turns to seat boys and girls.

Left will seat the boys and Right the girls. No child may

be seated next to another of the opposite sex.

■ Ending positions: Whoever gets stuck is the loser.



Values of seating-boys-girls

Math576: Combinatorial Game Theory Linyuan Lu, University of South Carolina – 21 / 33

LnL, a row of n empty chairs between two boys,

RnR, a row of n empty chairs between two girls, and

LnR or RnL, a row of n empty chairs between a boy and a

girl.
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LnL, a row of n empty chairs between two boys,

RnR, a row of n empty chairs between two girls, and

LnR or RnL, a row of n empty chairs between a boy and a

girl.

Recursive formula: where a+ b = n− 1, L0R is not allowed.

LnL = {LaL+ LbL | LaR + RbL}

RnR = {RaL+ LbR | RaR +RbR} = −LnL

LnR = {LaL+ LbR | LaR +RbR} = RnL.
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LnL, a row of n empty chairs between two boys,

RnR, a row of n empty chairs between two girls, and

LnR or RnL, a row of n empty chairs between a boy and a

girl.

Recursive formula: where a+ b = n− 1, L0R is not allowed.

LnL = {LaL+ LbL | LaR + RbL}

RnR = {RaL+ LbR | RaR +RbR} = −LnL

LnR = {LaL+ LbR | LaR +RbR} = RnL.

n 0 1 2 3 4 5 6

LnL 0 1 2 2 | 0 3 | ∗ {4 | 0,±1} {3 | ∗} ± 1
LnR – 0 ∗ ±1 ±2 ±2∗ ±2± 1
RnR 0 −1 −2 0 |−2 ∗|−3 {±1, 0 |−4} {∗|−3} ± 1



Colon Principle
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In Hackenbush game, we have the following important tool:

If H = K, then Gx : H = Gx : K.



Work out Green Tree
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The parity Principle
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The nim value of any sum of green trees

has the same parity as the total number of

edges.
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The nim value of any sum of green trees

has the same parity as the total number of

edges.

This is because the nim sum a
∗
+ b has the same parity as

the ordinary sum a+ b.



Fusion Principle
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You can fuse all the nodes in any cycle of a green

Hackenbush game without changing its value.
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You can fuse all the nodes in any cycle of a green

Hackenbush game without changing its value.



Proof of Fusion Principle
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If there is a counter-example, choose the one with minimum

number of edges and then with minimum number of vertices.

The minimum counter example has the following properties:

■ G has only one vertex on the ground.

■ For any two vertices a, b, there is no three

edge-dependent paths from a to b.

■ No cycle can exclude the ground.

■ G contains one cycle including the ground.



Even Bridge
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The number of edges in this bridge is even. The sum of this

bridge and copies of all its strings is a zero game. If not,

there must a edge on the bridge so that removing it results a

zero game. By the parity principle, this is a nonzero game.

Contradiction.



Odd Bridge
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The number of edges in this bridge is odd. The sum of this

bridge and copies of all its strings has game value ∗ because

no option has the value ∗. It will sufficient to find an option

with value 0.
Label the bridge edges by A or B so that adjacent edges

have the same label if with odd string between them and

different labels if with even string between them.



Half graph
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Since B appears even times, contract B-edges and half the

strings. We get the following half graph.

It can show that this reduction halfs the nim value.

There is one edge labeled in C. This edge is the winning

move to 0 in the original graph.



Purple mountain
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In red-blue-green Hackenbush game, the part of the picture

made up red and blue edges, which are connected to the

ground by other red or blue edges, is called purple mountain;

the rest of the picture is called green jungle.

If you know the values of purple mountain and the green

jungle, then you know the value of Hackenbush game.

k



Flower Gardens
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A flower has a green stem supporting a blossom of blue or

red petals.

If there are no red flowers, at least one

blue flower, and any amount of greenery,

then Left has a winning move.



Two-head Rule
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If there are no red flowers, at least two

blue flower, and any amount of greenery,

then Left wins even Right starts first.



Atomic weights
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In a sum of flowers and nimbers, Left will prefer any move

which cuts a red flower than any move which cuts the blue

flower.
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In a sum of flowers and nimbers, Left will prefer any move

which cuts a red flower than any move which cuts the blue

flower.

All blue flowers have atomic weight +1 while all red flowers

have atomic weight −1.

If atomic weights ≥ 2, Left wins.
If atomic weights ≤ −2, Right wins.

In Hackenbush flowers, quantity is much important than

quality!
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