
Math 776 Graph Theory, Spring 2006
Lecture Note 2: Combinatorial probabilistic

methods
Week 3–Week 5

Lectured by Lincoln Lu

1 First moment method

Definition 1 A discrete probability space is a finite or countable set Ω together
with nonnegative weights on the elements that sum to 1. An event is a subset
of A. The probability P (A) of an event A is the sum of weights of the elements
of A. Events A and B are independent if P (A ∩B) = P (A)P (B).

A random variable is a function X : Ω → R. The expected value of X is

E(X) =
∑
a∈Ω

X(a)wa.

Here wa is the weight of an element a in Ω.

Poropsition 1 If X =
∑

Xi, then E(X) =
∑

E(Xi).

Let R(s, t) denote the least number N such that if each edge of KN is colored
in either red or blue then there is a red clique Ks or a blue clique Kt.

Examples: R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(4, 4) = 18, R(4, 5) = 9
43 ≤ R(5, 5) ≤ 49,

The following theorem is often referred as the the birth of combinatorial
probabilistic methods.

Theorem 1 (Erdős, 1947)

R(n, n) >
1 + o(1)

e
√

2
n2n/2.

Proof: Color edges of KN in two colors randomly and independently. For any
set S ⊂ V (KN ) of order n, the probability that S forms a monochromatic clique
is

21−(n
2).

Let X be the number of monochromatic cliques of order n. Then we have

E(X) =
(

N

n

)
21−(n

2). (1)

If E(X) < 1, then there exist some colorings with X = 0. In another word,
R(n, n) > N .
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We will choose a maximum N so that E(X) < 1. Stirling formula gives an
approximation to n!.

n! ≈
√

2πn
(n

e

)n

.

Note that (
N

n

)
21−(n

2) <
Nn

n!
21−(n

2)

≈ 2√
2πn

(
Ne

n2(n−1)/2

)n

.

Choose N = bn
e 2(n−1)/2c. Then, E(X) < 1. �

Theorem 2

R(s, t) ≤ R(s− 1, t) + R(s, t− 1).

Proof: Let N = R(s− 1, t) + R(s, t− 1). For any edge-coloring of KN , we pick
any vertex v. A vertex u is called a red (or blue) neighbor of v if edge uv is a
red (or blue) edge.

Since the degree of v is N−1. By pigeonhole principle, v has either R(s−1, t)
red neighbors or R(s, t− 1) blue neighbors.

For the first case, we consider the induced subgraphs on the set R(v) of
v’s red neighbors. By the definition of R(s − 1, t), R(v) contains either a red
s− 1-clique or a blue t-clique. Any red s− 1-clique together with v forms a red
s-clique. The argument is similar for the second case. Thus, R(s, t) ≥ N . �

Corollary 1 For all s, t ≥ 2,

R(s, t) ≤
(

s + t− 2
s− 1

)
.

Proof: We use induction on s + t. If s = t = 2, R(2, 2) = 2 =
(
2
1

)
.

If one of s, t is 2, it is true since R(s, 2) =
(

s
2

)
and R(2, t) =

(
t
2

)
. Now we

assume s, t ≥ 3. We have

R(s, t) ≤ R(s− 1, t) + R(s, t− 1) by Theorem 2

≤
(

s− 1 + t− 2
s− 2

)
+

(
s + t− 1− 2

s− 1

)
by inductive hypothesis

=
(

s + t− 2
s− 1

)
.

The inductive step is finished. �

Lemma 1 (Markov’s Inequality) If X takes only nonnegative values, then

Pr(X ≥ t) ≤ 1
t
E(X).

In particular, if X is integer-valued, then E(X) → 0 implies Pr(X = 0) → 1.
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Proof: We have

E(X) =
∑

i

xi Pr(X = xi)

=
∑

0≤xi<t

xi Pr(X = xi) +
∑
xi≥t

xi Pr(X = xi)

≥
∑
xi≥t

xi Pr(X = xi)

≥
∑
xi≥t

t Pr(X = xi)

= t Pr(X ≥ t).

Thus,

Pr(X ≥ t) ≤ 1
t
E(X).

If X is integer-valued, we have

Pr(X = 0) = 1− Pr(X ≥ 1) ≥ 1− E(X) → 1.

The proof of this lemma is finished. �

Theorem 3 (Caro 1979, Wei 1981) For any simple graph G, the indepen-
dent number satisfies

α(G) ≥
∑

v∈V (G)

1
dG(v) + 1

.

Proof: Number vertices of G from 1 to n in an arbitrary way. We get an
directed graph D by orientating each edge from the smaller vertex to the larger
vertex. Let S be the set of vertices whose indegree is 0 in D. Then S forms an
independent set of G. For each v, v ∈ S if v is smaller than its neighbors. The
probability of v ∈ S is exactly 1

1+dv
. By linearity, we have

E(|S|) =
∑

v

Pr(v ∈ S) =
∑

v

1
1 + dv

.

In particular, there is an order of vertices so that the resulting set S is at least
the expected value of |S|. Hence, α(G) ≥

∑
v∈V (G)

1
dG(v)+1 . �

2 Deletion method

A random graph is a collection of graphs together with a probability distribution
over it. Here are two classical Erdő-Rényi models of random graphs:
A uniform random graph model Gn,m: Given n and m = m(n), let each
graph with vertex set [n] and m edges occur with probability

(
N
m

)−1
, where

N =
(
n
2

)
.
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A edge-independent random graph model G(n, p): Given n and p =
p(n), generate graph with vertex set [n] by letting each pair be an edge with
probability p.

Deletion Method: when a randomly generated object is close to having a
desired property, a slight alternation may produce it.

Theorem 4 (Spencer)

R(n, n) ≥ 1 + o(1)
en

2−n.

Proof:
Color edges of KN in two colors randomly and independently. For any set

S ⊂ V (KN ) of order n, the probability that S forms a monochromatic clique is

21−(n
2).

Let X be the number of monochromatic cliques of order n. Then we have

E(X) =
(

N

n

)
21−(n

2).

For any ε > 0, if E(X) < εN , then there exist some colorings with X < εN .
We can destroy all monochromatic cliques of order n by delete one vertex from
each mono-chromatic clique. We delete at most εN vertices. In another word,
R(n, n) > (1− ε)N .

We will choose a maximum N so that E(X) < εN . Choose N = b(1 −
ε)n

e 2n/2c. We can show E(X) < εN is satisfied for n large enough. Because ε is
arbitrary, we conclude that

R(n, n) ≥ (1− o(1))
n

e
2n/2.

The proof of this lemma is finished. �

Theorem 5 (Erdős, 1959) Given m ≥ 3 and g ≥ 3, there exists a graph with
girth at least g and chromatic number at least m.

Proof: Consider a random graph G on n vertices. For any pair of vertices, an
edge is added with probability p independently. Here we choose p = nt−1 with
a positive constant t < 1

g .

Let Xi be the number of cycles of length i and X =
∑g−1

i=3 Xi. We have

E(X) =
g−1∑
i=3

E(Xi)

=
g−1∑
i=3

P (n, i)pi/(2i)
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≤
g−1∑
i=3

(np)i/(2i)

=
g−1∑
i=3

nti/(2i)

= O(ntg).

Since tg < 1, E(X) = o(n). For n sufficient large, we have E(X) < n
4 .

By Markov’s inequality, we have

Pr(X ≥ n/2) ≤ 2
n

E(X) ≤ 1
2
.

For the independent number of G, we have

Pr(α(G) ≥ r) ≤
(

n

r

)
(1− p)(

n
2) < nre−pr(r−1)/2.

Choose r = d 3
p lnne. We have Pr(X ≥ n/2) → 0 and Pr(α(G) ≥ r) → 0.

With positive probability, G has at most n
2 cycles with length at most g− 1

and with independent number at most r. For each small cycle, delete one vertex
from it. Let G′ be the remaining graph. Then we have

n(G′) ≥ n

2
α(G′) ≤ r.

The graph G′ has girth at least g. We also have

χ(G′) ≥ n(G′)
α(G′)

≥ nt

3 ln n
.

Since nt

3 ln n →∞, it is large than any given number m for n sufficient large. �

3 Lovász local lemma

Definition 2 Given events A and B, the conditional probability of A given B
is defined as

Pr(A|B) =
Pr(AB)
Pr(B)

.

If A and B are independent then, Pr(A|B) = Pr(A).

Pr(A|BC) =
Pr(AB|C)
Pr(B|C)

.

Pr(A1A2 · · ·An) =
n∏

i=1

Pr(Ai|Ai+1 · · ·An).

In the scenario of showing the existence of certain good event, Lovász local
lemma is a very powerful tool. Here is the symmetric version.
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Lemma 2 (Lovász local lemma) Let A1, A2, . . . , An be events satisfying

1. For 1 ≤ i ≤ n, each event Ai is mutually independent of all but at most d
(d ≥ 1.) other events.

2. For 1 ≤ i ≤ n, Pr(Ai) ≤ p.

3. 4dp < 1.

Then
Pr(∩n

i=1Āi) > 0.

Proof: We show by induction on s that if |S| ≤ s, then for any i 6∈ S

Pr(Ai| ∩j∈S Āj) ≤ 2p.

For S = ∅ this is true by assumption. Renumber for convenience so that i = n,
S = {1, . . . , s} and An is mutually independent of events {Ax}x≥s. We have

Pr(An|Ā1 · · · Ās) =
Pr(AnĀ1 · · · Ād|Ād+1 · · · Ās)
Pr(Ā1 · · · Ād|Ād+1 · · · Ās)

.

The numerator can be bounded as follows

Pr(AnĀ1 · · · Ād|Ād+1 · · · Ās) ≤ Pr(An|Ād+1 · · · Ās)
≤ Pr(An)
≤ p.

We bound the denominator

Pr(Ā1 · · · Ād|Ād+1 · · · Ās) ≥ 1−
d∑

i=1

Pr(Ai|Ād+1 · · · Ās)

≥ 1−
d∑

i=1

2p

= 1− 2dp

≥ 1
2
.

Hence we have the quotient

Pr(An|Ā1 · · · Ās) ≤ 2p.

The induction is finished. Finally,

Pr(Ā1 · · · Ān) =
n∏

i=1

Pr(Āi|Ā1 · · · Āi−1) ≥
n∏

i=1

(1− 2p) > 0.

The proof of this lemma is finished.
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Theorem 6

R(n, n) ≥
√

2 + o(1)
en

2−n.

Proof:
Color edges of KN in two colors randomly and independently. For any set

S ⊂ V (KN ) of order n, let AS be the bad event that S forms a monochromatic
clique.

Pr(AS) = 21−(n
2).

AS and AT are independent if |S ∩ T | ≤ 1. Let d =
∑n−1

k=2

(
n
k

)(
N−n−k

n−k

)
<

(n
2)Nn−2

(n−2)! . By Lovász local lemma, R(n, n) ≥ N if

4

(
n
2

)
Nn−2

(n− 2)!
21−(n

2) < 1.

We will choose a maximum N satisfying above equation. A similar estima-
tion show N = b(1− o(1))

√
2n
e 2n/2c.The proof of this lemma is finished. �

Definition 3 A graph G on vertices [n] is called a dependency graph for events
A1, · · · , An if for all i Ai is mutually independent of all Aj with {i, j} 6∈ G.

Lemma 3 (Lovász local lemma) (General case). Let A1, . . . , An be events
with dependency graph G, Assume there exist x1, . . . , xn ∈ [0, 1) with

Pr(Ai) < xi

∏
ij∈E(G)

(1− xj)

for all i. Then

Pr(∩n
i=1Ai) <

n∏
i=1

(1− xi) > 0.

Proof: We show by induction on s that if |S| ≤ s, then for any i 6∈ S

Pr(Ai| ∩j∈S Āj) ≤ xi.

For S = ∅, Pr(Ai) < xi

∏
ij∈E(G)(1− xj) < xi.

Renumber for convenience so that i = n, S = {1, . . . , s} and among x ∈ S,
nx ∈ E(G) for x = 1, 2, . . . , d. We have

Pr(An|Ā1 · · · Ās) =
Pr(AnĀ1 · · · Ād|Ād+1 · · · Ās)
Pr(Ā1 · · · Ād|Ād+1 · · · Ās)

.

The numerator can be bounded as follows

Pr(AnĀ1 · · · Ād|Ād+1 · · · Ās) ≤ Pr(An|Ād+1 · · · Ās)
≤ Pr(An)
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We bound the denominator

Pr(Ā1 · · · Ād|Ād+1 · · · Ās) ≥
d∏

i=1

Pr(Āi|Āi+1 · · · Ās)

≥
d∑

i=1

(1− xi).

Hence we have the quotient

Pr(An|Ā1 · · · Ās) ≤
Pr(An)∏d

i=1(1− xi)
< xi.

The induction is finished. Finally,

Pr(Ā1 · · · Ān) =
n∏

i=1

Pr(Āi|Ā1 · · · Āi−1) ≥
n∏

i=1

(1− xi).

The proof of this lemma is finished.

Corollary 2 In the symmetric version of Lovász local lemma, the condition
4dp < 1 can be replaced by (d + 1)ep < 1.

Proof: We will apply Lemma 3. By symmetry, we choose all xi = x, for
some x. It is enough to show that for each event Ai, there is an x so that

Pr(Ai) ≤ x(1− x)d.

In another word, we need a sufficient condition that p = x(1−x)d has a positive
solution x < 1.

Note that f(x) = x(1 − x)d reaches the maximum at x = 1
d+1 . Since

f( 1
d+1 ) > 1

(d+1)e , p = f(x) has a solution if p ≤ 1
(d+1)e . �

4 Comparison of three methods

We will use Ramsey number R(3, n) to compare three methods —first moment
method, deletion method, and Lovász loca lemma.

First we use first moment method. Consider that a random graph G(N, p).
The bad structures are triangles and independent set of order n.

The expected number of triangles is(
N

3

)
p3.

The expected number of independent set of size n is(
N

n

)
(1− p)(

n
2).
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Thus R(3, n) > N , if (
N

3

)
p3 +

(
N

n

)
(1− p)(

n
2) < 1. (2)

Note that (
N

n

)
(1− p)(

n
2) <

Nn

n!
e−p(n

2) <

(
eN

nep(n−1)/2

)n

.

In this case, the first moment method does not give any substantially better
bound than the trivial bound n.

Deletion method: If the expected number of bad structures is less than N
2 ,

we can destroy all bad structures by deleting one vertex from each bad structure.
The remaining subgraph has at least N

2 vertices and has no bad structures. In
particular, R(3, n) > N/2 if(

N

3

)
p3 +

(
N

n

)
(1− p)(

n
2) <

N

2
. (3)

Choose N = n1.5

log1.5 n
and p = N−2/3 = ln n

n . We have(
N

3

)
p3 +

(
N

n

)
(1− p)(

n
2) <

N

6
+

Nn

n!
e−pn(n−1)/2

<
N

6
+ en(ln N−log n+1−p(n−1)/2)

<
N

6
+ en(− ln ln1.5 n+1+ln n/(2n))

<
N

2

Thus, R(3, n) ≥ n1.5

log1.5 n
.

Lovász local lemma: We consider the random graph G(N,P ). For any
3-set S, let AS be “S is a triangle”. For any n-set T , let BT be “T is an
independent set.” Then

Pr(AS) = p3

Pr(BT ) = (1− p)(
n
2) ≈ e−pn2/2.

Let S, S′ be adjacent in the dependency graph if they have a common edge; the
same for S, T or T, T ′. Each S is adjacent to 3(n − 3) ≈ 3n of other S′ and
to less than 3

(
N

n−2

)
of T . Each T is adjacent to

(
n
2

)
N < n2N/2 of S and to at

most
(
N
n

)
of other T ′. Lovász local lemma takes the following form:

If there exist p, x, y with

p3 < x(1− x)3N (1− y)3(
N

n−2)

e−pn2/2 < y(1− x)n2N/2(1− y)(
N
n),
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then R(3, n) > N .
Choose y = 1

(N
n)+1

to maximize y(1− y)
(
N
n

)
. We can simplify the system as

follows

p3 < (1 + o(1))x(1− x)3N (4)

e−pn2/2 < (1− x)n2N/2 1
e
(
N
n

) . (5)

Choose x = (1+ ε)p3 so that equation 4 is satisfied. Take logarithm of equation
5. We have

−pn2/2 < −(1 + ε)p3n2N/2− 1− n ln(eN/n).

Choose p = (2+2ε) ln n
n and N = 2εn2

(1+ε)4 ln2 n
. The above inequality is satisfied.

Choose ε = 1
3 to maximize N . We have

R(3, n) ≥ (
27
128

− o(1))
n2

ln2 n
.

The best lower bound is due to Kim:

R(3, n) ≥ c1
n2

lnn
.

It matches the best known upper bound up to a constant factor.
This lecture is partly based on [1] and [2] This note is only for your conve-

nience.
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