Math 778S Spectral Graph Theory
Handout #3: Eigenvalues of Adjacency Matrix

The Cartesian product (denoted by \(G \square H \)) of two simple graphs \(G \) and \(H \) has the vertex-set \(V(G) \times V(H) \). For any \(u, v \in V(G) \) and \(x, y \in V(H) \), \((u, x)\) is adjacent to \((v, y)\) if either “\(u = v \) and \(xy \in E(H) \)” or “\(uv \in E(G) \) and \(x = y \)”.

Lemma 1 Suppose \(\lambda_1, \ldots, \lambda_n \) are eigenvalues of the adjacency matrix of a graph \(G \) and \(\mu_1, \ldots, \mu_m \) are eigenvalues of the adjacency matrix of a graph \(H \). Then the eigenvalues of the adjacency matrix of the Cartesian product \(G \square H \) are \(\lambda_i + \mu_j \) for \(1 \leq i \leq n \) and \(1 \leq j \leq m \).

Proof: Let \(A \) (or \(B \)) be the adjacency matrix of \(G \) (or \(H \)) respectively. For any eigenvalue \(\lambda \) of \(A \) and any eigenvalue \(\mu \) of \(B \), we would like to show \(\lambda + \mu \) is an eigenvalue of \(G \square H \). Let \(\alpha \) be the eigenvector of \(A \) corresponding to \(\lambda \) and \(\beta \) be the eigenvector of \(B \) corresponding to \(\mu \). We have

\[
A \alpha = \lambda \alpha \quad (1)
\]
\[
B \beta = \mu \beta \quad (2)
\]

Equivalently, for any \(u \in V(G) \),
\[
\sum_{v \sim u} \alpha_v = \lambda \alpha_u;
\]
for any \(x \in V(H) \),
\[
\sum_{y \sim x} \beta_y = \mu \beta_x.
\]

Let \(\alpha \otimes \beta \) be the \(n \times m \) column vector defined by entries
\[
(\alpha \otimes \beta)_{u,x} = \alpha_u \beta_x.
\]
Let \(C \) be the adjacency matrix of \(G \square H \). We would like to show \(\alpha \otimes \beta \) is an eigenvector of \(C \). We have, for any \((u, x) \in V(G \square H)\),

\[
\sum_{(v,y) \sim (u,x)} (\alpha \otimes \beta)_{v,y} = \sum_{(v,y) \sim (u,x)} \alpha_v \beta_y \\
= \sum_{(u,y) \sim (u,x)} \alpha_u \beta_y + \sum_{(v,x) \sim (u,x)} \alpha_v \beta_x \\
= \sum_{y \sim x} \alpha_u \beta_y + \sum_{v \sim u} \alpha_v \beta_x \\
= \alpha_u \sum_{y \sim x} \beta_y + \beta_x \sum_{v \sim u} \alpha_v \\
= \alpha_u \beta_x + \beta_x \lambda \alpha_u \\
= (\lambda + \mu)(\alpha \otimes \beta)_{u,x}.
\]
This is equivalent to
\[C(\alpha \times \beta) = (\lambda + \mu)(\alpha \times \beta). \]

Thus, \(\lambda + \mu \) is an eigenvalue of \(G \square H \).

For \(1 \leq i \leq n \) and \(1 \leq j \leq m \), \(\lambda_i + \mu_j \) are eigenvalues of \(G \square H \). Since \(G \square H \) has \(nm \) vertices, these eigenvalues (with multiplicity) are all eigenvalues of \(G \square H \). \(\square \)

Remark: The adjacency matrix of \(G \square H \) can be written as \(A \otimes I_m + I_n \otimes B \). Here \(\otimes \) is tensor product of matrices.

Hypercube \(Q_n \): The vertices of \(Q_n \) are points in \(n \)-dimensional space over the field of two elements \(F_2 = \{0, 1\} \). Two points are adjacent in \(Q_n \) if and only if they differ by exactly one coordinate.

We have \(Q_1 = P_2 \), \(Q_2 = C_4 \), and \(Q_3 \) is the cube in 3-dimensional space. We have \(Q_{n+1} = Q_1 \square Q_n \). The eigenvalues of \(Q_n \) can be determined from the eigenvalues of \(Q_1 \) and the above lemma.

\(Q_1 = P_2 \) has eigenvalues \(\pm 1 \). \(Q_n \) has eigenvalues \(n - 2i \) with multiplicity \(\binom{n}{i} \) for \(0 \leq i \leq n \).

Regular graphs: The degree of a vertex \(v \) in \(G \) is the number of edges incident to \(v \). If all degrees are equal to \(d \), then \(G \) is called a \(d \)-regular graph. Let \(\mathbf{1} \) be the column vector of all entries equal to 1. If \(G \) is a regular graph, then \(A\mathbf{1} = d\mathbf{1} \). Hence, \(\mathbf{1} \) is an eigenvector for the eigenvalue \(d \).

Eigenvalues of \(K_n \): Let \(J = \mathbf{1}'\mathbf{1} \) be the \(n \times n \)-matrix with all entries 1. Since \(J \) is a rank 1 matrix, \(J \) has eigenvalues 0 with multiplicity \(n - 1 \). It is easy to see that the nonzero eigenvalue of \(J \) is \(n \). The complete graph \(K_n \) has the adjacency matrix \(J - I \). Thus, \(K_n \) has an eigenvalue \(n - 1 \) of multiplicity 1 and \(-1 \) of multiplicity \(n - 1 \).

Eigenvalues of \(C_n \): Let \(Q = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \).

\(Q \) can be viewed as the adjacency matrix of the directed cycle. We have \(A = Q + Q' \). Note that \(Q^n = I \). Let \(\lambda \) be the eigenvalue of \(Q \). We have \(\lambda^n = 1 \). The eigenvalues of \(Q \) are precisely \(n \)-th root of 1:

\[\rho^k = \cos\left(\frac{2k\pi}{n}\right) + \sqrt{-1}\sin\left(\frac{2k\pi}{n}\right), \quad \text{for } 0 \leq k \leq n - 1. \]

Note \(Q' = Q^{n-1} \). Thus, \(A = Q + Q' \) has eigenvalues

\[\rho^k + \rho^{k(n-1)} = 2\Re(\rho^k) = 2\cos\left(\frac{2k\pi}{n}\right) \]

for \(k = 0, 1, 2, \ldots, n - 1 \).
Let \(\mu_1 \geq \mu_2 \geq \ldots \mu_n \) be the eigenvalues of the adjacency matrix of a graph \(G \). We refer \(\mu_1 = \mu_{\text{max}} \) and \(\mu_n = \mu_{\text{min}} \). We have

\[
\mu_{\text{max}} = \sup_{\|x\|=1} x'Ax \\
\mu_{\text{min}} = \inf_{\|x\|=1} x'Ax
\]

Suppose \(f(x) = x'Ax \) reaches the maximum at \(\alpha \) on the unit sphere. Then all coordinates of \(\alpha \) are non-negative.

Lemma 2 If \(H \) is a subgraph of \(G \), then we have

\[
\mu_{\text{max}}(G) \geq \mu_{\text{max}}(H).
\]

Proof: Without loss of generality, we assume \(V(H) = V(G) \). (Otherwise, we add some isolated vertices to \(H \). It doesn’t change the maximum eigenvalue of \(H \).)

Let \(\alpha \) be the eigenvector \(A_H \) corresponding to \(\mu_{\text{max}}(H) \). We have

\[
\mu_{\text{max}}(H) = \alpha' A_H \alpha \\
= 2 \sum_{ij \in E(H)} \alpha_i \alpha_j \\
\leq 2 \sum_{ij \in E(G)} \alpha_i \alpha_j \\
= \alpha' A_G \alpha \\
\leq \sup_{\|x\|=1} x' A_G x \\
= \mu_{\text{max}}(G).
\]

Let \(\delta \) be the minimum degree and \(\Delta \) be the maximum degree of \(G \). We have the following bound on \(\mu_{\text{max}} \).

Lemma 3 For every graph \(G \), we have

\[
\delta(G) \leq \mu_{\text{max}}(G) \leq \Delta(G).
\]

Proof: Let \(\alpha \) be an eigenvector for eigenvalue \(\mu = \mu_{\text{max}}(G) \). Since \(\alpha \neq 0 \), we can assume \(\alpha \) has at least one positive coordinate. (If all coordinates are non-positive, we consider \(-\alpha\) instead.)

Let \(\alpha_k = \max_i \alpha_i \) be the largest coordinate of \(\alpha \). Since \(A\alpha = \mu \alpha \), we have

\[
\mu \alpha_k = (A\alpha)_k = \sum_{i \sim k} \alpha_i \leq \Delta \alpha_k.
\]

Thus, \(\mu \leq \Delta \).
Now we show $\mu_{\text{max}}(G) \geq \delta(G)$.

$$\mu_{\text{max}} = \sup_{\|x\|=1} x' A_G x \geq \frac{1}{\sqrt{n}} 1' A_G \frac{1}{\sqrt{n}} 1 \geq \frac{1}{n} \sum_{i \sim j} a_{ij} = \frac{2|E(G)|}{n} \geq \delta(G).$$

□

A k-coloring of a graph G is a map $c : V(G) \to [k] = \{1, 2, \ldots, k\}$. A k-coloring is said to be proper if the end vertices of any edge in G receive different colors. I.e.,

$$c(u) \neq c(v) \text{ for any } u \sim v.$$ In this case, we say G is k-colorable.

The chromatic number denoted by $\chi(G)$ is the minimum integer k such that G is k-colorable. For example, $\chi(K_n) = n$. $\chi(G) = 2$ if and only if G is a nonempty bipartite graph.

There is a simple bound on $\chi(G)$.

Theorem 1 For every G, $\chi(G) \leq 1 + \Delta(G)$.

Proof: Given any order v_1, v_2, \ldots, v_n, we color vertices one by one using $\Delta + 1$ colors. At time i, we assume v_1, \ldots, v_{i-1} has been colored properly. Note that v_i has at most Δ neighbors in v_1, \ldots, v_{i-1}. We can pickup a distinct color for v_i other than those neighbors received. The resulted coloring is a proper coloring.

□.

Theorem 2 (Wilf 1967) For every G, $\chi(G) \leq 1 + \lambda_{\text{max}}(G)$.

Proof: In the proof of the previous lemma, the graph G is k-colorable if v_i has at most $k - 1$ neighbors in the induced subgraph on v_1, v_2, \ldots, v_i for all $i = 1, 2, \ldots, n$.

Since the order of the vertices can be arbitrary, we choose v_n to be the vertex having the minimum degree. For $i = n, n - 1, \ldots, 1$, let v_i be the vertex having minimum degree in the induced subgraph G_i on v_1, v_2, \ldots, v_i. Note

$$\delta(G_i) \leq \mu_{\text{max}}(G_i) \leq \mu_{\text{max}}(G).$$

Thus, under this order, the previous greedy algorithm results a proper k-coloring for any $k \leq 1 + \mu_{\text{max}}(G)$. □
Remark: Brook’s theorem states that if G is a simple connected graph other than the complete graph and odd cycles then

$$\chi(G) \leq \Delta(G).$$

It is unknown whether similar result can be proved using $\mu_{\text{max}}(G)$ instead.

Assume $\mu_1 > \mu_2 > \ldots > \mu_k$ are distinct eigenvalues of A. The $\phi(x) = \prod_{i=1}^{k}(x - \mu_k)$ is called the minimal polynomial of A. We have

$$\phi(A) = 0.$$

Any polynomial $f(x)$ with $f(A) = 0$ is divisible by $\phi(x)$.

For any pair of vertices u, v, the distance $d(u, v)$ is the shortest length of any uv-path. The diameter of graph G is the maximum distance among all pairs of vertices which belongs to the same connected component.

Theorem 3 The diameter of a graph is less than its number of distinct eigenvalues.

Proof: Without loss of generality, we can assume G is connected. Let k be the number of distinct eigenvalues. The minimum polynomial $\phi(x)$ has degree k. Since $\phi(A) = 0$, A^k can be expressed as a linear combination of I, A, \ldots, A^{k-1}. Suppose the diameter of G is greater than or equal to k. There exists a pair of vertices u and v satisfying $d(u, v) = k$. We have $(A^k)_{uv} \geq 1$ and $(A^i)_{uv} = 0$ for $i = 0, 1, 2, \ldots, A^{k-1}$. This is a contradiction to the fact A^k is a linear combination of I, A, \ldots, A^{k-1}. □

This result is tight for the hypercube Q_n.

5