On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs

Lincoln Lu

lu@math.sc.edu.

University of South Carolina

On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs – p.1/25

Hypergraphs

Hypergraph *H*:

- V(H): the set of vertices.
- E(H): the set of edges.

Hypergraphs

Hypergraph *H*:

- V(H): the set of vertices.
- E(H): the set of edges.

H is *r*-uniform if |F| = r for every edge *F* of *H*.

Property B

A hypergraph H has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.

Property B

A hypergraph H has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.

Property B

A hypergraph H has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.

History

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite hypergraph H has countable edges and each edge has infinite vertices. Then H has Property B.

History

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite hypergraph H has countable edges and each edge has infinite vertices. Then H has Property B.

Erdős (1963) asked:

"What is the minimum edge number $m_2(r)$ of a runiform hypergraph not having property B?"

Edge cardinality matters!

• $m_2(1) = 1$:

On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs – p.5/25

Edge cardinality matters!

• $m_2(1) = 1$:

On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs – p.5/25

Edge cardinality matters!

Erdős and Lovász (1975)

Perhaps $r2^r$ is the correct order of magnitude of $m_2(r)$; it seems likely that

$$\frac{m_2(r)}{2^r} \to \infty.$$

A stronger conjecture would be: Let $E_{k=1}^{m}$ be a 3-chromatic (not necessarily uniform) hypergraph. Let

$$f(r) = \min \sum_{k=1}^{m} \frac{1}{2^{|E_k|}},$$

where the minimum is extended over all hypergraphs with $\min |E_k| = r$. We conjecture that $f(r) \to \infty$ as

<u>____</u>

 $r \to \infty$.

Previous results

Erdős (1963)

$$2^{r-1} \le m_2(r) \le (1+\epsilon)\frac{2\ln 2}{4}r^2 2^r.$$

Previous results

Erdős (1963)

$$2^{r-1} \le m_2(r) \le (1+\epsilon)\frac{2\ln 2}{4}r^2 2^r.$$

Beck (1978), Spencer (1981)

$$m_2(r) > r^{\frac{1}{3} - o(1)} 2^r$$

Previous results

Erdős (1963)

$$2^{r-1} \le m_2(r) \le (1+\epsilon)\frac{2\ln 2}{4}r^2 2^r.$$

Beck (1978), Spencer (1981)

$$m_2(r) > r^{\frac{1}{3} - o(1)} 2^r$$

Radhakrishnan and Srinivasan (2000)

$$m_2(r) > (\frac{\sqrt{2}}{2} - o(1)) \frac{\sqrt{r}}{\sqrt{\ln r}} 2^r.$$

Non-uniform hypergraphs

Beck (1978) proved

$$f(r) \ge \frac{\log^*(r) - 100}{7}.$$

Non-uniform hypergraphs

Beck (1978) proved

$$f(r) \ge \frac{\log^*(r) - 100}{7}$$

The function $\log^*(x)$ grows very slowly since it is the inverse function of

$$n \rightarrow 2^{2^{\cdot}}$$
.

Our result

Theorem (Lu) For any $\epsilon > 0$, there is an $r_0 = r_0(\epsilon)$, for all $r > r_0$, we have

$$f(r) \ge \left(\frac{1}{16} - \epsilon\right) \frac{\ln r}{\ln \ln r}.$$

Our result

Theorem (Lu) For any $\epsilon > 0$, there is an $r_0 = r_0(\epsilon)$, for all $r > r_0$, we have

$$f(r) \ge \left(\frac{1}{16} - \epsilon\right) \frac{\ln r}{\ln \ln r}.$$

An obvious upper bound:

$$f(r) \le \frac{m_2(r)}{2^r} \le (1+\epsilon)\frac{2\ln 2}{4}r^2.$$

Recoloring method

Theorem (Beck 1978) Any *r*-hypergraph H with at most $r^{1/3-o(1)}2^r$ edges has Property B.

Recoloring method

Theorem (Beck 1978) Any r-hypergraph H with at most $r^{1/3-o(1)}2^r$ edges has Property B.

Spencer's Proof:

- Randomly and independently color each vertex red and blue with probability $\frac{1}{2}$.
- With small probability p, independently flip the color of vertices lying in monochromatic edges.

Type I: a red edge survives.

Let $h = |E(H)|2^{-r}$ be the expected number of red edges.

The probability of this event is

$$|E(H)|2^{-r}(1-p)^r \le he^{-rp}.$$

Type II: a blue edge is created.

 $\sum_{i \ge 1} \sum_{|F \cap F'| = i} 2^{-2r+i} \sum_{s \ge 0} \binom{r-i}{s} p^{i+s}$ $= 2^{-2r} \sum (2p)^i \sum (1+p)^{r-i}$ $i \ge 1$ $|F \cap F'| = i$ $\leq 2^{-2r}(1+p)^r \frac{2p}{1+p} |E(H)|^2$ $\leq 2ph^2e^{pr}.$ S F F'

Put together

H has Property B if

$$2he^{-rp} + 4ph^2e^{pr} < 1.$$

Choose $h = r^{(1-\epsilon)/3}$ and $p = \frac{(1+\epsilon)\ln h}{r}$. Done!

A critical case:

• S is red while $F' \setminus S$ is blue.

A critical case:

- S is red while $F' \setminus S$ is blue.
- For any $v \in S$, there exists an red edge F containing v.

A critical case:

- S is red while $F' \setminus S$ is blue.
- For any $v \in S$, there exists an red edge F containing v.
- The size of F' is unbounded.

A critical case:

- S is red while $F' \setminus S$ is blue.
- For any $v \in S$, there exists an red edge F containing v.
- The size of F' is unbounded.
- There are too many choices of S.

Our approach

Extending hypergraphs to "twin-hypergraphs".

On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs – p.15/25

Our approach

- Extending hypergraphs to "twin-hypergraphs".
- Simplifying "twin-hypergraph" into an irreducible core.

Our approach

- Extending hypergraphs to "twin-hypergraphs".
- Simplifying "twin-hypergraph" into an irreducible core.
- Recoloring vertices in large edges first.

Twin-hypergraphs

A *twin-hypergraph* is a pair of hypergraphs (H_1, H_2) with the same vertex set $V(H_1) = V(H_2)$.

Twin-hypergraphs

A *twin-hypergraph* is a pair of hypergraphs (H_1, H_2) with the same vertex set $V(H_1) = V(H_2)$. The

twin-hypergraph (H_1, H_2) is said to have Property B if there exists a red-blue vertex-coloring satisfying

- H_1 has no red edge.
- H_2 has no blue edge.

A theorem on twin-hypergraph.

Theorem (Lu) Suppose a twin-hypergraph $H = (H_1, H_2)$ with minimum edge-cardinality r satisfies

$$\sum_{F \in E(H_i)} \frac{1}{2^{|F|}} \le \left(\frac{1}{16} - o(1)\right) \frac{\ln r}{\ln \ln r}$$

for i = 1, 2. Then H has property B.

Irreducibility

A twin-hypergraph $H = (H_1, H_2)$ is called *irreducible* if

- **1.** $\forall F_1 \in E(H_1)$ and $v \in F_1$, $\exists F_2 \in E(H_2)$ such that $F_1 \cap F_2 = \{v\}$.
- **2.** $\forall F_2 \in E(H_2)$ and $v \in F_2$, $\exists F_1 \in E(H_1)$ such that $F_1 \cap F_2 = \{v\}$.

Reducibility

A twin-hypergraph $H = (H_1, H_2)$ is called *reducible* if there is an evidence (F, v) satisfying

- **1.** $v \in F$, and $F \in E(H_i)$ for i = 1 or 2.
- 2. $\forall F' \in E(H_{3-i})$, if $v \in F'$ then $|F \cap F'| \ge 2$.

If *H* is reducible, there is an evidence (F, v). Repeatedly removing *F* from *H* until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \dots \supset H^{(s)}$$

If *H* is reducible, there is an evidence (F, v). Repeatedly removing *F* from *H* until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \dots \supset H^{(s)}$$

If *H* is reducible, there is an evidence (F, v). Repeatedly removing *F* from *H* until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \dots \supset H^{(s)}$$

If *H* is reducible, there is an evidence (F, v). Repeatedly removing *F* from *H* until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}.$$

If *H* is reducible, there is an evidence (F, v). Repeatedly removing *F* from *H* until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}$$

If *H* is reducible, there is an evidence (F, v). Repeatedly removing *F* from *H* until an irreducible twin-hypergraph is reached.

$$H = H^{(0)} \supset H^{(1)} \supset \cdots \supset H^{(s)}$$

Lemma on irreducible core

Lemma 3 A twin-hypergraph H has Property B if and only if its irreducible core has Property B.

Lemma on irreducible core

Lemma 3 A twin-hypergraph H has Property B if and only if its irreducible core has Property B.

Proof: It suffices to add a removed edge *F* back.

- If F is not monochromatic, do nothing.
- Otherwise, flip the color of v. For any F' containing v, F' contains another vertex of F.
 Thus, F' is not monochromatic.

Randomly color each vertex red or blue with probability $\frac{1}{2}$.

- Randomly color each vertex red or blue with probability $\frac{1}{2}$.
- An edge *F* has rank *i* if $r2^{i-1} \le |F| < r2^i$. For each *v* lying in edges of rank *i*, flip the color of *v* with probability $\frac{q}{r2^{i-1}}$ independently.

- Randomly color each vertex red or blue with probability $\frac{1}{2}$.
- An edge *F* has rank *i* if $r2^{i-1} \le |F| < r2^i$. For each *v* lying in edges of rank *i*, flip the color of *v* with probability $\frac{q}{r2^{i-1}}$ independently.
- Red edges with higher rank are destroyed first.

- Randomly color each vertex red or blue with probability $\frac{1}{2}$.
- An edge *F* has rank *i* if $r2^{i-1} \le |F| < r2^i$. For each *v* lying in edges of rank *i*, flip the color of *v* with probability $\frac{q}{r2^{i-1}}$ independently.
- Red edges with higher rank are destroyed first.
- Reduce it to the irreducible core whenever possible.

- Randomly color each vertex red or blue with probability $\frac{1}{2}$.
- An edge *F* has rank *i* if $r2^{i-1} \le |F| < r2^i$. For each *v* lying in edges of rank *i*, flip the color of *v* with probability $\frac{q}{r2^{i-1}}$ independently.
- Red edges with higher rank are destroyed first.
- Reduce it to the irreducible core whenever possible.
- Abort the program if a red edge survives or a blue edge is created.

Sketch of the proof

The probability of success is at least

$$1 - \frac{2}{M} - 2he^{-q} - \frac{2he^{8Mhq}}{Mr}.$$

Choose $M = 2(1 + \epsilon)$, $q = \ln \ln r$, and $h = \frac{1-\epsilon}{16} \frac{\ln r}{\ln \ln r}$. The above probability is

$$\frac{\epsilon}{1+\epsilon} - \frac{2h}{\ln r} - \frac{2h}{Mr^{\epsilon^2}} > 0$$

for sufficiently large r.

Therefore, *H* has Property B.

k colors

Theorem (Lu) Let H_1, H_2, \ldots, H_k be hypergraphs over a common vertex set V with minimum edge cardinality r satisfying

$$\sum_{F \in E(H_i)} \frac{1}{k^{|F|}} \le \left(\frac{k-1}{4k^2} - o(1)\right) \frac{\ln r}{\ln \ln r}.$$

Then, there exists a k-coloring of V such that H_i contains no monochromatic edge in *i*-th color for all $1 \le i \le k$.

Open Problems

• Is it true
$$f(r) = \frac{m_2(r)}{2^r}$$
?

Open Problems

• Is it true
$$f(r) = \frac{m_2(r)}{2^r}$$
?

Find a better upper bound for f(r) using non-uniform hypergraph.

Open Problems

• Is it true
$$f(r) = \frac{m_2(r)}{2^r}$$
?

- Find a better upper bound for f(r) using non-uniform hypergraph.
- Prove of disprove Erdős-Lovász's stronger conjecture $m_2(r) = \Theta(r2^r)$.

