Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 - Weak 2

Lectured by Lincoln Lu

1 Planar graphs

Definition $1 A$ drawing of a graph G is a function f defined on $V(G) \cup E(G)$ that assigns each vertex v a point $f(v)$ in the plane and assigns each edge a u, v curve. A point in $f(e) \cap f\left(e^{\prime}\right)$ that is not a common endpoints is a crossing.

Definition 2 A graph is planar if it has a drawing without crossings. Such a drawing is a planar embedding of G. A plane graph is a particular planar embedding of a planar graph.

A planar embedding of a graph cuts the plane into pieces. Each piece is called a face of the plane graph.

Definition 3 The dual graph G^{*} of a plane graph G is a plane graph whose vertices correspond to the faces of G. The edge of G^{*} correspond to the edges of G as follows: if e is an edge of G with face X on one side and face Y on the other side, then the endpoints of the dual edge $e^{*} \in E\left(G^{*}\right)$ are the vertices x, y of G^{*} that represent the faces X, Y of G.

Poropsition 1 If $l\left(F_{i}\right)$ denotes the length of face F_{i} in a plane graph G, then $\sum_{i} l\left(F_{i}\right)=2 e(G)$.

Theorem 1 (Euler's formula (1978)) If a connected plane graph G has exactly n vertices, e edges, and f faces, then

$$
n-e+f=2
$$

Proof: We use induction on the number of edges in G.
If $e(G)=n-1$ and G is connected, then G is a tree. We have $f=1$, $e=n-1$. Thus $n-e+f=2$ holds.

If $e(G) \geq n$ and G is connected, G contains a cycle C. Choose any edge e on C. Let $G^{\prime}=G-e$. Then G^{\prime} is connected and $e\left(G^{\prime}\right) \geq n-1$. By inductive hypothesis, for G^{\prime}, we have

$$
n^{\prime}-e^{\prime}+f^{\prime}=2
$$

Here $n^{\prime}=n, e^{\prime}=e-1$, and $f^{\prime}=f-1$. Thus

$$
n-e+f=2
$$

Theorem 2 If G is a simple graph with at least three vertices, then $e(G) \leq$ $3 n(G)-6$. If G is also triangle-free, then $e(G) \leq 2 n(G)-4$.

Proof: It suffices to consider connected graphs; otherwise we could add edges. Delete any vertex with degree 1 if necessary.

Every face boundary in a simple graph contains at least three edges. Let $\left\{f_{i}\right\}$ be the list of face lengths. Then $2 e=\sum_{i} f_{i} \geq 3 f$. Hence $f \leq \frac{2}{3} e$. Substitute it into Euler's formula. We have

$$
n-e+\frac{2}{3} e \geq 2
$$

Thus, $e \leq 3 n-6$.
When G is triangle-free, the faces have length at least 4. In this case $2 e=$ $\sum f_{i} \geq 4 f$, and we obtain $e \leq 2 n-4$.

Example 1: K_{5} is a non-planar graph since $e=10>9=3 n-6$.
Example 2: $K_{3,3}$ is a non-planar graph since $e=9>8=2 n-4$.
Poropsition 2 If a graph G has subgraph that is a subdivision of K_{5} or $K_{3,3}$, then G is nonplanar.

Theorem 3 (Kuratowski, 1930) A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Definition $4 A$ Kuratowski subgraph of G is a subgraph of G that is a subdivision of K_{5} or $K_{3,3}$. A minimal nonplanar graph is a nonplanar graph such that every proper subgraph is planar.

Theorem 4 (Tutte, 1960) If G is a 3-connected graph with no subdivision of K_{5} or $K_{3,3}$, then G has a convex embedding in the plane with no three vertices on a line.

Proof: (Thomassen, 1980) We use induction on $n(G)$.
Basic step: $n(G)=4$. The only 3 connected graph is K_{4}, which has such a planar embedding.

Inductive step: $n(G) \geq 5$. Let e be an edge such that $G \cdot e$ is 3-connnected. $G \cdot e$ has no Kuratowski subgraph. By inductive hypothesis, $G \cdot e$ has a convex embedding. Let z be the new vertex of $G \cdot e$ from edge $x y$. All faces contains z form a shape of a wheel. Let C be the boundary cycle. Let $x_{1}, x_{2}, \ldots, x_{k}$ be the neighbors of x in a cyclic oder on C. If all neighbors of y lie in the portion of C from x_{i} to x_{i+1}, then we obtain an embedding of G by putting x at z in H and putting y at a point close to z in the wedge formed by $x x_{i}$ and $x x_{i+1}$.

If this does not occur, then one of the following case happens.
Case 1: y shares three neighbors u, v, w with x. In this case, the cycle C together with $x y$ and edges from $\{x, y\}$ to $\{u, v, w\}$ form a subdivision of K_{5}.

Case 2: y has neighbors u, v that alternate on C with neighbors x_{i}, x_{i+1} of x. In this case, we get a subdivision of $K_{3,3}$.

Since G has no Kuratowski subgraph, the inductive step can always be carried out.

Lemma 1 If G has no Kruatowski subgraph, then $G \cdot e$ has no Kuratowski subgraph

Proof: We prove the contrapositive: If $G \cdot e$ contains a Kuratowski subgraph, then so does G.

Let z be the vertex of $G \cdot e$ obtained by contracting $e=x y$. Let H be be a Kuratowski subgraph in $G \cdot e$. If $z \notin V(H)$, then $H \subset G$. If $z \in V(H)$ and $d_{H}(z)=2$, then we obtain a Kuratowski subgraph of G form H by replacing z with x or y or with the edge $x y$.

If $d_{H}(z)=3$, write $N_{H}(z)=A \cup B$, where the vertices in A are adjacent to x while the vertices in B are adjacency to y. If one of $|A|$ and $|B|$ equals to 3, we obtain a Kuratowski subgraph of G form H by replacing z with x or y. It suffices to consider the case $|A|=2$ and $|B|=1$. we obtain a Kuratowski subgraph of G form H by replacing z with the edge $x y$.

If $d_{H}(z)=4$, then H is the subdivision of K_{5}. Write $d_{H}(z)=A \cup B$, where the vertices in A are adjacent to x while the vertices in B are adjacency to y. If one of $|A|$ or $|B|$ is at least 3 , then we obtain a subdivision of K_{5} from H by replacing z with x or y or with the edge $x y$. If $|A|=|B|=2$, we obtain a subdivision of $K_{3,3}$ instead.

Lemma 2 (Thomassen, 1980) Every 3-connected graph G with at least five vertices has an edge e such that $G \cdot e$ is 3 -connected.

Proof: We use contradiction. Suppose G has no edge whose contraction yields a 3 -connected graph. For every edge $x y$, there is a mate z so that x, y, z is separating set. Choose the edge $x y$ and their mate z so that $G-\{x, y, z\}$ has a component H with the largest order. Let H^{\prime} be another component of $G-\{x, y, z\}$. Each x, y, z has a neighbor in each of H, H^{\prime}. Let u be a neighbor of z in H^{\prime}, and let v be the mate of $u z$.

Since z, v is not a separating set of G, v can not be in H. Therefore $G_{V(H) \cup\{x, y\}}-v$ is contained in a component of $G-\{z, u, v\}$ that has more vertices than H, which contradicts the choice of x, y, z.
Proof of Theorem 3: We first prove the theorem for all 2-connected graphs. Let G be a 2 -connected graphs containing no Kuratowski subgraph. We use induction on $n(G)$. It holds for any graphs with at most 4 vertices.

If G is 3 -connected, then G has a convex planar drawing and we are done. Thus, G has a 2 -separator $\{x, y\}$. If $x y \notin E(G)$, consider $G+x y$ instead. Notice that $G+x y$ is 2 -connected and contains no Kuratowski subgraph. Without loss of generality, we can assume $x y \in E(G)$.

A $x y$-lobe of G is a connected component of $G-x-y$ together with edges to x, y and edge $x y$ itself. Suppose G has x, y-lobes $G_{1}, G_{2}, \ldots, G_{r}$. By inductive
hypothesis, each G_{i} admit a planar drawing. We can draw G_{i} so that $x y$ is on the boundary of the outer face and other vertices in a thin slice of any specified $x y$-curve. The union of drawings of these G_{i} gives a planar drawing of G.

Now we prove the theorem for any connected graph G containing no Kuratowski subgraph. We use induction on $n(G)$. If G is 2-connected, we have done already. Otherwise, there exists acut vertex of G (say v). Let $G_{1}, G_{2}, \ldots, G_{r}$ be v-lobes of G. By inductive hypothesis, each G_{i} admits a planar drawing. We can assume v is in the boundary of the outer face. Deforming the drawing of G_{i} into areas bounded by thin angles of v. We get a planar drawing of G.

Definition 5 A graph H is a minor of a graph G if a copy of H can be obtained from G by deleting and/or contracting edges of G.

Here is another characterization of planar graphs.
Theorem 5 (Wagner 1937) A graph is planar if and only if neither K_{5} nor $K_{3,3}$ is a minor of G.

Definition 6 The surface S_{γ} of genus γ is obtained by adding γ handles to a sphere.

We can consider the similar problem: "which graphs can be embedded on S_{γ} without crossing?"

For $\gamma=0, S_{\gamma}$ is the sphere. The graph G embeddable on S_{γ} if and only if G is planar.

For $\gamma=1, S_{\gamma}$ is the torus. Similarly, we can consider which graphs can be embedded into a torus without crossings.

For example, $K_{5}, K_{3,3}, K_{7}$ are embeddable on torus.
On any surface, embeddability is preserved by deleting or contracting an edge. Thus, every surface has a list of "minor-minimal" obstructions to embeddability. Wagner's theorem states that the list for the sphere is $\left\{K_{3,3}, K_{5}\right\}$. Every nonplanar graph has one of these as a minor.

More than 800 minimal forbidden minors are known for the torus. For each surface, the list is finite. It follows by the following deep theorem.

Theorem 6 (Robertson-Seymour 1985) In any infinite list of graphs, some graph is a minor of another.

2 Four color theorem

History of Four Color Theorem:

- In 1878, Cayley announced the problem to London Mathematical Society.
- In 1879 , Kempe published a "solution".
- In 1890, Heawood proved the Five Color Theorem.
- From 1976 to 1983, Appel, Haken, and Koch proved the Four Color Theorem.
- In 1997, Robertson, Sanders, Seymour, and Thomas simplify the proof.

Theorem 7 (Heawood, 1890) Every planar graph is 5-colorable.
Proof: We use induction on $n(G)$.
Initial step: $n(G) \leq 4$. All graphs with at most 4 vertices are 5 -colorable.
Inductive step: $n(G) \geq 5$. Since $e(G) \leq 3 n(G)-6$, there is a vertex v of degree at most 5 . By inductive hypothesis, $G-v$ is 5-colorable. Let $f: V(G-$ $v) \rightarrow[5]$ be a proper 5 -coloring of $G-v$. If $\operatorname{deg}(v) \leq 4$ or f uses only at most 4 colors for neighbors of v, then we can extend f to obtain a proper 5 -coloring of G.

Without loss of generality, we can assume v has 5 neighbors $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ in clockwise order around v and $f\left(v_{i}\right)$'s are distinct. After renaming the colors, we assume $f\left(v_{i}\right)=i$, for $i=1,2,3,4,5$. Let $G_{i, j}$ denote the subgraph $G-v$ induced by the vertices of colors i and j. Switching the two colors on any component of $G_{i, j}$ yields another proper 5 -coloring of $G-v$. If the component of $G_{i, j}$ containing v_{i} does not contain v_{j}, then we can switch the colors on it to remove color i from $N(v)$. Now giving v to color i yields a proper 5 -coloring of G. It suffices to show such $G_{i, j}$ exists.

Otherwise, for each i, j, an alternative i, j-path connects v_{i} and v_{j}. Let $P_{1,3}$ and $P_{2,4}$ be such two paths. $P_{1,3}$ and v forms a closed cycle, which cuts the plane into two connected regions. Note that v_{2} and v_{4} in the different regions. $P_{2,4}$ and $P_{1,3}$ must intersect at some vertex u because of the planarity. Then $f(u) \in\{1,3\} \cap\{2,4\}=\emptyset$. Contradiction.

We state the well-known Four Color theorem as follows. The proof requires substantial computing hours and is omitted in the class.

Theorem 8 (Appel, Haken, and Koch) Every planar graph is 4-colorable.

3 Crossing numbers

Definition 7 The crossing number $\nu(G)$ of a graph G is the minimum number of crossings in a drawing of G in a plane.

Trivial fact: Let G be a n-vertex graph with m edges. If k is the maximum number of edges in a planar subgraph of G, then $\nu(G) \geq m-k$.

In particular, if G is a simple graph with at least 3 vertices, then

$$
\nu(G) \geq e(G)-3 n+6
$$

If G is also triangle-free, then we have

$$
\nu(G) \geq e(G)-2 n+4
$$

Theorem 9 Zarankiewicz(1954)

$$
\nu\left(K_{m, n}\right) \leq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor .
$$

This bound is conjectured to be optimal by Guy.
Kleitman[1970] proved it for $\min \{m, n\} \leq 6$.

Theorem 10 (R. Guy,1972)

$$
\frac{1}{80} n^{4}+O\left(n^{3}\right) \leq \nu\left(K_{n}\right) \leq \frac{1}{64} n^{4}+O\left(n^{3}\right)
$$

Proof: The upper bound is obtained by a drawing of K_{n} on a can. It suffices to define a drawing of $K_{2 k}$. (For odd n, draw K_{n} as a subgraph of K_{n+1}.) Place k vertices on the top rim of the can and k vertices on the bottom rim, drawing chords on the top and bottom for these k-cliques. The edges from top to bottom are drawn to wind around the can as little as possible in the same direction. We have

$$
\nu\left(K_{n}\right) \leq 2\binom{k}{4}+k\binom{k}{3}=\frac{1}{64} n^{4}+O\left(n^{3}\right)
$$

The lower bound uses Kleitman's result that

$$
\nu\left(K_{6, n-6}\right)=6\left\lfloor\frac{n-6}{2}\right\rfloor\left\lfloor\frac{n-7}{2}\right\rfloor .
$$

Since K_{n} contains $\binom{n}{6}$ copies of $K_{6, n-6}$ and each pairs of crossed edges can be in at most $4\binom{n-4}{4}$ copies of $K_{6, n-6}$. Thus,

$$
\begin{aligned}
\nu\left(K_{n}\right) & \geq \frac{\binom{n}{6} \nu\left(K_{6, n-6}\right)}{4\binom{n-4}{4}} \\
& =\frac{\binom{n}{6} 6\left\lfloor\frac{n-6}{2}\right\rfloor\left\lfloor\frac{n-7}{2}\right\rfloor}{4\binom{n-4}{4}} \\
& =\frac{1}{80} n^{4}+O\left(n^{3}\right)
\end{aligned}
$$

Theorem 11 (Ajtai-Chvátal-Newborn-Szemeédi 1982, Leighto 1983) Let G be a simple graph. If $e(G) \geq 4 n(G)$, then

$$
\nu(G) \geq \frac{1}{64} \frac{e(G)^{3}}{n(G)^{2}}
$$

Proof: For a simple graph G with at least three vertices, we have

$$
\nu(G) \geq e(G)-3 n(G)+6
$$

For any simple graph G, we have

$$
\nu(G) \geq e(G)-3 n(G)
$$

Consider a random induced subgraph G_{p}. A vertex of G is selected in G_{p} with probability p independently. For G_{p}, we have

$$
\nu\left(G_{p}\right) \geq e\left(G_{p}\right)-3 n\left(G_{p}\right)
$$

By taking the expectation, we have

$$
\begin{aligned}
\mathrm{E}\left(\nu\left(G_{p}\right)\right) & =p^{4} \nu(G) \\
\mathrm{E}\left(e\left(G_{p}\right)\right) & =p^{2} e(G) \\
\mathrm{E}\left(n\left(G_{p}\right)\right. & =p n(G)
\end{aligned}
$$

We have

$$
p^{4} \nu(G) \geq p^{2} e(G)-p n(G) .
$$

Choose $p=\frac{4 n(G)}{e(G)} \leq 1$. We obtained

$$
\nu(G) \geq \frac{1}{64} \frac{e(G)^{3}}{n(G)^{2}} .
$$

Remark: Choose $p=\frac{9 n(G)}{2 e(G)}$. We conclude that $\nu(G) \geq \frac{4}{243} \frac{e(G)^{3}}{n(G)^{2}}$ for all simple graph G with $e(G) \geq 4.5 n(G)$. The best know bound is due to Pach and Tóth.

Theorem 12 (Pach, Tóth, 1997) Let G be a simple graph. If $e(G) \geq 7.5 n(G)$, then

$$
\nu(G) \geq \frac{1}{33.75} \frac{e(G)^{3}}{n(G)^{2}} .
$$

Remark: They show that for any simple graph G with at least 3 vertices

$$
\nu(G) \geq 5 e(G)-25 v(G)+50 .
$$

Lower bound: Consider $G=s K_{r}$. We have $n=s r, m=s\binom{r}{2}$, and $\nu(G) \leq$ $s \frac{1}{64} r^{4}$. Therefore, $\nu(G) \leq \frac{1}{8} \frac{m^{3}}{n^{2}}$.

Theorem 13 (Szemerédi-Trotter theorem) Given m points and n lines in the Euclidean plane, the number of incidences between them is at most

$$
\mathrm{cm}^{2 / 3} n^{2 / 3}+m+n .
$$

Proof: WLOG, we assume that every line and every point is involved in at least one incidence, and that $n \geq m$, by duality.

Theorem 14 (Spencer-Szemerédi-Trotter, 1984) There are at most $4 n^{4 / 3}$ pairs of points at distance 1 among a set of n points in the plane.

Proof by Székely, 1997 By moving points or pairs of points without reducing the number of pairs at distance 1 among a set of n points in the plane. We can assume that for each point there is at least two points from distance 1.

Let P be an optimal n-point configuration, with q unit distance pairs. We define a graph G from P. The vertex set is the set of points. The edge set are arcs partitioned by these points. G is a loopless graph with $2 q$ edges. G may have edge of multiplicity 2 but no larger multiplicity. We delete one copy of each duplicated edge to obtain a simple graph G^{\prime} with at least q edges. We can assume $q \geq 4 n$. Since every pairs of cycles cross at most twice. Thus,

$$
2\binom{n}{2} \geq \nu(G) \geq \frac{q^{3}}{64 n^{2}}
$$

We have $q \leq 4 n^{3} 4$.
This lecture is based on the chapter 7 of our textbook [1]. This note is only for your convenience.

References

[1] D. B. West, Introduction to Graph Theory, second edition, 2001.

