Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-1783) after he solved the Königsberg Bridge problem: Is it possible to cross seven bridges exactly once?

Figure 1: The map of Königsberg

Figure 2: The graph associated with the Königsberg Bridges

Using graph terminology, Euler gave a complete solution for any similar problem with any number of bridges connecting any number of landmasses! We will show and prove his result later.

Definition 1 A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation that associates with each edge two vertices called its endpoints.

Example 1 For the problem of the Königsberg Bridges, one can define the graph as follows. Vertices are landmasses while edges are bridges. We have

$$V(G) = \{w, x, y, x\}$$

$$E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$$

$$e_1 \leftrightarrow \{w, x\}$$

$$e_2 \leftrightarrow \{w, x\}$$

$$e_3 \leftrightarrow \{w, z\}$$

$$e_4 \leftrightarrow \{w, z\}$$

$$e_5 \leftrightarrow \{w, y\}$$

$$e_6 \leftrightarrow \{x, y\}$$

$$e_7 \leftrightarrow \{y, z\}$$

Definition 2 A loop is an edge whose endpoints are the same. Multiple edges are edges that have the same pair of endpoints. A simple graph is a graph without loops or multiple edges.

For a simple graph, an edge e is uniquely represented by its endpoints u and v. In this case, we write e = uv (or e = vu), and we say u and v are *adjacent*. u is a *neighbor* of v, and vice versa. An edge e is incident to u (and v).

A simple graph G on n vertices can have at most $\binom{n}{2}$ edges. The simple graph with n vertices and $\binom{n}{2}$ edges is called the *complete* graph, denoted by K_n . The simple graph G on n vertices with 0 edge is called the *empty* graph. The graph with 0 vertices and 0 edges is called the *null* graph.

Figure 3: Complete graphs K_3 , K_4 , K_5 , and K_6 .

A cycle on *n* vertices, written C_n , is a graph with vertex set $V(G) = [n] = \{1, 2, 3, ..., n\}$ and edge set $E(G) = \{12, 23, 34, ..., (n-1)n, n1\}.$

Figure 4: Cycles C_3 , C_4 , C_5 , and C_6 .

A path on *n* vertices, written P_n , is a graph with vertex set $V(G) = [n] = \{1, 2, 3, ..., n\}$ and edge set $E(G) = \{12, 23, 34, ..., (n-1)n\}$.

Definition 3 The complement \overline{G} of a simple graph G is the simple graph with vertex set $V(\overline{G}) = V(G)$ and edge set $E(\overline{G})$ defined by $uv \in E(\overline{G})$ if and only if $uv \notin E(G)$. A clique in a graph is a set of pairwise adjacent vertices. An independent set in a graph is a set of pairwise non-adjacent vertices.

Definition 4 A graph G is bipartite if V(G) is the union of two disjoint independent sets called partite sets of G.

Definition 5 A graph is k-partite if V(G) can be expressed as the union of k independent sets.

Definition 6 The chromatic number of a graph G, written $\chi(G)$, is the minimum number k such that G is k-partite. A subgraph of a graph G is a graph H such that $V(H) \subset V(G)$ and $E(H) \subset E(G)$. We says G contains H. A *induced subgraph* of a graph G is a subgraph H satisfying

$$E(H) = \{uv \mid u, v \in V(H), uv \in E(G)\}.$$

Example 2 Let G_1 be the simple graph defined by (see Figure 5)

$$\begin{array}{rcl} V(G_1) &=& \{1,2,3,4,5\} \\ E(G_1) &=& \{12,23,13,24,34,45\}. \end{array}$$

Figure 5: A simple graph G_1 .

 $\{1,2,3\}$ is a clique. $\{1,4\}$ is an independent set. G_1 is not a bipartite graph. The chromatic number is $\chi(G_1) = 3$.

Figure 6: A subgraph of G_1 .

Figure 7: A induced subgraph of G_1 .

An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \to V(H)$ satisfying

$$uv \in E(G)$$
 iff $f(u)f(v) \in E(H)$.

We say G is isomorphic to H, denoted $G \cong H$.

The isomorphism relation is an equivalence relation. I.e., it is

- 1. reflexive: $A \cong A$.
- 2. symmetric: if $A \cong B$, then $B \cong A$.
- 3. transitive: if $A \cong B$ and $B \cong C$, then $A \cong C$.

An isomorphism class of graphs is an equivalence class of graphs under the isomorphism relation. It is also known as an "unlabeled graph".

Definition 7 The adjacency matrix of a graph G, written A(G), is the n-by-n matrix in which entry a_{ij} is the number of edges with endpoints $\{v_i, v_j\}$ in G. Here $V(G) = v_1, v_2, \ldots, v_n$ is the vertex set of G.

For a simple graph G, we have

$$A(G) = \begin{cases} 1 & \text{if } v_i v_j \text{ is an edge} \\ 0 & \text{otherwise} \end{cases}$$

A(G) is a symmetric 0-1 matrix with 0s on the diagonal. For a vertex v of the graph G, the degree d_v is the number of edges which are incident to v. If $v = v_i$, then d_{v_i} is the *i*-th row/column sum of A(G).

Example 3 For graph G_1 (Figure 5), the adjacency matrix is given by

Definition 8 A walk (on a graph G) is a list $v_0, e_1, v_1, e_1, \ldots, e_k, v_k$, satisfying $e_i = v_{i-1}v_i$ is an edge for all $i = 1, 2, \ldots, k$. k is called the length of the walk.

A u, v-walk is a walk with $v_0 = u$ and $v_k = v$.

A trail is a walk with no repeated edge.

A path is a walk with no repeated vertices.

A closed walk is a walk with the same endpoints, i.e., $v_0 = v_k$.

A cycle is a closed walk with no repeated vertices except for the endpoints.

Lemma 1 Every u, v-walk contains a u, v-path.

Proof: We prove it by induction on the length k of the walk.

When k = 1, a u, v-walk is a u, v-path.

We assume that every u, v-walk with length at most k contains a u, v-path. Now let us consider a u, v-walk $u = v_0, e_1, v_1, e_1, \ldots, e_{k+1}, v_{k+1} = v$ of length k + 1. If the walk has no repeated vertices, it is a u, v-path by definition. Otherwise, say $v_i = v_j$ for $0 \le i < j \le k + 1$. By deleting all vertices and edges between v_i and v_j , we get a new walk: $v_0, \ldots, v_i = v_j, \ldots, v_{k+1}$. This walk has length at most k. By the inductive hypothesis, it contains a u, v-path. \Box .

Definition 9 A graph G is connected if it has a u, v-path for any $u, v \in V(G)$.

For any u, v, we define a connected relation $u \sim v$ over V(G) if there is a u, v-path in G. The connected relation is an equivalence relation. The equivalence classes for this relation are called *connected components* of G.

A component is *trivial* if it contains only one vertex. A trivial component is also called an *isolated* vertex.

Lemma 2 Every closed odd walk contains an odd cycle.

Proof: We prove it by induction on the length k of the closed walk.

When k = 1, the walk of length 1 is a loop. Thus, it is an odd cycle.

We assume that every odd walk with length at most k = 2r-1 contains a u, vpath. Now let us consider a closed walk $u = v_0, e_1, v_1, e_1, \ldots, e_{2r+1}, v_{2r+1} = v$ of length 2r + 1. If the walk has no repeated vertices, it is an odd cycle by definition. Otherwise, say $v_i = v_j$ for $0 \le i < j \le 2r + 1$. The walk can be split into two closed walks:

$$v_0, \dots, v_i = v_j, \dots, v_{k+1}$$
$$v_i, \dots, e_{i+1}, \dots, v_j.$$

One of them must have odd length of at most 2r-1. By the inductive hypothesis, it contains an odd cycle.

The proof is finished.

 \Box .

Theorem 1 (König 1936) A graph is bipartite if and only if it has no odd cycle.

Proof: It is sufficient to prove this for any connected graph.

Necessity: Let G be bipartite graph. Every walk of G alternates between the two sets of a bipartition. The lengths of any closed walks are even. Therefore, it has no odd cycle.

Sufficiency: Let G be a graph with no odd cycle. We will construct a bipartition as follows. Choose any vertex u. We define a partition $V(G) = X \cup Y$ as follows.

 $X = \{ v \in V(G) | \text{ there is a } u, v \text{-path of odd length} \}.$

 $Y = \{ v \in V(G) | \text{ there is a } u, v \text{-path of even length} \}.$

Since G is connected, we have $X \cup Y = V(G)$. We will show $X \cap Y = \emptyset$. Otherwise, let $u \in X \cap Y$. There are two u, v-paths. One path has even length while the other one has odd length. Put them together. We have an odd closed walk. By lemma, G has an odd cycle. Contradiction. Therefore, $V(G) = X \cup Y$ is a partition.

Next, we will show there are no edges with both ends in X or Y. Otherwise, suppose that vw is such an edge. The u, v-path, the edge vw, and the w, u-path together form an odd closed walk. By previous lemma, G contains an odd cycle. Contradiction.

Hence, G is a bipartite graph.

A complete bipartite graph $K_{s,t}$ has a vertex set partition $V = X \cup Y$ with |X| = s and |Y| = t and an edge set $E(G) = xy \mid x \in X, y \in Y$.

Theorem 2 Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of the adjacency matrix of a simple graph G. The the following statements are equivalent.

- 1. G is a bipartite graph.
- 2. For all $1 \leq i \leq n$, $\lambda_{n+1-i} = -\lambda_i$.

Proof: Suppose G is a bipartite graph. Then there exists a vertex set partition $V = X \cup Y$. Reorder vertices so that the vertices in X are before the vertices in Y. The adjacency matrix A has the following shape:

$$A = \left(\begin{array}{cc} 0 & B \\ B' & 0 \end{array}\right).$$

Let $\alpha = \begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ be an eigenvector corresponding to an eigenvalue λ . Since $A\alpha = \lambda \alpha$, we have

$$B\gamma = \lambda\beta$$
$$B'\beta = \lambda\alpha.$$

Let $\tilde{\alpha} = \begin{pmatrix} \beta \\ -\gamma \end{pmatrix}$ Then we have

$$A\tilde{\alpha} = \begin{pmatrix} 0 & B \\ B' & 0 \end{pmatrix} \begin{pmatrix} \beta \\ -\gamma \end{pmatrix}$$
$$= \begin{pmatrix} -B\gamma \\ B'\beta \end{pmatrix}$$
$$= \begin{pmatrix} -\lambda\beta \\ \lambda\gamma \end{pmatrix}$$
$$= -\lambda\tilde{\alpha}.$$

This shows $-\lambda$ is also an eigenvalue of A. The eigenvalues are symmetric about 0.

Suppose $\lambda_i = -\lambda_{n+1-i}$ for all *i*. We have

$$\operatorname{tr}(A^{2k+1}) = \sum_{i=1}^{n} \lambda_i^{2k+1} = 0.$$

The number of odd closed walks is 0. G has no odd cycle. Thus, G is bipartite by Konig's theorem.