Math 777 Homework 3

Due: March 14, before lecture.

1. Use the first moment method (i.e. using the expected value) to show

$$
R(4, n) \geq c\left(\frac{n}{\log n}\right)^{3 / 2}
$$

for some positive constant c.
2. Use the deletion method to show

$$
R(4, n) \geq c\left(\frac{n}{\log n}\right)^{2}
$$

for some positive constant c.
3. Use Lovász local lemma to show

$$
R(4, n) \geq c\left(\frac{n}{\log n}\right)^{5 / 2}
$$

for some positive constant c.
4. Let ϵ be a small positive constant and $p=n^{\epsilon-1}$. Prove that almost surely the chromatic number of random graph $G(n, p)$ is at least

$$
(1-o(1)) \frac{n p}{2 \ln (n p)}
$$

5. Consider a random walk on the plane. At $t=0$, a chip is at the origin. Each time a chip can move one step in a random chosen direction independently. Prove that with probability $1-\frac{1}{n}$, the chip at time n is within the distance of $O(\sqrt{n \log n})$ from the origin.
