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Liben-Nowell and Kleinberg (PNAS 2008) studied

Motivation

Internet chain-letter data.
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Although infarmation, news, and opinions continuously circulate
in the worldwide social netwaork, the actual mechanics of hoaw any
single piece of information spreads on a global scale have been a
mystery. Here, we trace such information-spreading processes at a
person-by-person level using methods to reconstruct the propa-
gatlon of masslvely clrculated Internet chaln letters. We find that
rather than fanning out widely, reaching many people In very few
steps according to “small-world” principles, the progress of these
chain letters proceeds in a narrow bul very deep tree-like pattern,
continuing for several hundred steps. This suggests a new and
more complex picture for the spread of information through a
social network. We describe a probabilistic model based on net-
work clustering and asynchronous response times that produces
trees with this characteristic structure on social-network data.

social networks | algorithms | epidemics | diffusion in networks

information transmission in the local dynamics of communi-
cation within highly clustered social networks.

Reconstructing the Spread of Internet Chain Letters

To reconstruct instances in which specific pieces of information
spread through large, globally distributed populations, we analyzed
the dissemination of petitions that circulated widely in chain-letter
form on the Internet over the past several years. The petitions
instruct each recipient w append his or her name Lo a copy of the
letter and then forward it (o friends. Each copy will thus conlain a
list of people, representing a particular sequence of forwardings of
the message; and hence different copies will contain different but
overlapping lists of people, reflecting the paths they followed to
their respective current recipients. This forwarding process is a
readily recognizable mechanism by which jokes and news clippings
can also achicve wide circulation through the global c-mail network;
the cxplicit lists of names in the pctition format, however, make it

4 /24



Liben-Nowell and Kleinberg (PNAS 2008) studied

Motivation

Internet chain-letter data.

<C
=0

A typical spanning tree often has relatively large diameter.
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- Spanning trees -

A subgraph 1" is a spanning tree of a connected graph G if
| V(T) — V(G),

m /' Is a tree.
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Enumerating spanning trees

- (: a connected graph on n vertices.
- A: adjacency matrix of G.
- D: the diagonal matrix of degrees.

Kirchoff’s Matrix-Tree Theorem (1847):
The number of spanning trees in a graph G is the absolution

value of the determinant of any (n — 1) x (n — 1) sub-matrix
of D — A.
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- Enumerating spanning trees '

- (: a connected graph on n vertices.
- A: adjacency matrix of G.
- D: the diagonal matrix of degrees.

Kirchoff’s Matrix-Tree Theorem (1847):
The number of spanning trees in a graph G is the absolution

value of the determinant of any (n — 1) x (n — 1) sub-matrix
of D — A.

Cayley’s Formula:
The number of spanning trees of K, is n" 2.
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- Diameter of Spanning trees '

Rényi and Szekeres (1967): The diameter of a random
spanning tree in the complete graph K, is of order \/n.
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- Diameter of Spanning trees '

Rényi and Szekeres (1967): The diameter of a random
spanning tree in the complete graph K, is of order \/n.

Aldous (1990): Let diam(T) be the diameter of a random
spanning tree in a regular graph with spectral bound o. Then

c(l1—o0)y/n | V4D
og 7 < E(diam(T)) < Vi

log n.

7/ 24



- Spectral bound o -

s Laplacian: L=1— D 1/24D"1/2
s Laplacian spectrum:

O= X< <<\ 1 <2

s Spectrum bound o:

o= max {|\; —1]}.

1<i<n—1

m o0 <1. "=" holds if and only if G is disconnected or
bipartite.
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- Main question -

What is the diameter of random
spanning trees of a given graph G
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- Notations

For a given graph G, let

- n: the number of vertices.
- d;: the degree of i-th vertex.

- vol(G) = >, d;: the sum of degrees.

- d= %(G): the average degree.
~ n 2
- d= %: the second order average degree.
=1 "1

- 0: the minimum degree.
- 0. the spectral bound.
- diam(T'): the diameter of random spanning trees.
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- Notations

For a given graph G, let

- n: the number of vertices.
- d;: the degree of i-th vertex.

- vol(G) = >, d;: the sum of degrees.
d — vol(G7)

n

o S
- d= %: the second order average degree.
=1 "1

. the average degree.

- 0: the minimum degree.
- 0. the spectral bound.
- diam(T'): the diameter of random spanning trees.

We have .
0 < d <d.
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- Main result '

Chung, Horn, Lu (2008)
If d>> 19 " then with probability 1 — ¢, we have

log? o

end c nd
1 — — < di T) < - 1 .
(1 —¢) < iam(T) < e\/510g(1/0) ogn
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- Main result '

Chung, Horn, Lu (2008)
If d>> 19 " then with probability 1 — ¢, we have

log? o

end c nd
1 — — < di T) < - 1 .
(1 —¢) < iam(T) < e\/510g(1/0) ogn

If d < C§, then
Q(v/n) < E(diam(T)) < O(yv/nlogn).

Applying to d-regular graphs, our results improve Aldous’s
;5;?_- ult by d 1Og n-factor.
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- Next...

s  Random walks
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- Next...

s  Random walks

s Groundskeeper algorithm

m Proof for lower bound
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- Random walks '

Random walks on a graph G- Q
I
P=D14 d,
Bry1 = B P.
\ >
(V)— O
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Random walks

Random walks on a graph G:

|~
S

P=D"'A d,

Bii1 = B P.
A .
OO
d,
Pr~D 24D V271 _ .

The spectral bound o0 measures the mixing rate of random
walks.
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- Stationary distribution 7 '

B =(B1,...,0,) is a probability distribution if
- 3,20, for1 <1 <n.

- Z?:l bi=1.
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- Stationary distribution 7 '

B=(06,...,0,) is a probability distribution if

- (i >0, for1 <i<n.

- Z?:1 ﬁz = 1.

P maps probability distributions to probability distributions.

This mapping has a unique fixed point:

1
T = VO](G) (dla d27 SR dn)

TP =mT.
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- Mixing rate '

Lemma For any integer ¢ > 0, any a € R", and any two
probability distributions (3 and v, we have

(B =P aD™") <a'||(B =)D V)| laD™ 2.
In particular,

|(6 =P D72 < o'[|(8 —~) D™,
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- Groundskeeper Algorithm -

Starting a random walk at any vertex. The first time a
vertex is visited through an edge f, we add the edge f to
our spanning tree. Once the graph is covered, the resulting
set of edges forms a spanning tree.
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- Groundskeeper Algorithm -

Starting a random walk at any vertex. The first time a
vertex is visited through an edge f, we add the edge f to
our spanning tree. Once the graph is covered, the resulting
set of edges forms a spanning tree.

®: {random walks} — {random spanning trees}

16 / 24



- Groundskeeper Algorithm -

Aldous (1990), Broder (1989) The image of ® is
uniformly distributed over all spanning trees. It is

independent of the choice of initial vertex v.
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- Groundskeeper Algorithm -

Aldous (1990), Broder (1989) The image of ® is

uniformly distributed over all spanning trees. It is
independent of the choice of initial vertex v.

We pick up a random initial vertex with stationary
distribution .

17 / 24



- Difficulty -

A random walk {v;} contains a circuit of length k if

Vit = v;  for some 1.
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- Difficulty '

A random walk {v;} contains a circuit of length k if

Vit = v;  for some 1.

We try to analyze the length from vy to v; in a random
spanning tree. Here is the difficulty in analyzing this length.

s Long circuits

= Many short circuits
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- g-truncated random walks '

We stop random walks when a circuit of length at least g is
formed.
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- g-truncated random walks '

We stop random walks when a circuit of length at least g is
formed.

Lemma. For a fixed integer g, the probability that
g-truncated random walks stop before time ¢ is at most

tzcz » o9
md  1—o

19 / 24



- g-truncated random walks '

We stop random walks when a circuit of length at least g is
formed.

Lemma. For a fixed integer g, the probability that
g-truncated random walks stop before time ¢ is at most

#2d » g’
ond  1—o0
log c(1=0)V§
Let t = (1 — e)\/e%n and g = | (log‘“f )} The

g-truncated random walks will survive up to time ¢ with

probability at least 1 — Z
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- Random variable X '

Consider g-truncated random walks. For 7 <, let

v 1 v #wv;forall 3 <i
! —k v, = v,_;. for some k.

and X =0 X;.
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- Random variable X

Consider g-truncated random walks. For 7 <, let

v 1 v #wv;forall 3 <i
! —k v, = v,_;. for some k.

and X =0 X;.

Observation.

X < dp(vg,v) < diam(T).
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- Exposed Martingale '

Let F, be the o-algebra that vy, ..., v; Is revealed.
{E(X | ;) }o<i<t forms a martingale.
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- Exposed Martingale

Let F, be the o-algebra that vy, ..., v; Is revealed.
{E(X | ;) }o<i<t forms a martingale. We have

E(X; | F) — EX; | Fia)] <
0 it 7 <1;
2(9—2)\/\;03 9+20if § > i 429 + 2;
g—1 otherwise.
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- Exposed Martingale '

Let F, be the o-algebra that vy, ..., v; Is revealed.
{E(X | ;) }o<i<t forms a martingale. We have

E(X; | Fi) — E(X; | Fio1)] <

0 it 7 <1;
2@—2)?& 9421 if i >4 29+ 2;
g—1 otherwise.

Summing up, we have the following Lipschitz Condition:

E(X | F) = B(X | Fi)| < 3¢°

21 / 24
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- Put together

By applying Azuma’s inequality, we have

o

Pr(X —E(X) < —a) < e 1"
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- Put together -

By applying Azuma’s inequality, we have

o

Pr(X —E(X) < —a) < e 1"

By choosing oo = \/189415 log 2, we have

glg — 1) \/ 4 €
Pr [ X 1 — — 1/ 18g*t log — —.
r( < ( ¥ )t 89tog€ <4

Recall t = (1 — ¢€), /e%n, we have
nd

(1— 9(92; Dy \/1894t10g% = (1 - e~ o(1))y/e-
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- Open questions '

Recall we prove

end C nd
1 — — < di T) < — | :
(1 =e)y/ =5 = diam( )6\/510g(1/0) et

Open questions:

s |n the upper bound, can we replace the minimum degree

0 by the average degree d?
1

V1og(1/0)

log n-factor?

s Can we remove the multiplicative

24 / 24
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