On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs

Lincoln Lu
lu@math.sc.edu.

University of South Carolina
Hypergraphs

Hypergraph H:

- $V(H)$: the set of vertices.
- $E(H)$: the set of edges.
Hypergraphs

Hypergraph H:
- $V(H)$: the set of vertices.
- $E(H)$: the set of edges.

H is r-uniform if $|F| = r$ for every edge F of H.
Property B

A hypergraph H has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.
Property B

A hypergraph H has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.

With Property B
Property B

A hypergraph H has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.

With Property B

Without Property B
History

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite hypergraph H has countable edges and each edge has infinite vertices. Then H has Property B.
History

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite hypergraph H has countable edges and each edge has infinite vertices. Then H has Property B.

Erdős (1963) asked:
“What is the minimum edge number $m_2(r)$ of a r-uniform hypergraph not having property B?”
Edge cardinality matters!

$m_2(1) = 1$:

[Diagram of a single vertex and edge]
Edge cardinality matters!

- $m_2(1) = 1$:

- $m_2(2) = 3$:

Edge cardinality matters!

- $m_2(1) = 1$:
 - ![Diagram for $m_2(1) = 1$]

- $m_2(2) = 3$:
 - ![Diagram for $m_2(2) = 3$]

- $m_2(3) = 7$:
 - ![Diagram for $m_2(3) = 7$]

Fano plane
Perhaps \(r2^r \) is the correct order of magnitude of \(m_2(r) \); it seems likely that

\[
\frac{m_2(r)}{2^r} \to \infty.
\]

A stronger conjecture would be: Let \(E_{k=1}^m \) be a 3-chromatic (not necessarily uniform) hypergraph. Let

\[
f(r) = \min \sum_{k=1}^m \frac{1}{2|E_k|},
\]

where the minimum is extended over all hypergraphs with \(\min |E_k| = r \). We conjecture that \(f(r) \to \infty \) as \(r \to \infty \).
Previous results

Erdős (1963)

\[2^{r-1} \leq m_2(r) \leq (1 + \epsilon) \frac{2 \ln 2}{4} r^2 2^r. \]
Previous results

- Erdős (1963)

\[2^{r-1} \leq m_2(r) \leq (1 + \epsilon) \frac{2 \ln 2}{4} r^2 2^r. \]

\[m_2(r) > r^{\frac{1}{3}-o(1)} 2^r. \]
Previous results

- Erdős (1963)
 \[2^{r-1} \leq m_2(r) \leq (1 + \epsilon) \frac{2 \ln 2}{4} r^2 2^r. \]

 \[m_2(r) > r^{\frac{1}{3} - o(1)} 2^r. \]

- Radhakrishnan and Srinivasan (2000)
 \[m_2(r) > (\frac{\sqrt{2}}{2} - o(1)) \frac{\sqrt{r}}{\sqrt{\ln r}} 2^r. \]
Non-uniform hypergraphs

Beck (1978) proved

\[f(r) \geq \frac{\log^*(r) - 100}{7}. \]
Non-uniform hypergraphs

Beck (1978) proved

\[f(r) \geq \frac{\log^*(r) - 100}{7}. \]

The function \(\log^*(x) \) grows very slowly since it is the inverse function of

\[n \rightarrow 2^2^\cdot^2 \cdot^\ldots^\cdot^2 \]
Our result

Theorem (Lu) For any $\epsilon > 0$, there is an $r_0 = r_0(\epsilon)$, for all $r > r_0$, we have

$$f(r) \geq \left(\frac{1}{16} - \epsilon \right) \frac{\ln r}{\ln \ln r}.$$
Our result

Theorem (Lu) For any $\epsilon > 0$, there is an $r_0 = r_0(\epsilon)$, for all $r > r_0$, we have

$$f(r) \geq \left(\frac{1}{16} - \epsilon \right) \frac{\ln r}{\ln \ln r}.$$

An obvious upper bound:

$$f(r) \leq \frac{m_2(r)}{2r} \leq (1 + \epsilon) \frac{2 \ln 2}{4} r^2.$$
Recoloring method

Theorem (Beck 1978) Any r-hypergraph H with at most $r^{1/3-o(1)}2^r$ edges has Property B.
Recoloring method

Theorem (Beck 1978) Any \(r \)-hypergraph \(H \) with at most \(r^{1/3-o(1)} 2^r \) edges has Property B.

Spencer’s Proof:

- Randomly and independently color each vertex red and blue with probability \(\frac{1}{2} \).
- With small probability \(p \), independently flip the color of vertices lying in monochromatic edges.
Type I: a red edge survives.

Let $h = |E(H)|2^{-r}$ be the expected number of red edges.

The probability of this event is

$$|E(H)|2^{-r}(1 - p)^r \leq he^{-rp}.$$
Type II: a blue edge is created.

\[
\sum_{i \geq 1} \sum_{|F \cap F'| = i} 2^{-2r+i} \sum_{s \geq 0} \left(\begin{array}{c} r - i \\ s \end{array} \right) p^{i+s} \\
= 2^{-2r} \sum_{i \geq 1} (2p)^i \sum_{|F \cap F'| = i} (1 + p)^{r-i} \\
\leq 2^{-2r} (1 + p)^r \frac{2p}{1 + p} |E(H)|^2 \\
\leq 2ph^2 e^{pr}.
\]
Put together

H has Property B if

$$2he^{-rp} + 4ph^2e^{pr} < 1.$$

Choose $h = r^{(1-\epsilon)/3}$ and $p = \frac{(1+\epsilon)\ln h}{r}$. Done!
The difficulty

A critical case:

- S is red while $F' \setminus S$ is blue.
The difficulty

A critical case:

- S is red while $F' \setminus S$ is blue.
- For any $v \in S$, there exists an red edge F containing v.
The difficulty

A critical case:

- S is red while $F' \setminus S$ is blue.
- For any $v \in S$, there exists an red edge F containing v.
- The size of F' is unbounded.
A critical case:

- S is red while $F' \setminus S$ is blue.
- For any $v \in S$, there exists an red edge F containing v.
- The size of F' is unbounded.
- There are too many choices of S.
Our approach

- Extending hypergraphs to “twin-hypergraphs”.
Our approach

- Extending hypergraphs to “twin-hypergraphs”.
- Simplifying “twin-hypergraph” into an irreducible core.
Our approach

- Extending hypergraphs to “twin-hypergraphs”.
- Simplifying “twin-hypergraph” into an irreducible core.
- Recoloring vertices in large edges first.
A twin-hypergraph is a pair of hypergraphs \((H_1, H_2)\) with the same vertex set \(V(H_1) = V(H_2)\).
Twin-hypergraphs

A *twin-hypergraph* is a pair of hypergraphs $\langle H_1, H_2 \rangle$ with the same vertex set $V(H_1) = V(H_2)$. The twin-hypergraph $\langle H_1, H_2 \rangle$ is said to have *Property B* if there exists a red-blue vertex-coloring satisfying

- H_1 has no red edge.
- H_2 has no blue edge.
Theorem (Lu) Suppose a twin-hypergraph $H = (H_1, H_2)$ with minimum edge-cardinality r satisfies

$$\sum_{F \in E(H_i)} \frac{1}{2|F|} \leq \left(\frac{1}{16} - o(1)\right) \frac{\ln r}{\ln \ln r}$$

for $i = 1, 2$. Then H has property B.

Irreducibility

A twin-hypergraph \(H = (H_1, H_2) \) is called \textit{irreducible} if

1. \(\forall F_1 \in E(H_1) \text{ and } v \in F_1, \exists F_2 \in E(H_2) \text{ such that } F_1 \cap F_2 = \{v\} \).

2. \(\forall F_2 \in E(H_2) \text{ and } v \in F_2, \exists F_1 \in E(H_1) \text{ such that } F_1 \cap F_2 = \{v\} \).
A twin-hypergraph $H = (H_1, H_2)$ is called *reducible* if there is an evidence (F, v) satisfying

1. $v \in F$, and $F \in E(H_i)$ for $i = 1$ or 2.
2. $\forall F' \in E(H_{3-i})$, if $v \in F'$ then $|F \cap F'| \geq 2$.

![Diagram of a twin-hypergraph showing reducibility conditions](image)
Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Repeatedly removing F from H until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}.$$

$H^{(s)}$ is called the irreducible core.
Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Repeatedly removing F from H until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}.$$

$H^{(s)}$ is called the irreducible core.
Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Repeatedly removing F from H until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}.$$

$H^{(s)}$ is called the irreducible core.
Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Repeatedly removing F from H until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}.$$

$H^{(s)}$ is called the irreducible core.
Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Repeatedly removing F from H until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}.$$

$H^{(s)}$ is called the irreducible core.
Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, ν). Repeatedly removing F from H until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}.$$

$H^{(s)}$ is called the irreducible core.
Lemma 3 A twin-hypergraph H has Property B if and only if its irreducible core has Property B.
Lemma on irreducible core

Lemma 3 A twin-hypergraph H has Property B if and only if its irreducible core has Property B.

Proof: It suffices to add a removed edge F back.

- If F is not monochromatic, do nothing.
- Otherwise, flip the color of v. For any F' containing v, F' contains another vertex of F. Thus, F' is not monochromatic.
Randomized algorithm

- Randomly color each vertex red or blue with probability \(\frac{1}{2} \).
Randomized algorithm

- Randomly color each vertex red or blue with probability $\frac{1}{2}$.

- An edge F has rank i if $r2^{i-1} \leq |F| < r2^i$. For each v lying in edges of rank i, flip the color of v with probability $\frac{q}{r2^{i-1}}$ independently.
Randomized algorithm

- Randomly color each vertex red or blue with probability $\frac{1}{2}$.

- An edge F has rank i if $r 2^{i-1} \leq |F| < r 2^i$. For each v lying in edges of rank i, flip the color of v with probability $\frac{q}{r 2^{i-1}}$ independently.

- Red edges with higher rank are destroyed first.
Randomized algorithm

- Randomly color each vertex red or blue with probability \(\frac{1}{2} \).

- An edge \(F \) has rank \(i \) if \(r2^{i-1} \leq |F| < r2^i \). For each \(v \) lying in edges of rank \(i \), flip the color of \(v \) with probability \(\frac{q}{r2^{i-1}} \) independently.

- Red edges with higher rank are destroyed first.

- Reduce it to the irreducible core whenever possible.
Randomized algorithm

- Randomly color each vertex red or blue with probability $\frac{1}{2}$.

- An edge F has rank i if $r2^{i-1} \leq |F| < r2^i$. For each v lying in edges of rank i, flip the color of v with probability $\frac{q}{r2^{i-1}}$ independently.

- Red edges with higher rank are destroyed first.

- Reduce it to the irreducible core whenever possible.

- Abort the program if a red edge survives or a blue edge is created.
Sketch of the proof

The probability of success is at least

\[
1 - \frac{2}{M} - 2he^{-q} - \frac{2he^{8Mhq}}{Mr}.
\]

Choose \(M = 2(1 + \epsilon) \), \(q = \ln \ln r \), and \(h = \frac{1 - \epsilon}{16} \frac{\ln r}{\ln \ln r} \).

The above probability is

\[
\frac{\epsilon}{1 + \epsilon} - \frac{2h}{\ln r} - \frac{2h}{Mr^{\epsilon^2}} > 0
\]

for sufficiently large \(r \).

Therefore, \(H \) has Property B.
Theorem (Lu) Let H_1, H_2, \ldots, H_k be hypergraphs over a common vertex set V with minimum edge cardinality r satisfying

$$\sum_{F \in E(H_i)} \frac{1}{k|F|} \leq \left(\frac{k - 1}{4k^2} - o(1)\right) \frac{\ln r}{\ln \ln r}.$$

Then, there exists a k-coloring of V such that H_i contains no monochromatic edge in i-th color for all $1 \leq i \leq k$.
Open Problems

Is it true $f(r) = \frac{m_2(r)}{2^r}$?
Open Problems

- Is it true \(f(r) = \frac{m_2(r)}{2^r} \)?

- Find a better upper bound for \(f(r) \) using non-uniform hypergraph.
Open Problems

- Is it true \(f(r) = \frac{m_2(r)}{2^r} \) ?

- Find a better upper bound for \(f(r) \) using non-uniform hypergraph.

- Prove or disprove Erdős-Lovász’s stronger conjecture \(m_2(r) = \Theta(r2^r) \).