Math 776 Graph Theory, Spring 2006
 Lecture Note 2: Combinatorial probabilistic methods
 Week 3-Week 5

Lectured by Lincoln Lu

1 First moment method

Definition $1 A$ discrete probability space is a finite or countable set Ω together with nonnegative weights on the elements that sum to 1 . An event is a subset of A. The probability $P(A)$ of an event A is the sum of weights of the elements of A. Events A and B are independent if $P(A \cap B)=P(A) P(B)$.

A random variable is a function $X: \Omega \rightarrow \mathbb{R}$. The expected value of X is

$$
\mathrm{E}(X)=\sum_{a \in \Omega} X(a) w_{a}
$$

Here w_{a} is the weight of an element a in Ω.
Poropsition 1 If $X=\sum X_{i}$, then $\mathrm{E}(X)=\sum \mathrm{E}\left(X_{i}\right)$.
Let $R(s, t)$ denote the least number N such that if each edge of K_{N} is colored in either red or blue then there is a red clique K_{s} or a blue clique K_{t}.

Examples: $R(3,3)=6, R(3,4)=9, R(3,5)=14, R(4,4)=18, R(4,5)=9$ $43 \leq R(5,5) \leq 49$,

The following theorem is often referred as the the birth of combinatorial probabilistic methods.

Theorem 1 (Erdős, 1947)

$$
R(n, n)>\frac{1+o(1)}{e \sqrt{2}} n 2^{n / 2}
$$

Proof: Color edges of K_{N} in two colors randomly and independently. For any set $S \subset V\left(K_{N}\right)$ of order n, the probability that S forms a monochromatic clique is

$$
2^{1-\binom{n}{2}}
$$

Let X be the number of monochromatic cliques of order n. Then we have

$$
\begin{equation*}
\mathrm{E}(X)=\binom{N}{n} 2^{1-\binom{n}{2}} \tag{1}
\end{equation*}
$$

If $\mathrm{E}(X)<1$, then there exist some colorings with $X=0$. In another word, $R(n, n)>N$.

We will choose a maximum N so that $\mathrm{E}(X)<1$. Stirling formula gives an approximation to n !.

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Note that

$$
\begin{aligned}
\binom{N}{n} 2^{1-\binom{n}{2}} & <\frac{N^{n}}{n!} 2^{1-\binom{n}{2}} \\
& \approx \frac{2}{\sqrt{2 \pi n}}\left(\frac{N e}{n 2^{(n-1) / 2}}\right)^{n}
\end{aligned}
$$

Choose $N=\left\lfloor\frac{n}{e} 2^{(n-1) / 2}\right\rfloor$. Then, $\mathrm{E}(X)<1$.

Theorem 2

$$
R(s, t) \leq R(s-1, t)+R(s, t-1)
$$

Proof: Let $N=R(s-1, t)+R(s, t-1)$. For any edge-coloring of K_{N}, we pick any vertex v. A vertex u is called a red (or blue) neighbor of v if edge $u v$ is a red (or blue) edge.

Since the degree of v is $N-1$. By pigeonhole principle, v has either $R(s-1, t)$ red neighbors or $R(s, t-1)$ blue neighbors.

For the first case, we consider the induced subgraphs on the set $R(v)$ of v 's red neighbors. By the definition of $R(s-1, t), R(v)$ contains either a red $s-1$-clique or a blue t-clique. Any red $s-1$-clique together with v forms a red s-clique. The argument is similar for the second case. Thus, $R(s, t) \geq N$.

Corollary 1 For all $s, t \geq 2$,

$$
R(s, t) \leq\binom{ s+t-2}{s-1}
$$

Proof: We use induction on $s+t$. If $s=t=2, R(2,2)=2=\binom{2}{1}$.
If one of s, t is 2 , it is true since $R(s, 2)=\binom{s}{2}$ and $R(2, t)=\binom{t}{2}$. Now we assume $s, t \geq 3$. We have

$$
\begin{aligned}
R(s, t) & \leq R(s-1, t)+R(s, t-1) \quad \text { by Theorem } 2 \\
& \leq\binom{ s-1+t-2}{s-2}+\binom{s+t-1-2}{s-1} \quad \text { by inductive hypothesis } \\
& =\binom{s+t-2}{s-1}
\end{aligned}
$$

The inductive step is finished.
Lemma 1 (Markov's Inequality) If X takes only nonnegative values, then

$$
\operatorname{Pr}(X \geq t) \leq \frac{1}{t} \mathrm{E}(X)
$$

In particular, if X is integer-valued, then $\mathrm{E}(X) \rightarrow 0$ implies $\operatorname{Pr}(X=0) \rightarrow 1$.

Proof: We have

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{i} x_{i} \operatorname{Pr}\left(X=x_{i}\right) \\
& =\sum_{0 \leq x_{i}<t} x_{i} \operatorname{Pr}\left(X=x_{i}\right)+\sum_{x_{i} \geq t} x_{i} \operatorname{Pr}\left(X=x_{i}\right) \\
& \geq \sum_{x_{i} \geq t} x_{i} \operatorname{Pr}\left(X=x_{i}\right) \\
& \geq \sum_{x_{i} \geq t} t \operatorname{Pr}\left(X=x_{i}\right) \\
& =t \operatorname{Pr}(X \geq t) .
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}(X \geq t) \leq \frac{1}{t} \mathrm{E}(X)
$$

If X is integer-valued, we have

$$
\operatorname{Pr}(X=0)=1-\operatorname{Pr}(X \geq 1) \geq 1-\mathrm{E}(X) \rightarrow 1
$$

The proof of this lemma is finished.
Theorem 3 (Caro 1979, Wei 1981) For any simple graph G, the independent number satisfies

$$
\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{d_{G}(v)+1} .
$$

Proof: Number vertices of G from 1 to n in an arbitrary way. We get an directed graph D by orientating each edge from the smaller vertex to the larger vertex. Let S be the set of vertices whose indegree is 0 in D. Then S forms an independent set of G. For each $v, v \in S$ if v is smaller than its neighbors. The probability of $v \in S$ is exactly $\frac{1}{1+d_{v}}$. By linearity, we have

$$
\mathrm{E}(|S|)=\sum_{v} \operatorname{Pr}(v \in S)=\sum_{v} \frac{1}{1+d_{v}}
$$

In particular, there is an order of vertices so that the resulting set S is at least the expected value of $|S|$. Hence, $\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{d_{G}(v)+1}$.

2 Deletion method

A random graph is a collection of graphs together with a probability distribution over it. Here are two classical Erdő-Rényi models of random graphs:
A uniform random graph model $G_{n, m}$: Given n and $m=m(n)$, let each graph with vertex set $[n]$ and m edges occur with probability $\binom{N}{m}^{-1}$, where $N=\binom{n}{2}$.

A edge-independent random graph model $G(n, p)$: Given n and $p=$ $p(n)$, generate graph with vertex set $[n]$ by letting each pair be an edge with probability p.

Deletion Method: when a randomly generated object is close to having a desired property, a slight alternation may produce it.

Theorem 4 (Spencer)

$$
R(n, n) \geq \frac{1+o(1)}{e n} 2^{-n}
$$

Proof:

Color edges of K_{N} in two colors randomly and independently. For any set $S \subset V\left(K_{N}\right)$ of order n, the probability that S forms a monochromatic clique is

$$
2^{1-\binom{n}{2}}
$$

Let X be the number of monochromatic cliques of order n. Then we have

$$
\mathrm{E}(X)=\binom{N}{n} 2^{1-\binom{n}{2}}
$$

For any $\epsilon>0$, if $\mathrm{E}(X)<\epsilon N$, then there exist some colorings with $X<\epsilon N$. We can destroy all monochromatic cliques of order n by delete one vertex from each mono-chromatic clique. We delete at most ϵN vertices. In another word, $R(n, n)>(1-\epsilon) N$.

We will choose a maximum N so that $\mathrm{E}(X)<\epsilon N$. Choose $N=\lfloor(1-$ $\left.\epsilon) \frac{n}{e} 2^{n / 2}\right\rfloor$. We can show $\mathrm{E}(X)<\epsilon N$ is satisfied for n large enough. Because ϵ is arbitrary, we conclude that

$$
R(n, n) \geq(1-o(1)) \frac{n}{e} 2^{n / 2}
$$

The proof of this lemma is finished.
Theorem 5 (Erdős, 1959) Given $m \geq 3$ and $g \geq 3$, there exists a graph with girth at least g and chromatic number at least m.

Proof: Consider a random graph G on n vertices. For any pair of vertices, an edge is added with probability p independently. Here we choose $p=n^{t-1}$ with a positive constant $t<\frac{1}{g}$.

Let X_{i} be the number of cycles of length i and $X=\sum_{i=3}^{g-1} X_{i}$. We have

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{i=3}^{g-1} \mathrm{E}\left(X_{i}\right) \\
& =\sum_{i=3}^{g-1} P(n, i) p^{i} /(2 i)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i=3}^{g-1}(n p)^{i} /(2 i) \\
& =\sum_{i=3}^{g-1} n^{t i} /(2 i) \\
& =O\left(n^{t g}\right)
\end{aligned}
$$

Since $t g<1, \mathrm{E}(X)=o(n)$. For n sufficient large, we have $\mathrm{E}(X)<\frac{n}{4}$.
By Markov's inequality, we have

$$
\operatorname{Pr}(X \geq n / 2) \leq \frac{2}{n} \mathrm{E}(X) \leq \frac{1}{2}
$$

For the independent number of G, we have

$$
\operatorname{Pr}(\alpha(G) \geq r) \leq\binom{ n}{r}(1-p)^{\binom{n}{2}}<n^{r} e^{-p r(r-1) / 2}
$$

Choose $r=\left\lceil\frac{3}{p} \ln n\right\rceil$. We have $\operatorname{Pr}(X \geq n / 2) \rightarrow 0$ and $\operatorname{Pr}(\alpha(G) \geq r) \rightarrow 0$.
With positive probability, G has at most $\frac{n}{2}$ cycles with length at most $g-1$ and with independent number at most r. For each small cycle, delete one vertex from it. Let G^{\prime} be the remaining graph. Then we have

$$
\begin{aligned}
& n\left(G^{\prime}\right) \geq \frac{n}{2} \\
& \alpha\left(G^{\prime}\right) \leq r
\end{aligned}
$$

The graph G^{\prime} has girth at least g. We also have

$$
\chi\left(G^{\prime}\right) \geq \frac{n\left(G^{\prime}\right)}{\alpha\left(G^{\prime}\right)} \geq \frac{n^{t}}{3 \ln n}
$$

Since $\frac{n^{t}}{3 \ln n} \rightarrow \infty$, it is large than any given number m for n sufficient large.

3 Lovász local lemma

Definition 2 Given events A and B, the conditional probability of A given B is defined as

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A B)}{\operatorname{Pr}(B)}
$$

If A and B are independent then, $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$.

$$
\begin{gathered}
\operatorname{Pr}(A \mid B C)=\frac{\operatorname{Pr}(A B \mid C)}{\operatorname{Pr}(B \mid C)} \\
\operatorname{Pr}\left(A_{1} A_{2} \cdots A_{n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(A_{i} \mid A_{i+1} \cdots A_{n}\right)
\end{gathered}
$$

In the scenario of showing the existence of certain good event, Lovász local lemma is a very powerful tool. Here is the symmetric version.

Lemma 2 (Lovász local lemma) Let $A_{1}, A_{2}, \ldots, A_{n}$ be events satisfying

1. For $1 \leq i \leq n$, each event A_{i} is mutually independent of all but at most d ($d \geq 1$.) other events.
2. For $1 \leq i \leq n, \operatorname{Pr}\left(A_{i}\right) \leq p$.
3. $4 d p<1$.

Then

$$
\operatorname{Pr}\left(\cap_{i=1}^{n} \bar{A}_{i}\right)>0
$$

Proof: We show by induction on s that if $|S| \leq s$, then for any $i \notin S$

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in S} \bar{A}_{j}\right) \leq 2 p
$$

For $S=\emptyset$ this is true by assumption. Renumber for convenience so that $i=n$, $S=\{1, \ldots, s\}$ and A_{n} is mutually independent of events $\left\{A_{x}\right\}_{x \geq s}$. We have

$$
\operatorname{Pr}\left(A_{n} \mid \bar{A}_{1} \cdots \bar{A}_{s}\right)=\frac{\operatorname{Pr}\left(A_{n} \bar{A}_{1} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right)}{\operatorname{Pr}\left(\bar{A}_{1} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right)} .
$$

The numerator can be bounded as follows

$$
\begin{aligned}
\operatorname{Pr}\left(A_{n} \bar{A}_{1} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right) & \leq \operatorname{Pr}\left(A_{n} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right) \\
& \leq \operatorname{Pr}\left(A_{n}\right) \\
& \leq p
\end{aligned}
$$

We bound the denominator

$$
\begin{aligned}
\operatorname{Pr}\left(\bar{A}_{1} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right) & \geq 1-\sum_{i=1}^{d} \operatorname{Pr}\left(A_{i} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right) \\
& \geq 1-\sum_{i=1}^{d} 2 p \\
& =1-2 d p \\
& \geq \frac{1}{2} .
\end{aligned}
$$

Hence we have the quotient

$$
\operatorname{Pr}\left(A_{n} \mid \bar{A}_{1} \cdots \bar{A}_{s}\right) \leq 2 p
$$

The induction is finished. Finally,

$$
\operatorname{Pr}\left(\bar{A}_{1} \cdots \bar{A}_{n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(\bar{A}_{i} \mid \bar{A}_{1} \cdots \bar{A}_{i-1}\right) \geq \prod_{i=1}^{n}(1-2 p)>0 .
$$

The proof of this lemma is finished.

Theorem 6

$$
R(n, n) \geq \frac{\sqrt{2}+o(1)}{e n} 2^{-n}
$$

Proof:

Color edges of K_{N} in two colors randomly and independently. For any set $S \subset V\left(K_{N}\right)$ of order n, let A_{S} be the bad event that S forms a monochromatic clique.

$$
\operatorname{Pr}\left(A_{S}\right)=2^{1-\binom{n}{2}}
$$

A_{S} and A_{T} are independent if $|S \cap T| \leq 1$. Let $d=\sum_{k=2}^{n-1}\binom{n}{k}\binom{N-n-k}{n-k}<$ $\frac{\binom{n}{2} N^{n-2}}{(n-2)!}$. By Lovász local lemma, $R(n, n) \geq N$ if

$$
4 \frac{\binom{n}{2} N^{n-2}}{(n-2)!} 2^{1-\binom{n}{2}}<1
$$

We will choose a maximum N satisfying above equation. A similar estimation show $N=\left\lfloor(1-o(1)) \frac{\sqrt{2} n}{e} 2^{n / 2}\right\rfloor$. The proof of this lemma is finished.

Definition 3 A graph G on vertices $[n]$ is called a dependency graph for events A_{1}, \cdots, A_{n} if for all $i A_{i}$ is mutually independent of all A_{j} with $\{i, j\} \notin G$.

Lemma 3 (Lovász local lemma) (General case). Let A_{1}, \ldots, A_{n} be events with dependency graph G, Assume there exist $x_{1}, \ldots, x_{n} \in[0,1)$ with

$$
\operatorname{Pr}\left(A_{i}\right)<x_{i} \prod_{i j \in E(G)}\left(1-x_{j}\right)
$$

for all i. Then

$$
\operatorname{Pr}\left(\cap_{i=1}^{n} A_{i}\right)<\prod_{i=1}^{n}\left(1-x_{i}\right)>0
$$

Proof: We show by induction on s that if $|S| \leq s$, then for any $i \notin S$

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in S} \bar{A}_{j}\right) \leq x_{i}
$$

For $S=\emptyset, \operatorname{Pr}\left(A_{i}\right)<x_{i} \prod_{i j \in E(G)}\left(1-x_{j}\right)<x_{i}$.
Renumber for convenience so that $i=n, S=\{1, \ldots, s\}$ and among $x \in S$, $n x \in E(G)$ for $x=1,2, \ldots, d$. We have

$$
\operatorname{Pr}\left(A_{n} \mid \bar{A}_{1} \cdots \bar{A}_{s}\right)=\frac{\operatorname{Pr}\left(A_{n} \bar{A}_{1} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right)}{\operatorname{Pr}\left(\bar{A}_{1} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right)}
$$

The numerator can be bounded as follows

$$
\begin{aligned}
\operatorname{Pr}\left(A_{n} \bar{A}_{1} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right) & \leq \operatorname{Pr}\left(A_{n} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right) \\
& \leq \operatorname{Pr}\left(A_{n}\right)
\end{aligned}
$$

We bound the denominator

$$
\begin{aligned}
\operatorname{Pr}\left(\bar{A}_{1} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{s}\right) & \geq \prod_{i=1}^{d} \operatorname{Pr}\left(\bar{A}_{i} \mid \bar{A}_{i+1} \cdots \bar{A}_{s}\right) \\
& \geq \sum_{i=1}^{d}\left(1-x_{i}\right) .
\end{aligned}
$$

Hence we have the quotient

$$
\operatorname{Pr}\left(A_{n} \mid \bar{A}_{1} \cdots \bar{A}_{s}\right) \leq \frac{\operatorname{Pr}\left(A_{n}\right)}{\prod_{i=1}^{d}\left(1-x_{i}\right)}<x_{i}
$$

The induction is finished. Finally,

$$
\operatorname{Pr}\left(\bar{A}_{1} \cdots \bar{A}_{n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(\bar{A}_{i} \mid \bar{A}_{1} \cdots \bar{A}_{i-1}\right) \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

The proof of this lemma is finished.
Corollary 2 In the symmetric version of Lovász local lemma, the condition $4 d p<1$ can be replaced by $(d+1) e p<1$.

Proof: We will apply Lemma 3. By symmetry, we choose all $x_{i}=x$, for some x. It is enough to show that for each event A_{i}, there is an x so that

$$
\operatorname{Pr}\left(A_{i}\right) \leq x(1-x)^{d} .
$$

In another word, we need a sufficient condition that $p=x(1-x)^{d}$ has a positive solution $x<1$.

Note that $f(x)=x(1-x)^{d}$ reaches the maximum at $x=\frac{1}{d+1}$. Since $f\left(\frac{1}{d+1}\right)>\frac{1}{(d+1) e}, p=f(x)$ has a solution if $p \leq \frac{1}{(d+1) e}$.

4 Comparison of three methods

We will use Ramsey number $R(3, n)$ to compare three methods -first moment method, deletion method, and Lovász loca lemma.

First we use first moment method. Consider that a random graph $G(N, p)$. The bad structures are triangles and independent set of order n.

The expected number of triangles is

$$
\binom{N}{3} p^{3} .
$$

The expected number of independent set of size n is

$$
\binom{N}{n}(1-p)^{\binom{n}{2}}
$$

Thus $R(3, n)>N$, if

$$
\begin{equation*}
\binom{N}{3} p^{3}+\binom{N}{n}(1-p)^{\binom{n}{2}}<1 \tag{2}
\end{equation*}
$$

Note that

$$
\binom{N}{n}(1-p)^{\binom{n}{2}}<\frac{N^{n}}{n!} e^{-p\binom{n}{2}}<\left(\frac{e N}{n e^{p(n-1) / 2}}\right)^{n}
$$

In this case, the first moment method does not give any substantially better bound than the trivial bound n.

Deletion method: If the expected number of bad structures is less than $\frac{N}{2}$, we can destroy all bad structures by deleting one vertex from each bad structure. The remaining subgraph has at least $\frac{N}{2}$ vertices and has no bad structures. In particular, $R(3, n)>N / 2$ if

$$
\begin{equation*}
\binom{N}{3} p^{3}+\binom{N}{n}(1-p)^{\binom{n}{2}}<\frac{N}{2} . \tag{3}
\end{equation*}
$$

Choose $N=\frac{n^{1.5}}{\log ^{1.5} n}$ and $p=N^{-2 / 3}=\frac{\ln n}{n}$. We have

$$
\begin{aligned}
\binom{N}{3} p^{3}+\binom{N}{n}(1-p)^{\binom{n}{2}} & <\frac{N}{6}+\frac{N^{n}}{n!} e^{-p n(n-1) / 2} \\
& <\frac{N}{6}+e^{n(\ln N-\log n+1-p(n-1) / 2)} \\
& <\frac{N}{6}+e^{n\left(-\ln \ln ^{1.5} n+1+\ln n /(2 n)\right)} \\
& <\frac{N}{2}
\end{aligned}
$$

Thus, $R(3, n) \geq \frac{n^{1.5}}{\log ^{1.5} n}$.
Lovász local lemma: We consider the random graph $G(N, P)$. For any 3 -set S, let A_{S} be " S is a triangle". For any n-set T, let B_{T} be " T is an independent set." Then

$$
\begin{aligned}
\operatorname{Pr}\left(A_{S}\right) & =p^{3} \\
\operatorname{Pr}\left(B_{T}\right) & =(1-p)^{\binom{n}{2}} \approx e^{-p n^{2} / 2} .
\end{aligned}
$$

Let S, S^{\prime} be adjacent in the dependency graph if they have a common edge; the same for S, T or T, T^{\prime}. Each S is adjacent to $3(n-3) \approx 3 n$ of other S^{\prime} and to less than $3\binom{N}{n-2}$ of T. Each T is adjacent to $\binom{n}{2} N<n^{2} N / 2$ of S and to at $\operatorname{most}\binom{N}{n}$ of other T^{\prime}. Lovász local lemma takes the following form:

If there exist p, x, y with

$$
\begin{aligned}
p^{3} & <x(1-x)^{3 N}(1-y)^{3\binom{N}{n-2}} \\
e^{-p n^{2} / 2} & <y(1-x)^{n^{2} N / 2}(1-y)^{\binom{N}{n}},
\end{aligned}
$$

then $R(3, n)>N$.
Choose $y=\frac{1}{\binom{N}{n}+1}$ to maximize $y(1-y)\binom{N}{n}$. We can simplify the system as follows

$$
\begin{align*}
p^{3} & <(1+o(1)) x(1-x)^{3 N} \tag{4}\\
e^{-p n^{2} / 2} & <(1-x)^{n^{2} N / 2} \frac{1}{e\binom{N}{n}} . \tag{5}
\end{align*}
$$

Choose $x=(1+\epsilon) p^{3}$ so that equation 4 is satisfied. Take logarithm of equation 5. We have

$$
-p n^{2} / 2<-(1+\epsilon) p^{3} n^{2} N / 2-1-n \ln (e N / n)
$$

Choose $p=\frac{(2+2 \epsilon \ln n}{n}$ and $N=\frac{2 \epsilon n^{2}}{(1+\epsilon)^{4} \ln ^{2} n}$. The above inequality is satisfied. Choose $\epsilon=\frac{1}{3}$ to maximize N. We have

$$
R(3, n) \geq\left(\frac{27}{128}-o(1)\right) \frac{n^{2}}{\ln ^{2} n}
$$

The best lower bound is due to Kim:

$$
R(3, n) \geq c_{1} \frac{n^{2}}{\ln n}
$$

It matches the best known upper bound up to a constant factor.
This lecture is partly based on [1] and [2] This note is only for your convenience.

References

[1] D. B. West, Introduction to Graph Theory, second edition, Prentice-Hall, 2001.
[2] J. Spencer, Ten Lectures on the Probabilistic Method SIAM, Philadephia, 1987.

