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Liben-Nowell and Kleinberg (PNAS 2008) studied
Internet chain-letter data.

A typical spanning tree often has relatively large diameter.
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A subgraph T is a spanning tree of a connected graph G if

■ V (T ) = V (G);
■ T is a tree.
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- G: a connected graph on n vertices.
- A: adjacency matrix of G.
- D: the diagonal matrix of degrees.

Kirchoff’s Matrix-Tree Theorem (1847):
The number of spanning trees in a graph G is the absolution
value of the determinant of any (n− 1)× (n− 1) sub-matrix
of D − A.
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- G: a connected graph on n vertices.
- A: adjacency matrix of G.
- D: the diagonal matrix of degrees.

Kirchoff’s Matrix-Tree Theorem (1847):
The number of spanning trees in a graph G is the absolution
value of the determinant of any (n− 1)× (n− 1) sub-matrix
of D − A.

Cayley’s Formula:
The number of spanning trees of Kn is nn−2.
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Rényi and Szekeres (1967): The diameter of a random
spanning tree in the complete graph Kn is of order

√
n.
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Rényi and Szekeres (1967): The diameter of a random
spanning tree in the complete graph Kn is of order

√
n.

Aldous (1990): Let diam(T ) be the diameter of a random
spanning tree in a regular graph with spectral bound σ. Then

c(1 − σ)
√

n

log n
≤ E(diam(T )) ≤ c

√
n√

1 − σ
log n.
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■ Laplacian: L = I − D−1/2AD−1/2

■ Laplacian spectrum:

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2.

■ Spectrum bound σ:

σ = max
1≤i≤n−1

{|λi − 1|}.

■ σ ≤ 1. “=” holds if and only if G is disconnected or
bipartite.
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What is the diameter of random

spanning trees of a given graph G?
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For a given graph G, let

- n: the number of vertices.
- di: the degree of i-th vertex.
- vol(G) =

∑n
i=1 di: the sum of degrees.

- d = vol(G)
n : the average degree.

- d̃ =
∑n

i=1 d2
i

∑n
i=1 di

: the second order average degree.

- δ: the minimum degree.
- σ: the spectral bound.
- diam(T ): the diameter of random spanning trees.
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For a given graph G, let

- n: the number of vertices.
- di: the degree of i-th vertex.
- vol(G) =

∑n
i=1 di: the sum of degrees.

- d = vol(G)
n : the average degree.

- d̃ =
∑n

i=1 d2
i

∑n
i=1 di

: the second order average degree.

- δ: the minimum degree.
- σ: the spectral bound.
- diam(T ): the diameter of random spanning trees.

We have
δ ≤ d ≤ d̃.
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Chung, Horn, Lu (2008)

If d ≫ log2 n

log2 σ
, then with probability 1 − ǫ, we have

(1 − ǫ)

√

ǫnd
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ǫ

√

nd

δ log(1/σ)
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Chung, Horn, Lu (2008)

If d ≫ log2 n

log2 σ
, then with probability 1 − ǫ, we have

(1 − ǫ)

√

ǫnd

d̃
≤ diam(T ) ≤ c

ǫ

√

nd

δ log(1/σ)
log n.

If d̃ ≤ Cδ, then

Ω(
√

n) ≤ E(diam(T )) ≤ O(
√

n log n).

Applying to d-regular graphs, our results improve Aldous’s
result by a log n-factor.
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■ Random walks

■ Groundskeeper algorithm

■ Proof for lower bound
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Random walks on a graph G:

P = D−1A,

βt+1 = βtP.
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Random walks on a graph G:

P = D−1A,

βt+1 = βtP.
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P ∼ D−1/2AD−1/2 = I − L.

The spectral bound σ measures the mixing rate of random
walks.
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∑n

i=1 βi = 1.
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β = (β1, . . . , βn) is a probability distribution if

- βi ≥ 0, for 1 ≤ i ≤ n.
-
∑n

i=1 βi = 1.

P maps probability distributions to probability distributions.

This mapping has a unique fixed point:

π =
1

vol(G)
(d1, d2, . . . , dn).

πP = π.



Mixing rate
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Lemma For any integer t > 0, any α ∈ R
n, and any two

probability distributions β and γ, we have

〈(β − γ)P t, αD−1〉 ≤ σt‖(β − γ)D−1/2)‖‖αD−1/2‖.

In particular,

‖(β − γ)P tD−1/2‖ ≤ σt‖(β − γ)D−1/2‖.
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Starting a random walk at any vertex. The first time a
vertex is visited through an edge f , we add the edge f to
our spanning tree. Once the graph is covered, the resulting
set of edges forms a spanning tree.
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Starting a random walk at any vertex. The first time a
vertex is visited through an edge f , we add the edge f to
our spanning tree. Once the graph is covered, the resulting
set of edges forms a spanning tree.

j j j j
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Φ: {random walks} → {random spanning trees}



Groundskeeper Algorithm

17 / 24

Aldous (1990), Broder (1989) The image of Φ is
uniformly distributed over all spanning trees. It is
independent of the choice of initial vertex v.
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Aldous (1990), Broder (1989) The image of Φ is
uniformly distributed over all spanning trees. It is
independent of the choice of initial vertex v.

We pick up a random initial vertex with stationary
distribution π.
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A random walk {vt} contains a circuit of length k if

vi+k = vi for some i.
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A random walk {vt} contains a circuit of length k if

vi+k = vi for some i.

We try to analyze the length from v0 to vt in a random
spanning tree. Here is the difficulty in analyzing this length.

■ Long circuits

■ Many short circuits
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Lemma. For a fixed integer g, the probability that
g-truncated random walks stop before time t is at most

t2d̃
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1 − σ
.
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We stop random walks when a circuit of length at least g is
formed.

Lemma. For a fixed integer g, the probability that
g-truncated random walks stop before time t is at most

t2d̃

2nd
+ t

σg

1 − σ
.

Let t = (1 − ǫ)
√

ǫd
d̃
n and g = ⌈

log

(

ǫ(1−σ)
√

δ

4t

√
d̃

)

log(σ) ⌉. The

g-truncated random walks will survive up to time t with
probability at least 1 − 3ǫ

4 .
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Consider g-truncated random walks. For i ≤ t, let

Xi =

{

1 vi 6= vj for all j < i
−k vi = vi−k for some k.

and X =
∑t

i=1 Xi.
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Consider g-truncated random walks. For i ≤ t, let

Xi =

{

1 vi 6= vj for all j < i
−k vi = vi−k for some k.

and X =
∑t

i=1 Xi.

Observation.

X ≤ dT (v0, vt) ≤ diam(T ).
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Let Fi be the σ-algebra that v0, . . . , vi is revealed.
{E(X | Fi)}0≤i≤t forms a martingale.
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{E(X | Fi)}0≤i≤t forms a martingale. We have

|E(Xj | Fi) − E(Xj | Fi−1)| ≤






0 if j < i;

2(g − 2)
√

nd√
δ
σj−g+2−i if j ≥ i + 2g + 2;

g − 1 otherwise.
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Let Fi be the σ-algebra that v0, . . . , vi is revealed.
{E(X | Fi)}0≤i≤t forms a martingale. We have

|E(Xj | Fi) − E(Xj | Fi−1)| ≤






0 if j < i;

2(g − 2)
√

nd√
δ
σj−g+2−i if j ≥ i + 2g + 2;

g − 1 otherwise.

Summing up, we have the following Lipschitz Condition:

|E(X | Fi) − E(X | Fi−1)| ≤ 3g2
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E(X) =
t
∑

i=1

E(Xi)

=
t
∑

i=1

n
∑

j=1

E(Xi | vi−1 = j)Pr(Vi−1 = j)

≥
t
∑

i=1

n
∑

j=1

(

(1 − g − 1

dj
) +

g−2
∑

k=1

−k

dj

)

dj

nd

= (1 − g(g − 1)

2d
)t.
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By applying Azuma’s inequality, we have

Pr(X − E(X) < −α) < e
− α2

18g4t
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By choosing α =
√

18g4t log 4
ǫ , we have
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(

X < (1 − g(g − 1)

2d
)t −

√

18g4t log
4

ǫ

)

<
ǫ

4
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By applying Azuma’s inequality, we have

Pr(X − E(X) < −α) < e
− α2

18g4t

By choosing α =
√

18g4t log 4
ǫ , we have

Pr

(

X < (1 − g(g − 1)

2d
)t −

√

18g4t log
4

ǫ

)

<
ǫ

4
.

Recall t = (1 − ǫ)
√

ǫd
d̃
n, we have

(1 − g(g − 1)

2d
)t −

√

18g4t log
4

ǫ
= (1 − ǫ − o(1))

√

ǫ
nd

d̃
.�
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Recall we prove

(1 − ǫ)

√

ǫnd

d̃
≤ diam(T ) ≤ c

ǫ

√

nd

δ log(1/σ)
log n.

Open questions:

■ In the upper bound, can we replace the minimum degree
δ by the average degree d?

■ Can we remove the multiplicative 1√
log(1/σ)

log n-factor?
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