
Math 777 Graph Theory, Spring, 2006
Lecture Note 1
Planar graphs

Week 1 — Weak 2

Lectured by Lincoln Lu

1 Planar graphs

Definition 1 A drawing of a graph G is a function f defined on V (G)∪E(G)
that assigns each vertex v a point f(v) in the plane and assigns each edge a u, v-
curve. A point in f(e) ∩ f(e′) that is not a common endpoints is a crossing.

Definition 2 A graph is planar if it has a drawing without crossings. Such
a drawing is a planar embedding of G. A plane graph is a particular planar
embedding of a planar graph.

A planar embedding of a graph cuts the plane into pieces. Each piece is
called a face of the plane graph.

Definition 3 The dual graph G∗ of a plane graph G is a plane graph whose
vertices correspond to the faces of G. The edge of G∗ correspond to the edges of
G as follows: if e is an edge of G with face X on one side and face Y on the
other side, then the endpoints of the dual edge e∗ ∈ E(G∗) are the vertices x, y
of G∗ that represent the faces X, Y of G.

Poropsition 1 If l(Fi) denotes the length of face Fi in a plane graph G, then∑
i l(Fi) = 2e(G).

Theorem 1 (Euler’s formula (1978)) If a connected plane graph G has ex-
actly n vertices, e edges, and f faces, then

n− e + f = 2.

Proof: We use induction on the number of edges in G.
If e(G) = n − 1 and G is connected, then G is a tree. We have f = 1,

e = n− 1. Thus n− e + f = 2 holds.
If e(G) ≥ n and G is connected, G contains a cycle C. Choose any edge e

on C. Let G′ = G− e. Then G′ is connected and e(G′) ≥ n− 1. By inductive
hypothesis, for G′, we have

n′ − e′ + f ′ = 2.

Here n′ = n, e′ = e− 1, and f ′ = f − 1. Thus

n− e + f = 2.
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Theorem 2 If G is a simple graph with at least three vertices, then e(G) ≤
3n(G)− 6. If G is also triangle-free, then e(G) ≤ 2n(G)− 4.

Proof: It suffices to consider connected graphs; otherwise we could add
edges. Delete any vertex with degree 1 if necessary.

Every face boundary in a simple graph contains at least three edges. Let {fi}
be the list of face lengths. Then 2e =

∑
i fi ≥ 3f . Hence f ≤ 2

3e. Substitute it
into Euler’s formula. We have

n− e +
2
3
e ≥ 2.

Thus, e ≤ 3n− 6.
When G is triangle-free, the faces have length at least 4. In this case 2e =∑
fi ≥ 4f , and we obtain e ≤ 2n− 4. �
Example 1: K5 is a non-planar graph since e = 10 > 9 = 3n− 6.
Example 2: K3,3 is a non-planar graph since e = 9 > 8 = 2n− 4.

Poropsition 2 If a graph G has subgraph that is a subdivision of K5 or K3,3,
then G is nonplanar.

Theorem 3 (Kuratowski, 1930) A graph is planar if and only if it does not
contain a subdivision of K5 or K3,3.

Definition 4 A Kuratowski subgraph of G is a subgraph of G that is a subdi-
vision of K5 or K3,3. A minimal nonplanar graph is a nonplanar graph such
that every proper subgraph is planar.

Theorem 4 (Tutte, 1960) If G is a 3-connected graph with no subdivision of
K5 or K3,3, then G has a convex embedding in the plane with no three vertices
on a line.

Proof: (Thomassen, 1980) We use induction on n(G).
Basic step: n(G) = 4. The only 3 connected graph is K4, which has such a

planar embedding.
Inductive step: n(G) ≥ 5. Let e be an edge such that G · e is 3-connnected.

G · e has no Kuratowski subgraph. By inductive hypothesis, G · e has a convex
embedding. Let z be the new vertex of G · e from edge xy. All faces contains
z form a shape of a wheel. Let C be the boundary cycle. Let x1, x2, . . . , xk be
the neighbors of x in a cyclic oder on C. If all neighbors of y lie in the portion
of C from xi to xi+1, then we obtain an embedding of G by putting x at z in
H and putting y at a point close to z in the wedge formed by xxi and xxi+1.

If this does not occur, then one of the following case happens.

Case 1: y shares three neighbors u, v, w with x. In this case, the cycle C
together with xy and edges from {x, y} to {u, v, w} form a subdivision of
K5.
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Case 2: y has neighbors u, v that alternate on C with neighbors xi, xi+1 of x.
In this case, we get a subdivision of K3,3.

Since G has no Kuratowski subgraph, the inductive step can always be car-
ried out. �.

Lemma 1 If G has no Kruatowski subgraph, then G · e has no Kuratowski
subgraph

Proof: We prove the contrapositive: If G · e contains a Kuratowski subgraph,
then so does G.

Let z be the vertex of G · e obtained by contracting e = xy. Let H be be
a Kuratowski subgraph in G · e. If z 6∈ V (H), then H ⊂ G. If z ∈ V (H) and
dH(z) = 2, then we obtain a Kuratowski subgraph of G form H by replacing z
with x or y or with the edge xy.

If dH(z) = 3, write NH(z) = A ∪ B, where the vertices in A are adjacent
to x while the vertices in B are adjacency to y. If one of |A| and |B| equals to
3, we obtain a Kuratowski subgraph of G form H by replacing z with x or y.
It suffices to consider the case |A| = 2 and |B| = 1. we obtain a Kuratowski
subgraph of G form H by replacing z with the edge xy.

If dH(z) = 4, then H is the subdivision of K5. Write dH(z) = A∪B, where
the vertices in A are adjacent to x while the vertices in B are adjacency to y.
If one of |A| or |B| is at least 3, then we obtain a subdivision of K5 from H
by replacing z with x or y or with the edge xy. If |A| = |B| = 2, we obtain a
subdivision of K3,3 instead. �

Lemma 2 (Thomassen, 1980) Every 3-connected graph G with at least five
vertices has an edge e such that G · e is 3-connected.

Proof: We use contradiction. Suppose G has no edge whose contraction yields
a 3-connected graph. For every edge xy, there is a mate z so that x, y, z is
separating set. Choose the edge xy and their mate z so that G − {x, y, z}
has a component H with the largest order. Let H ′ be another component of
G−{x, y, z}. Each x, y, z has a neighbor in each of H, H ′. Let u be a neighbor
of z in H ′, and let v be the mate of uz.

Since z, v is not a separating set of G, v can not be in H. Therefore
GV (H)∪{x,y} − v is contained in a component of G − {z, u, v} that has more
vertices than H, which contradicts the choice of x, y, z. �
Proof of Theorem 3: We first prove the theorem for all 2-connected graphs.
Let G be a 2-connected graphs containing no Kuratowski subgraph. We use
induction on n(G). It holds for any graphs with at most 4 vertices.

If G is 3-connected, then G has a convex planar drawing and we are done.
Thus, G has a 2-separator {x, y}. If xy 6∈ E(G), consider G+xy instead. Notice
that G+xy is 2-connected and contains no Kuratowski subgraph. Without loss
of generality, we can assume xy ∈ E(G).

A xy-lobe of G is a connected component of G−x−y together with edges to
x, y and edge xy itself. Suppose G has x, y-lobes G1, G2, . . . , Gr. By inductive
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hypothesis, each Gi admit a planar drawing. We can draw Gi so that xy is on
the boundary of the outer face and other vertices in a thin slice of any specified
xy-curve. The union of drawings of these Gi gives a planar drawing of G.

Now we prove the theorem for any connected graph G containing no Kura-
towski subgraph. We use induction on n(G). If G is 2-connected, we have done
already. Otherwise, there exists acut vertex of G (say v). Let G1, G2, . . . , Gr be
v-lobes of G. By inductive hypothesis, each Gi admits a planar drawing. We
can assume v is in the boundary of the outer face. Deforming the drawing of
Gi into areas bounded by thin angles of v. We get a planar drawing of G. �

Definition 5 A graph H is a minor of a graph G if a copy of H can be obtained
from G by deleting and/or contracting edges of G.

Here is another characterization of planar graphs.

Theorem 5 (Wagner 1937) A graph is planar if and only if neither K5 nor
K3,3 is a minor of G.

Definition 6 The surface Sγ of genus γ is obtained by adding γ handles to a
sphere.

We can consider the similar problem: “which graphs can be embedded on
Sγ without crossing?”

For γ = 0, Sγ is the sphere. The graph G embeddable on Sγ if and only if
G is planar.

For γ = 1, Sγ is the torus. Similarly, we can consider which graphs can be
embedded into a torus without crossings.

For example, K5, K3,3, K7 are embeddable on torus.
On any surface, embeddability is preserved by deleting or contracting an

edge. Thus, every surface has a list of “minor-minimal” obstructions to em-
beddability. Wagner’s theorem states that the list for the sphere is {K3,3,K5}.
Every nonplanar graph has one of these as a minor.

More than 800 minimal forbidden minors are known for the torus. For each
surface, the list is finite. It follows by the following deep theorem.

Theorem 6 (Robertson-Seymour 1985) In any infinite list of graphs, some
graph is a minor of another.

2 Four color theorem

History of Four Color Theorem:

• In 1878, Cayley announced the problem to London Mathematical Society.

• In 1879, Kempe published a “solution”.

• In 1890, Heawood proved the Five Color Theorem.
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• From 1976 to 1983, Appel, Haken, and Koch proved the Four Color The-
orem.

• In 1997, Robertson, Sanders, Seymour, and Thomas simplify the proof.

Theorem 7 (Heawood, 1890) Every planar graph is 5-colorable.

Proof: We use induction on n(G).
Initial step: n(G) ≤ 4. All graphs with at most 4 vertices are 5-colorable.
Inductive step: n(G) ≥ 5. Since e(G) ≤ 3n(G) − 6, there is a vertex v of

degree at most 5. By inductive hypothesis, G− v is 5-colorable. Let f :V (G−
v) → [5] be a proper 5-coloring of G − v. If deg(v) ≤ 4 or f uses only at most
4 colors for neighbors of v, then we can extend f to obtain a proper 5-coloring
of G.

Without loss of generality, we can assume v has 5 neighbors v1, v2, v3, v4, v5

in clockwise order around v and f(vi)’s are distinct. After renaming the colors,
we assume f(vi) = i, for i = 1, 2, 3, 4, 5. Let Gi,j denote the subgraph G − v
induced by the vertices of colors i and j. Switching the two colors on any
component of Gi,j yields another proper 5-coloring of G− v. If the component
of Gi,j containing vi does not contain vj , then we can switch the colors on it to
remove color i from N(v). Now giving v to color i yields a proper 5-coloring of
G. It suffices to show such Gi,j exists.

Otherwise, for each i, j, an alternative i, j-path connects vi and vj . Let P1,3

and P2,4 be such two paths. P1,3 and v forms a closed cycle, which cuts the
plane into two connected regions. Note that v2 and v4 in the different regions.
P2,4 and P1,3 must intersect at some vertex u because of the planarity. Then
f(u) ∈ {1, 3} ∩ {2, 4} = ∅. Contradiction. �

We state the well-known Four Color theorem as follows. The proof requires
substantial computing hours and is omitted in the class.

Theorem 8 (Appel, Haken, and Koch) Every planar graph is 4-colorable.

3 Crossing numbers

Definition 7 The crossing number ν(G) of a graph G is the minimum number
of crossings in a drawing of G in a plane.

Trivial fact: Let G be a n-vertex graph with m edges. If k is the maximum
number of edges in a planar subgraph of G, then ν(G) ≥ m− k.

In particular, if G is a simple graph with at least 3 vertices, then

ν(G) ≥ e(G)− 3n + 6.

If G is also triangle-free, then we have

ν(G) ≥ e(G)− 2n + 4.
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Theorem 9 Zarankiewicz(1954)

ν(Km,n) ≤ bm
2
cbm− 1

2
cbn

2
cbn− 1

2
c.

This bound is conjectured to be optimal by Guy.
Kleitman[1970] proved it for min{m,n} ≤ 6.

Theorem 10 (R. Guy,1972)

1
80

n4 + O(n3) ≤ ν(Kn) ≤ 1
64

n4 + O(n3).

Proof: The upper bound is obtained by a drawing of Kn on a can. It suffices
to define a drawing of K2k. (For odd n, draw Kn as a subgraph of Kn+1.) Place
k vertices on the top rim of the can and k vertices on the bottom rim, drawing
chords on the top and bottom for these k-cliques. The edges from top to bottom
are drawn to wind around the can as little as possible in the same direction.
We have

ν(Kn) ≤ 2
(

k

4

)
+ k

(
k

3

)
=

1
64

n4 + O(n3).

The lower bound uses Kleitman’s result that

ν(K6,n−6) = 6bn− 6
2

cbn− 7
2

c.

Since Kn contains
(
n
6

)
copies of K6,n−6 and each pairs of crossed edges can be

in at most 4
(
n−4

4

)
copies of K6,n−6. Thus,

ν(Kn) ≥
(
n
6

)
ν(K6,n−6)

4
(
n−4

4

)
=

(
n
6

)
6bn−6

2 cbn−7
2 c

4
(
n−4

4

)
=

1
80

n4 + O(n3).

Theorem 11 (Ajtai-Chvátal-Newborn-Szemeédi 1982, Leighto 1983)
Let G be a simple graph. If e(G) ≥ 4n(G), then

ν(G) ≥ 1
64

e(G)3

n(G)2
.

Proof: For a simple graph G with at least three vertices, we have

ν(G) ≥ e(G)− 3n(G) + 6.

For any simple graph G, we have

ν(G) ≥ e(G)− 3n(G).
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Consider a random induced subgraph Gp. A vertex of G is selected in Gp with
probability p independently. For Gp, we have

ν(Gp) ≥ e(Gp)− 3n(Gp).

By taking the expectation, we have

E(ν(Gp)) = p4ν(G)
E(e(Gp)) = p2e(G)
E(n(Gp) = pn(G)

We have
p4ν(G) ≥ p2e(G)− pn(G).

Choose p = 4n(G)
e(G) ≤ 1. We obtained

ν(G) ≥ 1
64

e(G)3

n(G)2
.

Remark: Choose p = 9n(G)
2e(G) . We conclude that ν(G) ≥ 4

243
e(G)3

n(G)2 for all simple
graph G with e(G) ≥ 4.5n(G). The best know bound is due to Pach and Tóth.

Theorem 12 (Pach, Tóth, 1997) Let G be a simple graph. If e(G) ≥ 7.5n(G),
then

ν(G) ≥ 1
33.75

e(G)3

n(G)2
.

Remark: They show that for any simple graph G with at least 3 vertices

ν(G) ≥ 5e(G)− 25v(G) + 50.

Lower bound: Consider G = sKr. We have n = sr, m = s
(
r
2

)
, and ν(G) ≤

s 1
64r4. Therefore, ν(G) ≤ 1

8
m3

n2 .

Theorem 13 (Szemerédi-Trotter theorem) Given m points and n lines in
the Euclidean plane, the number of incidences between them is at most

cm2/3n2/3 + m + n.

Proof: WLOG, we assume that every line and every point is involved in at
least one incidence, and that n ≥ m, by duality.

Theorem 14 (Spencer-Szemerédi-Trotter, 1984) There are at most 4n4/3

pairs of points at distance 1 among a set of n points in the plane.
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Proof by Székely, 1997 By moving points or pairs of points without re-
ducing the number of pairs at distance 1 among a set of n points in the plane.
We can assume that for each point there is at least two points from distance 1.

Let P be an optimal n-point configuration, with q unit distance pairs. We
define a graph G from P . The vertex set is the set of points. The edge set are
arcs partitioned by these points. G is a loopless graph with 2q edges. G may
have edge of multiplicity 2 but no larger multiplicity. We delete one copy of
each duplicated edge to obtain a simple graph G′ with at least q edges. We can
assume q ≥ 4n. Since every pairs of cycles cross at most twice. Thus,

2
(

n

2

)
≥ ν(G) ≥ q3

64n2
.

We have q ≤ 4n34. �
This lecture is based on the chapter 7 of our textbook [1]. This note is only

for your convenience.
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