Solutions for selected problems from the end of chapters

Chapter 13, problem 5 Find the equations of the tangent line and the normal line at t = 0 for the curve:

$$x = 2t^3 - 4t + 7, \quad y = t + \ln(t+1).$$

Solution: We have

$$\frac{dx}{dt} = 6t^2 - 4, \quad \frac{dy}{dt} = 1 + \frac{1}{t+1}.$$

At t = 0, the normal vector is $\langle -4, 2 \rangle$. The point at t = 0 is (7, 0). The equation of the tangent line is

$$-4(x-7) + 2(y-0) = 0.$$

After simiplifying it, we have

$$2x - y - 14 = 0.$$

The normal line is given by

$$\frac{x-7}{-4} = \frac{y-0}{2}.$$

I.e.,

$$x + 2y - 7 = 0.$$

Chapter 13, problem 7 Find the lenght of the curve

$$x = \cos t + t \sin t$$
$$y = \sin t - t \cos t$$

from 0 to 2π .

Solution: We have

$$L = \int_{0}^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

= $\int_{0}^{2\pi} \sqrt{(t\cos t)^{2} + (t\sin t)^{2}} dt$
= $\int_{0}^{2\pi} t dt$
= $\frac{t^{2}}{2}|_{0}^{2\pi}$
 $2\pi^{2}.$

Chapter 13, problem 9 Let $\mathbf{a} = \langle 2, -5 \rangle$, $\mathbf{b} = \langle 1, 1 \rangle$, and $\mathbf{c} = \langle -6, 0 \rangle$. Find each of the following

(a) 3a - 2bSolution: We have

 $3\mathbf{a} - 2\mathbf{b} = \langle 4, -17 \rangle.$

 $\mathbf{a} \cdot \mathbf{b} = -3.$

- (b) a · bSolution: We have
- (c) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$ Solution: We have $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = -15.$
- (d) $(4\mathbf{a} + 5\mathbf{b}) \cdot 3\mathbf{c}$ Solution: We have

$$(4\mathbf{a} + 5\mathbf{b}) \cdot 3\mathbf{c} = -234.$$

- (e) $|\mathbf{c}| c \cdot 3\mathbf{b}$ Solution: We have $|\mathbf{c}| c \cdot 3\mathbf{b} = -36.$
- (f) $\mathbf{c} \cdot \mathbf{c} |\mathbf{c}|$ Solution: We have

$$\mathbf{c} \cdot \mathbf{c} - |\mathbf{c}| = 30.$$

Chapter 13, problem 17 Find $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$ for each of the following:

(a) $\mathbf{r}(t) = (\ln t)\mathbf{i} - 3t^2\mathbf{j}$ Solution: We have

$$\mathbf{r}'(t) = \frac{1}{t}\mathbf{i} - 6t\mathbf{j}$$

$$\mathbf{r}''(t) = -\frac{1}{t^2}\mathbf{i} - 6\mathbf{j}$$

(b) $\mathbf{r}(t) = \sin t\mathbf{i} + \cos 2t\mathbf{j}$ Solution: We have

$$\mathbf{r}'(t) = \cos t \mathbf{i} - 2\sin 2t \mathbf{j}$$

$$\mathbf{r}''(t) = -\sin t \mathbf{i} - 4\cos 2t \mathbf{j}$$

(c) $\mathbf{r}(t) = \tan t \mathbf{i} - t^4 \mathbf{j}$ Solution: We have

$$\mathbf{r}'(t) = \sec^2 t \mathbf{i} - 4t^3 \mathbf{j}$$

$$\mathbf{r}''(t) = 2\sec^2 t \tan t \mathbf{i} - 12t^2 \mathbf{j}$$

- Chapter 14, problem 4 Let $\mathbf{a} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$, $\mathbf{b} = -\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$, and $\mathbf{c} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$. Find each of the following:
 - (a) $\mathbf{a} \times \mathbf{b}$.

Solution: We have

$$\mathbf{a} \times \mathbf{b} = \left\langle \left| \begin{array}{c} -1 & 1 \\ 3 & 2 \end{array} \right|, - \left| \begin{array}{c} 2 & 1 \\ -1 & 2 \end{array} \right|, \left| \begin{array}{c} 2 & -1 \\ -1 & 3 \end{array} \right| \right\rangle$$
$$= \left\langle -5, -5, 5 \right\rangle$$

(b) $\mathbf{a} \times (\mathbf{b} + \mathbf{c})$. Solution: We have

$$\mathbf{b} + \mathbf{c} = \langle 0\mathbf{i} + 5\mathbf{j} + \mathbf{k} \rangle.$$

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \left\langle \left| \begin{array}{cc} -1 & 1 \\ 5 & 1 \end{array} \right|, - \left| \begin{array}{cc} 2 & 1 \\ 0 & 1 \end{array} \right|, \left| \begin{array}{cc} 2 & -1 \\ 0 & 5 \end{array} \right| \right\rangle$$
$$= \left\langle -6, -2, 10 \right\rangle$$

(c) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.

Solution: We have

$$\mathbf{b} \times \mathbf{c} = \left\langle \left| \begin{array}{cc} 3 & 2 \\ 2 & -1 \end{array} \right|, - \left| \begin{array}{cc} -1 & 2 \\ 1 & -1 \end{array} \right|, \left| \begin{array}{cc} -1 & 3 \\ 1 & 2 \end{array} \right| \right\rangle$$
$$= \left\langle -7, 1, -5 \right\rangle$$

Thus,

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 2 \cdot (-7) + (-1) \cdot 1 + 1 \cdot (-5) = -20.$$

(a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$. Solution: We have

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \left\langle \left| \begin{array}{cc} -1 & 1 \\ 1 & -5 \end{array} \right|, - \left| \begin{array}{cc} 2 & 1 \\ -7 & -5 \end{array} \right|, \left| \begin{array}{cc} 2 & -1 \\ -7 & 1 \end{array} \right| \right\rangle$ $= \left\langle 4, 3, -5 \right\rangle$

Chapter 14, Problem 9 Find the value of C if the plane x + 5y + Cz + 6 = 0 is perpendicular to the plane 4x - y + z - 17 = 0.

Solution: The dot product of two normal vectors are zero.

$$\langle 1, 5, C \rangle \cdot \langle 4, -1, 1 \rangle = 0$$

Solve for C, we have

$$C = 1.$$

Chapter 14, Problem 11 Find the parametric equations for the line throuth (-2, 1, 5) and (6, 2, -3).

Solution: Calculate the direction vector by taking the differene of two points:

$$\mathbf{v} = \langle 8, 1, -8 \rangle$$

Picking any point, together with the direction vector, we have

$$\begin{cases} x = 8t - 2\\ y = t + 1\\ z = -8t + 5. \end{cases}$$

Chapter 14, Problem 19 Find the length of the curve $\mathbf{r}'(t) = e^t \sin t \mathbf{i} + e^t \cos t \mathbf{j} + e^t \mathbf{k}, 1 \le t \le 5.$

Solution: We have

$$\begin{split} L &= \int_{1}^{5} \sqrt{(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2} + (\frac{dz}{dt})^{2}} dt \\ &= \int_{1}^{5} \sqrt{(e^{t}(\sin t + \cos t))^{2} + (e^{t}(\cos t - \sin t))^{2} + (e^{t})^{2}} dt \\ &= \int_{1}^{5} e^{t} \sqrt{3} dt \\ &= \sqrt{3} e^{t} |_{1}^{5} \\ &= \sqrt{3} (e^{5} - e). \end{split}$$

Chapter 14, Problem 21 If $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ is the position vector for a moving particle at time t, find the tangential and normal components, a_T and a_N , of the acceleration vector at t = 1.

Solution: We have

$$\mathbf{r}'(t) = \langle 1, 2t, 3t^2 \rangle.$$

$$\mathbf{r}''(t) = \langle 0, 2, 6t \rangle.$$

$$\mathbf{r}'(1) = \langle 1, 2, 3 \rangle.$$

$$\mathbf{r}''(1) = \langle 0, 2, 6 \rangle.$$

$$a_T = \frac{\mathbf{r}' \cdot \mathbf{r}''}{|\mathbf{r}'|}$$

$$= \frac{1 \cdot 0 + 2 \cdot 2 + 3 \cdot 6}{\sqrt{1^2 + 2^2 + 3^2}}$$

$$= \frac{22}{\sqrt{14}}.$$

$$a_N = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|}$$

$$= \frac{\left|\left\langle \left| \begin{array}{ccc} 2 & 3 \\ 2 & 6 \end{array} \right|, - \left| \begin{array}{ccc} 1 & 3 \\ 0 & 6 \end{array} \right|, \left| \begin{array}{ccc} 1 & 2 \\ 0 & 2 \end{array} \right| \right\rangle \right|}{\sqrt{1^2 + 2^2 + 3^2}} \\ = \frac{\left|\left\langle 6, -6, 2 \right\rangle\right|}{\sqrt{14}} \\ = \frac{\sqrt{6^2 + (-6)^2 + 2^2}}{\sqrt{14}} \\ = \frac{2\sqrt{19}}{\sqrt{14}}. \end{array}$$

Chapter 15, Problem 7 If $F(x, y) = 5x^3y^6 - xy^7$. find $\frac{\partial^3 F(x, y)}{\partial x \partial y^2}$. Solution: We have

$$F_x = 15x^2y^6 - y^7$$

$$F_{xy} = 90x^2y^5 - 7y^6$$

$$FF_{xyy} = 450x^2y^4 - 42y^5.$$

Chapter 15, Problem 11 Does $\lim_{(x,y)\to(0,0)} \frac{x-y}{x+y}$ exist? Explain.

Solution: The limit does NOT exist. Taking the limit along the line y = 0, we get 1. Taking the limit along the line x = 0, we get -1. They are not the same value.

Chapter 15, Problem 15 Find the slope of the tangent line to the curve of intersection of the vertical plane $x - \sqrt{3}y + 2\sqrt{3} - 1 = 0$ and the surface $z = x^2 + y^2$ at the point (1, 2, 5).

Solution: This is the same question asking the directional derivative $\nabla_{\mathbf{u}} f(1,2)$ along the unit vector of the direction $\langle 1, -\sqrt{3} \rangle$.

Since the length is 2, the unit vector is

$$\mathbf{u}=\langle \frac{1}{2},-\frac{\sqrt{3}}{2}\rangle$$

We have

$$\nabla f(1,2) = \langle 2x, 2y \rangle = \langle 2,4 \rangle.$$

Thus,

$$\nabla_{\mathbf{u}} f(1,2) = 2 \cdot \frac{1}{2} + 4 \cdot \left(-\frac{\sqrt{3}}{2}\right) = 1 - 2\sqrt{3}.$$

Remark: The answer in the book is wrong.

Chapter 15, Problem 23 Find the gradient vector of $F(x, y, z) = 9x^2 + 4y^2 + 9z^2 - 34$ at the point P(1, 2, -1). Write the equation of the tangent plane to the surface F(x, y, z) = 0 at the given point.

Solution: We have

$$\nabla F = \langle 18x, 8y, 18z \rangle$$

At the point P(1, 2, -1), we have

$$\nabla F(1, 2, -1) = \langle 18, 16, -18 \rangle$$

The equation of the tangent plane is

$$18(x-1) + 16(y-2) - 18(z+1) = 0.$$

Simiplify it.

$$9x + 8y - 9z - 34 = 0.$$

Chapter 15, Problem 25 If $f(x, y, z) = xy^2/(1 + z^2)$, use differentials to estimate f(1.01, 1.98, 2.03).

Solution: We will use the following linear approximation formula:

$$f(\mathbf{p} + \mathbf{h}) \approx f(\mathbf{p}) + \nabla(\mathbf{p}) \cdot \mathbf{h}$$

Here $\mathbf{p} = (1, 2, 2)$ and $\mathbf{h} = (0.01, -0.02, 0.03)$. We have

$$\begin{aligned} \nabla f(\mathbf{p}) &= \langle \frac{y^2}{1+z^2}, \frac{2xy}{1+z^2}, -\frac{2xy^2z}{(1+z^2)^2} \rangle(\mathbf{p}) \\ &= \langle \frac{2^2}{1+2^2}, \frac{2\cdot 1\cdot 2}{1+2^2}, -\frac{2\cdot 1\cdot 2^2\cdot 2}{(1+2^2)^2} \rangle \\ &= \langle \frac{4}{5}, \frac{4}{5}, -\frac{16}{25} \rangle. \end{aligned}$$

Thus, we have

$$\begin{aligned} f(\mathbf{p} + \mathbf{h}) &\approx f(\mathbf{p}) + \nabla(\mathbf{p}) \cdot \mathbf{h} \\ &= \frac{1 \cdot 2^2}{1 + 2^2} + \frac{4}{5} \cdot 0.01 + \frac{4}{5} \cdot (-0.02) + (-\frac{16}{25}) \cdot 0.03 \\ &= 0.7728 \end{aligned}$$

Chapter 15, Problem 27 A rectangular box whose edges are parallel to the coordinate axes in inscribed in the ellipsoid $36x^2 + 4y^2 + 9z^2 = 36$. What is the greatest possible volume for such a box?

Solution: Let (x, y, z) be the cornner of the rectangular box in the first octant. We have x, y, z > 0. The volume of the rectangular box is

$$V = 8xyz.$$

We will apply Langrange's method.

$$8yz = 72x\lambda \tag{1}$$

$$8xz = 8y\lambda \tag{2}$$

$$8xy = 18z\lambda \tag{3}$$

$$36x^2 + 4y^2 + 9z^2 = 36 \tag{4}$$

Take product of equation (1), (2), and (3). We have

$$xyz = \frac{81}{4}\lambda^3.$$

Together with equation (1), we can cancel yz. We get

$$x^2 = \frac{9}{4}\lambda^2.$$

Since x, y, z are positive, λ must be positive. We have

$$x = \frac{3}{2}\lambda.$$

Similarly, we have

$$y = \frac{9}{2}\lambda, \quad z = 3\lambda.$$

Substitute them into equation (4). We can solve for λ . We get $\lambda = \frac{2}{9}\sqrt{3}$. Therefore, we have

$$x = \frac{1}{3}\sqrt{3}, \quad y = \sqrt{3}, \quad z = \frac{2}{3}\sqrt{3}.$$

The maximum volume is

$$V = 8xyz = \frac{16}{3}\sqrt{3}.$$

Chapter 16, Problem 1 Evaluate the integral $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$. Solution:

$$\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx = \int_{0}^{1} \frac{1}{2} xy^{2} |_{y=x}^{y=\sqrt{x}} dx$$
$$= \int_{0}^{1} \frac{1}{2} (x^{2} - x^{3}) dx$$
$$= \frac{1}{6} x^{3} - \frac{1}{8} x^{4} |_{x=0}^{x=1}$$
$$= \frac{1}{6} - \frac{1}{8}$$
$$= \frac{1}{24}.$$

Chapter 16, Problem 5 Rewrite the iterated integral with the indicated order of integration. $\int_0^1 \int_x^1 f(x, y) dy dx; dx dy$

Solution: The iterated integrals can be written as a double integral over a triangle region:

$$\{(x, y) | x \le y \le 1, \text{ and } 0 \le x \le 1\}$$

The same triangle can be also described as

$$\{(x, y) | 0 \le x \le y, \text{ and } 0 \le y \le 1\}$$

Hence, we have

$$\int_0^1\int_x^1f(x,y)dydx=\int_0^1\int_0^yf(x,y)dxdy.$$

Chapter 16, Problem 7 Rewrite the iterated integral with the indicated order of integration. $\int_0^1 \int_0^{(1-x)/2} \int_0^{1-x-2y} f(x, yx, z) dz dy dx; dx dz dy$

Solution: The iterated integrals can be written as a triple integral over a tetrahedron:

$$\{(x, y, z) | 0 \le z \le 1 - x - 2y, 0 \le y \le (1 - x)/2, \text{ and } 0 \le x \le 1\}$$

The same tetrahedron can be also described as

$$\{(x, y) | x + 2y + z \le 1 \text{ and } x, y, z \ge 0\}$$

Hence, we have

$$\int_0^1 \int_0^{(1-x)/2} \int_0^{1-x-2y} f(x, yx, z) dz dy dx = \int_0^{\frac{1}{2}} \int_0^{1-2y} \int_0^{1-2y-z} f(x, yx, z) dx dz dy$$

Chapter 16, Problem 11 Evaluate $\iiint_S z^2 dV$, where S is the region bounded by $x^2 + z = 1$ and $y^2 + z = 1$ and the xy-plane.

Proof: We have

$$\begin{split} \iiint_{S} z^{2} dV &= \iint_{D} \int_{0}^{\min\{1-x^{2},1-y^{2}\}} z^{2} dz dA \\ &= \iint_{D} \frac{1}{3} (\min\{1-x^{2},1-y^{2}\})^{3} dA \\ &= 8 \iint_{D} \frac{1}{3} (1-x^{2})^{3} dA \\ &= 8 \iint_{0}^{1} \int_{0}^{x} \frac{1}{3} (1-x^{2})^{3} dy dx \\ &= 8 \iint_{0}^{1} \frac{1}{3} (1-x^{2})^{3} dy dx \\ &= -\frac{1}{3} (1-x^{2})^{4} |_{x=0}^{x=1} \\ &= \frac{1}{3}. \end{split}$$

Here D is the square $\{(x,y) : -1 \leq x, y \leq 1\}$, and T is the triangle $\{(x,y) : 0 \leq y \leq x, 0 \leq x \leq 1\}$. **Remark:** The answer in the book is wrong.

8

Chapter 16, Problem 13 Find the center of mass of the rectangular lemina bounded by x = 1, x = 3, y = 0 and y = 2 if the density is $\delta(x, y) = xy^2$. **Solution:** First we calculate the mass m, moments m_x and m_y . We have

 $m = \iint_{D} \delta(x, y) dA$ = $\int_{1}^{3} \int_{0}^{2} xy^{2} dy dx$ = $\int_{1}^{3} x \frac{y^{3}}{3} |_{y=0}^{y=2} dx$ = $\int_{1}^{3} x \frac{8}{3} dx$ = $\frac{4}{3} x^{2} |_{x=1}^{x=3}$ = $\frac{32}{3}$.

$$m_x = \iint_D x \delta(x, y) dA$$

= $\int_1^3 \int_0^2 x^2 y^2 dy dx$
= $\int_1^3 x^2 \frac{y^3}{3} \Big|_{y=0}^{y=2} dx$
= $\int_1^3 x^2 \frac{8}{3} dx$
= $\frac{8}{9} x^3 \Big|_{x=1}^{x=3}$
= $\frac{224}{9}.$

$$m_{y} = \iint_{D} y\delta(x, y)dA$$

= $\int_{1}^{3} \int_{0}^{2} xy^{3}dydx$
= $\int_{1}^{3} x\frac{y^{4}}{4}|_{y=0}^{y=2}dx$
= $\int_{1}^{3} 4xdx$
= $2x^{2}|_{x=1}^{x=3}$
= 16.

We have

$$\bar{x} = \frac{m_x}{m} = \frac{13}{6}.$$
$$\bar{y} = \frac{m_y}{m} = \frac{3}{2}.$$

The center of the mass is $(\frac{13}{6}, \frac{3}{2})$.

Chapter 17, Problem 2 Find div \mathbf{F} , curl \mathbf{F} , grad(div \mathbf{F}), and div(curl \mathbf{F}) if $\mathbf{F}(x, y, z) = 2xyz\mathbf{i} - 3y^2\mathbf{j} + 2y^2z\mathbf{k}$.

Solution: We have

$$div\mathbf{F} = 2yz - 6y + 2y^{2}$$
$$curl\mathbf{F} = \langle 4yz, 2xy, -2xz \rangle$$
$$grad(div\mathbf{F}) = \langle 0, 2z - 6 + 4y, 2y \rangle$$
$$div(curl\mathbf{F}) = 0 + 2x - 2x = 0$$

Chapter 17, Problem 5 Evaluate

(a) $\int_C (1-y^2) ds$; C is the quarter circle from (0,-1) to (1,0), centered at the origin.

Solution: C has the following parametric equation: $x = \cos t, y = \sin t, -\pi/2 \le t \le 0$. We have

$$\int_{C} (1 - y^{2}) ds = \int_{-\pi/2}^{0} (1 - \sin^{2} t) \sqrt{(-\sin t)^{2} + \cos^{t}} dt$$
$$= \int_{-\pi/2}^{0} \cos^{2} t dt$$
$$= \int_{-\pi/2}^{0} \frac{1}{2} (1 + \cos 2t) dt$$
$$= \frac{t}{2} + \frac{1}{4} \sin 2t |_{t=-\pi/2}^{t=0}$$
$$= \frac{\pi}{4}.$$

(b) $\int_C xydx + z\cos xdy + zdz$; C is the curve x = t, $y = \cos t$, $z = \sin t$, $0 \le t \le \pi/2$. Solution:

$$\int_C xydx + z\cos xdy + zdz = \int_0^{\pi/2} t\cos tdt + \sin t\cos td(\cos t) + \sin td(\sin t)$$
$$= \int_0^{\pi/2} t\cos t - \sin^2 t\cos t + \sin t\cos tdt$$

$$= (t\sin t + \cos t - \frac{1}{3}\sin^3 t - \frac{1}{4}\cos 2t)|_{t=0}^{t=\pi/2}$$
$$= (\frac{\pi}{2} - \frac{1}{3} + \frac{1}{4}) - (1 - \frac{1}{4})$$
$$= \frac{\pi}{2} - \frac{5}{6}.$$

Chapter 17, Problem 6 Show that $\int_C y^2 dx + 2xy dy$ is independent of path, and use this to claculate the integral on any path from (0,0) to (1,2).

Solution: It is enough to find f so that

$$\nabla f = \langle y^2, 2xy \rangle.$$

We choose $f = xy^2$. We have

$$\int_C y^2 dx + 2xy dy = f(1,2) - f(0,0) = 4.$$

Chapter 17, Problem 8 Evaluate

$$\int_{(0,0,0)}^{(1,1,4)} (yz - e^{-x})dx + (xz + e^y)dy + xydz.$$

Solution: Let $f(x, y, z) = xyz + e^{-x} + e^{y}$. Then we have

$$\nabla f = \langle yz - e^{-x}, xy + e^y, xy \rangle.$$

The line integral is independent of path. Therefore we have,

$$\int_{(0,0,0)}^{(1,1,4)} (yz - e^{-x})dx + (xz + e^y)dy + xydz = f(1,1,4) - f(0,0,0)$$

= $(4 + e^{-1} + e^1) - (0 + e^0 + e^0)$
= $2 + e^{-1} + e$.