On families of subsets with a forbidden subposet

Linyuan Lu

lu@math.sc.edu.

University of South Carolina

Joined work with Jerry Griggs

Poset

A poset is a set S together with a partial ordering \leq on it.

Reflexive

$$a \leq a$$

Anti-symmetric

$$a \leq b$$
 and $b \leq a$ implies $a = b$

Transitive

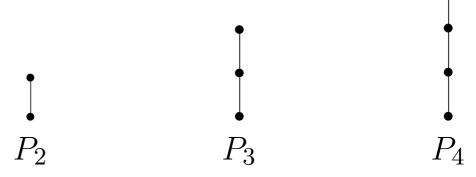
$$a \leq b$$
 and $b \leq c$ implies $a \leq c$

Posets and Hasse diagrams

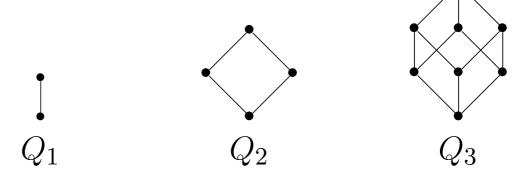
• Chains $P_n = ([n], \leq)$

Posets and Hasse diagrams

• Chains $P_n = ([n], \leq)$



■ Boolean lattice $Q_n = (2^{[n]}, \subseteq)$



Sperner's theorem

Theorem (Sperner 1928)

Let \mathcal{F} be a family of subsets of $[n] = \{1, 2, ..., n\}$. Suppose "For any $A, B \in \mathcal{F}$, neither $A \subset B$ nor $B \subset A$."

Then

$$|\mathcal{F}| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Sperner's theorem

Theorem (Sperner 1928)

Let \mathcal{F} be a family of subsets of $[n] = \{1, 2, ..., n\}$. Suppose "For any $A, B \in \mathcal{F}$, neither $A \subset B$ nor $B \subset A$."

Then

$$|\mathcal{F}| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

YBLM inequality:

Under the same condition, we have

$$\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \le 1.$$

Yamomoto Bollobas Lubell Meshalkin

Subposets

A poset (S, \preceq) contains a subposet (S', \preceq') if there exists an injection $f: S' \to S$ which preserves partial orderings.

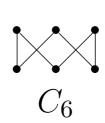
$$f(a') \leq f(b') \text{ if } a' \leq b'$$

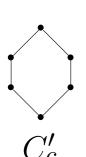
Subposets

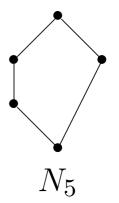
A poset (S, \preceq) contains a subposet (S', \preceq') if there exists an injection $f: S' \to S$ which preserves partial orderings.

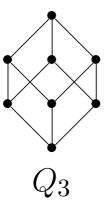
$$f(a') \leq f(b') \text{ if } a' \leq b'$$

Subposets of Q_3 :







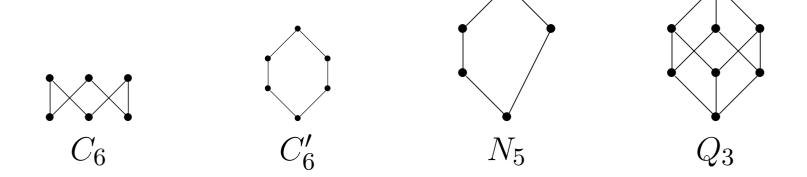


Subposets

A poset (S, \preceq) contains a subposet (S', \preceq') if there exists an injection $f: S' \to S$ which preserves partial orderings.

$$f(a') \leq f(b') \text{ if } a' \leq b'$$

Subposets of Q_3 :



We say (S, \preceq) is (S', \preceq') -free if no such injection f exists.

La(n, H)

For a fixed poset H, let La(n, H) denote the largest size of H-free family of subsets of [n].

La(n, H)

For a fixed poset H, let La(n, H) denote the largest size of H-free family of subsets of [n].

Sperner (1928):

$$\operatorname{La}(n, P_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

La(n, H)

For a fixed poset H, let La(n, H) denote the largest size of H-free family of subsets of [n].

Sperner (1928):

$$\operatorname{La}(n, P_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Erdős(1938):

$$\operatorname{La}(n, P_r) = \sum_{i=\lfloor \frac{n-r+1}{2} \rfloor}^{\lfloor \frac{n+r-1}{2} \rfloor} \binom{n}{i}$$
$$= (r-1+o_n(1)) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Trivial bounds of La(n, H)

• If $H' \subset H$, then

$$\operatorname{La}(n, H') \le \operatorname{La}(n, H).$$

Trivial bounds of La(n, H)

• If $H' \subset H$, then

$$\operatorname{La}(n, H') \le \operatorname{La}(n, H).$$

• Every poset H on [n] is a subposet of chain P_n .

Trivial bounds of La(n, H)

• If $H' \subset H$, then

$$\operatorname{La}(n, H') \le \operatorname{La}(n, H).$$

• Every poset H on [n] is a subposet of chain P_n .

$$d(H) - 1 - o_n(1) \le \frac{\operatorname{La}(n, H)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \le |H| - 1.$$

Here depth d(H) is the order of the longest chain in H.

Known results

• P_2 **Sperner** (1928):

$$\operatorname{La}(n, P_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Known results

• P_2 Sperner (1928):

$$\operatorname{La}(n, P_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

$$La(n, P_r) = (r - 1 + o_n(1)) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

Known results

• P_2 Sperner (1928):

$$\operatorname{La}(n, P_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

• P_r Erdős (1938):

$$La(n, P_r) = (r - 1 + o_n(1)) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

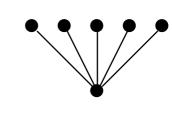
V₂ Tarján (1975)

$$La(n, V_2) = (1 + O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

Known asymptotic results

• V_r Thanh (1998)/De Bonis, Katona, (2006)

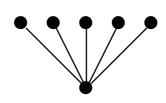
$$La(n, V_r) = (1 + O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor}$$



Known asymptotic results

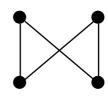
• V_r Thanh (1998)/De Bonis, Katona, (2006)

$$La(n, V_r) = (1 + O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor}$$



• C_4 De Bonis, Katona, Swapepoel, (2006)

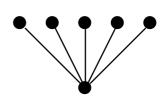
$$La(n, C_4) = (2 + O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor}$$



Known asymptotic results

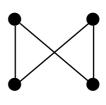
• V_r Thanh (1998)/De Bonis, Katona, (2006)

$$La(n, V_r) = (1 + O(\frac{1}{n})) {n \choose \lfloor \frac{n}{2} \rfloor}$$



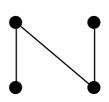
• C_4 De Bonis, Katona, Swapepoel, (2006)

$$La(n, C_4) = (2 + O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor}$$



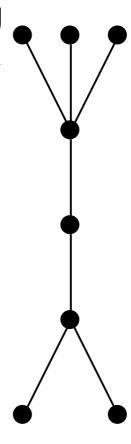
"N" Griggs, Katona (2006)

$$\operatorname{La}(n, \text{"N"}) = (1 + O(\frac{1}{n})) {n \choose \lfloor \frac{n}{2} \rfloor}$$



Result on $P_k(s,t)$

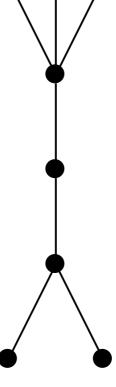
 $P_k(s,t)$: the "blow-up" of chain P_k by duplicating top element s-1 times and bottom element t-1 times.



Result on $P_k(s,t)$

 $P_k(s,t)$: the "blow-up" of chain P_k by duplicating top element s-1 times and bottom element t-1 times.

$$La(n, P_k(s, t)) = (k - 1 + O(\frac{1}{n})) {n \choose |\frac{n}{2}|}.$$



Result on $P_k(s,t)$

 $P_k(s,t)$: the "blow-up" of chain P_k by duplicating top element s-1 times and bottom element t-1 times.

$$La(n, P_k(s, t)) = (k - 1 + O(\frac{1}{n})) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

Remark: The hidden constant in O() is a function of s, t, and k.

Result on poset with depth 2

Theorem (Griggs, Lu 2007) For any poset H of depth 2,

$$(1 - O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor} \le \operatorname{La}(n, H) \le (2 + O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

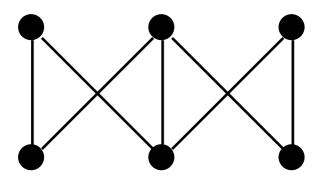
Result on poset with depth 2

Theorem (Griggs, Lu 2007) For any poset H of depth 2,

$$(1 - O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor} \le \operatorname{La}(n, H) \le (2 + O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

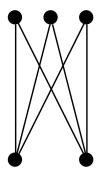
Moreover, if H contains the butterfly C_4 , then

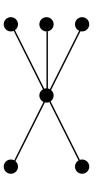
$$\operatorname{La}(n, H) = (2 + O(\frac{1}{n})) {n \choose \lfloor \frac{n}{2} \rfloor}.$$



Proof of the upper bound:

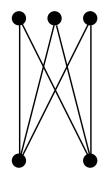
Since H has depth 2. Assume H has s elements in upper level and t elements in lower level. H is a subposet of $P_3(s,t)$.

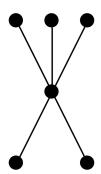




Proof of the upper bound:

Since H has depth 2. Assume H has s elements in upper level and t elements in lower level. H is a subposet of $P_3(s,t)$.





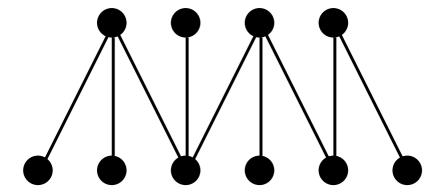
We have

$$\operatorname{La}(n, H) \le \operatorname{La}(n, P_3(s, t)) \le (2 + O(\frac{1}{n})) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

Result on up-down tree

T is an up-down tree if

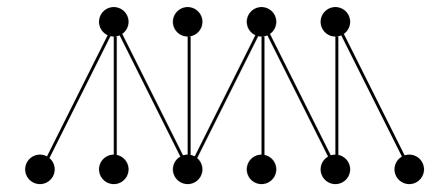
- ullet T is a poset of depth 2.
- ightharpoonup T is a tree as a graph.



Result on up-down tree

T is an up-down tree if

- ullet T is a poset of depth 2.
- ightharpoonup T is a tree as a graph.

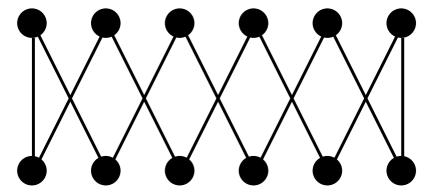


Theorem (Griggs, Lu 2007) For any up-down tree T,

$$\operatorname{La}(n,T) = (1 + O(\frac{1}{n})) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

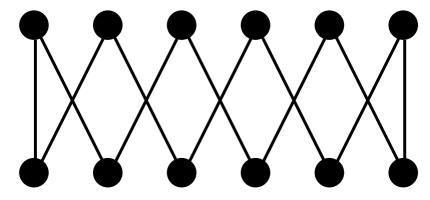
Result on cycles

Let C_{2k} be the poset of depth 2 on 2k elements which is also an even cycle as a graph.



Result on cycles

Let C_{2k} be the poset of depth 2 on 2k elements which is also an even cycle as a graph.



Theorem (Griggs, Lu 2007) For $k \geq 3$,

$$La(n, C_{4k}) = (1 + o_n(1)) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

Next...

We will prove a special case of our theorem here:

$$La(n, P_3(s, t)) \le \left(2 + \frac{C}{n} + O(n^{-3/2}\sqrt{\ln n})\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

where C = 6(s + t - 2).

A probabilistic lemma

Lemma: Let X be a random variable taking values of non-negative integers. For any integers k > r, if $\mathrm{E}(X) > k - 1$, then

$$\operatorname{E}\left(\frac{X}{k}\right) \ge \operatorname{E}\left(\frac{X}{r}\right) \frac{r!}{k!} \prod_{i=r}^{k-1} (\operatorname{E}(X) - i).$$

A probabilistic lemma

Lemma: Let X be a random variable taking values of non-negative integers. For any integers k > r, if $\mathrm{E}(X) > k - 1$, then

$$\operatorname{E}{\left(\frac{X}{k}\right)} \ge \operatorname{E}{\left(\frac{X}{r}\right)} \frac{r!}{k!} \prod_{i=r}^{k-1} (\operatorname{E}(X) - i).$$

Special case r = k - 1,

$$E\binom{X}{k} \ge E\binom{X}{k-1} \frac{1}{k} (E(X) - k + 1).$$

Random variable X

• σ is a (uniformly) random permutation in S_n .

- σ is a (uniformly) random permutation in S_n .
- C_{σ} is a random chain

$$\{\sigma_1\} \subset \{\sigma_1, \sigma_2\} \subset \cdots \subset \{\sigma_1, \sigma_2, \cdots, \sigma_n\}.$$

- σ is a (uniformly) random permutation in S_n .
- C_{σ} is a random chain

$$\{\sigma_1\} \subset \{\sigma_1, \sigma_2\} \subset \cdots \subset \{\sigma_1, \sigma_2, \cdots, \sigma_n\}.$$

- σ is a (uniformly) random permutation in S_n .
- C_{σ} is a random chain

$$\{\sigma_1\} \subset \{\sigma_1, \sigma_2\} \subset \cdots \subset \{\sigma_1, \sigma_2, \cdots, \sigma_n\}.$$

- σ is a (uniformly) random permutation in S_n .
- C_{σ} is a random chain

$$\{\sigma_1\} \subset \{\sigma_1, \sigma_2\} \subset \cdots \subset \{\sigma_1, \sigma_2, \cdots, \sigma_n\}.$$

- σ is a (uniformly) random permutation in S_n .
- C_{σ} is a random chain

$$\{\sigma_1\} \subset \{\sigma_1, \sigma_2\} \subset \cdots \subset \{\sigma_1, \sigma_2, \cdots, \sigma_n\}.$$

- σ is a (uniformly) random permutation in S_n .
- C_{σ} is a random chain

$$\{\sigma_1\} \subset \{\sigma_1, \sigma_2\} \subset \cdots \subset \{\sigma_1, \sigma_2, \cdots, \sigma_n\}.$$

A fact on binomial coefficients:

$$\sum_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{n}{i} = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$$

A fact on binomial coefficients:

$$\sum_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{n}{i} = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$$

• \mathcal{F} : any $P_3(s,t)$ -free family of subsets of [n].

A fact on binomial coefficients:

$$\sum_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{n}{i} = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$$

• \mathcal{F} : any $P_3(s,t)$ -free family of subsets of [n].

•
$$\mathcal{F}' = \mathcal{F} \setminus \cup_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{[n]}{i}$$
.

A fact on binomial coefficients:

$$\sum_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{n}{i} = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$$

- \mathcal{F} : any $P_3(s,t)$ -free family of subsets of [n].
- $\mathcal{F}' = \mathcal{F} \setminus \cup_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{[n]}{i}$.
- $|\mathcal{F}| |\mathcal{F}'| = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$

A fact on binomial coefficients:

$$\sum_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{n}{i} = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$$

- \mathcal{F} : any $P_3(s,t)$ -free family of subsets of [n].
- $\mathcal{F}' = \mathcal{F} \setminus \cup_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{[n]}{i}$.
- $|\mathcal{F}| |\mathcal{F}'| = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$
- Use \mathcal{F}' instead of \mathcal{F} .

A fact on binomial coefficients:

$$\sum_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{n}{i} = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$$

• \mathcal{F} : any $P_3(s,t)$ -free family of subsets of [n].

•
$$\mathcal{F}' = \mathcal{F} \setminus \cup_{|i-\frac{n}{2}|>2\sqrt{n\ln n}} \binom{[n]}{i}$$
.

$$|\mathcal{F}| - |\mathcal{F}'| = O\left(n^{-3/2} \binom{n}{\lfloor \frac{n}{2} \rfloor}\right).$$

• Use \mathcal{F}' instead of \mathcal{F} .

WLOG, we can assume \mathcal{F} only contains k-sets

with
$$k \in (\frac{n}{2} - 2\sqrt{n \ln n}, \frac{n}{2} + 2\sqrt{n \ln n})$$
.

An upper bound of $E\binom{X}{3}$

For any $B \in \mathcal{F}$, one of the followings must occur:

• At most s-1's A's satisfy $A \in \mathcal{F}$ and $A \subset B$.

$$\sum_{\substack{A \in \mathcal{F} \\ A \subset B}} \frac{1}{\binom{|B|}{|A|}} \le (s-1) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

• At most t-1's C's satisfy $C \in \mathcal{F}$ and $B \subset C$.

$$\sum_{\substack{C \in \mathcal{F} \\ B \subset C}} \frac{1}{\binom{n-|B|}{n-|C|}} \le (t-1) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

An upper bound of $E\binom{X}{3}$

For any $B \in \mathcal{F}$, one of the followings must occur:

• At most s-1's A's satisfy $A \in \mathcal{F}$ and $A \subset B$.

$$\sum_{\substack{A \in \mathcal{F} \\ A \subset B}} \frac{1}{\binom{|B|}{|A|}} \le (s-1) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

• At most t-1's C's satisfy $C \in \mathcal{F}$ and $B \subset C$.

$$\sum_{\substack{C \in \mathcal{F} \\ B \subset C}} \frac{1}{\binom{n-|B|}{n-|C|}} \le (t-1) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

$$E\binom{X}{3} \le E\binom{X}{2}(s+t-2)\frac{1}{\frac{n}{2}-2\sqrt{n\ln n}}.$$

An upper bound of $E\binom{X}{3}$

For any $B \in \mathcal{F}$, one of the followings must occur:

• At most s-1's A's satisfy $A \in \mathcal{F}$ and $A \subset B$.

$$\sum_{\substack{A \in \mathcal{F} \\ A \subset B}} \frac{1}{\binom{|B|}{|A|}} \le (s-1) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

• At most t-1's C's satisfy $C \in \mathcal{F}$ and $B \subset C$.

$$\sum_{\substack{C \in \mathcal{F} \\ B \subset C}} \frac{1}{\binom{n-|B|}{n-|C|}} \le (t-1) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

$$E\binom{X}{3} \le E\binom{X}{2}(s+t-2)\frac{1}{\frac{n}{2}-2\sqrt{n\ln n}}.$$

$$E\binom{X}{3} \le E\binom{X}{2}(s+t-2)\frac{1}{\frac{n}{2}-2\sqrt{n\ln n}}$$

$$E\binom{X}{3} \le E\binom{X}{2}(s+t-2)\frac{1}{\frac{n}{2}-2\sqrt{n\ln n}}$$

$$\mathrm{E}\binom{X}{3} \ge \frac{1}{3}\mathrm{E}\binom{X}{2}(\mathrm{E}(X) - 2)$$

$$E\binom{X}{3} \le E\binom{X}{2}(s+t-2)\frac{1}{\frac{n}{2}-2\sqrt{n\ln n}}$$

$$\mathrm{E}\binom{X}{3} \ge \frac{1}{3}\mathrm{E}\binom{X}{2}(\mathrm{E}(X) - 2)$$

$$(E(X) - 2) \le 3(s + t - 2) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

$$E\binom{X}{3} \le E\binom{X}{2}(s+t-2)\frac{1}{\frac{n}{2}-2\sqrt{n\ln n}}$$

$$\mathrm{E}\binom{X}{3} \ge \frac{1}{3}\mathrm{E}\binom{X}{2}(\mathrm{E}(X) - 2)$$

$$(E(X) - 2) \le 3(s + t - 2) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

$$E(X) \le 2 + \frac{6}{n}(s+t-2) + O\left(n^{-3/2}\sqrt{\ln n}\right).$$

$$E\binom{X}{3} \le E\binom{X}{2}(s+t-2)\frac{1}{\frac{n}{2}-2\sqrt{n\ln n}}$$

$$\mathrm{E}\binom{X}{3} \ge \frac{1}{3}\mathrm{E}\binom{X}{2}(\mathrm{E}(X) - 2)$$

$$(E(X) - 2) \le 3(s + t - 2) \frac{1}{\frac{n}{2} - 2\sqrt{n \ln n}}.$$

$$E(X) \le 2 + \frac{6}{n}(s+t-2) + O\left(n^{-3/2}\sqrt{\ln n}\right).$$

The proof is finished since $|\mathcal{F}| \leq \mathrm{E}(X) \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Let $\pi(H) = \lim_{n \to \infty} \frac{\operatorname{La}(n,H)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ if it exists.

For poset H of depth 2, we proved

$$1 \le \pi(H) \le 2.$$

$$\pi(H) = \begin{cases} 1 & \text{if } H \text{ is a tree;} \\ 2 & \text{if } H \text{ contains } C_4. \end{cases}$$

Let $\pi(H) = \lim_{n \to \infty} \frac{\operatorname{La}(n,H)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ if it exists.

For poset H of depth 2, we proved

$$1 \le \pi(H) \le 2.$$

$$\pi(H) = \begin{cases} 1 & \text{if } H \text{ is a tree;} \\ 2 & \text{if } H \text{ contains } C_4. \end{cases}$$

• Is there a poset H of depth 2 such that $1 < \pi(H) < 2$?

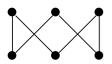
Let $\pi(H) = \lim_{n \to \infty} \frac{\operatorname{La}(n,H)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ if it exists.

For poset H of depth 2, we proved

$$1 \le \pi(H) \le 2.$$

$$\pi(H) = \begin{cases} 1 & \text{if } H \text{ is a tree;} \\ 2 & \text{if } H \text{ contains } C_4. \end{cases}$$

- Is there a poset H of depth 2 such that $1 < \pi(H) < 2$?
- Determine $\pi(C_6)$.



Let $\pi(H) = \lim_{n \to \infty} \frac{\operatorname{La}(n,H)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ if it exists.

For poset H of depth 2, we proved

$$1 \le \pi(H) \le 2.$$

$$\pi(H) = \begin{cases} 1 & \text{if } H \text{ is a tree;} \\ 2 & \text{if } H \text{ contains } C_4. \end{cases}$$

- Is there a poset H of depth 2 such that $1 < \pi(H) < 2$?
- Determine $\pi(C_6)$.
- Determine $\pi(Q_2)$.

