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Hypergraphs

Hypergraph H:

- V (H): the set of vertices.

- E(H): the set of edges.
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Hypergraphs

Hypergraph H:

- V (H): the set of vertices.

- E(H): the set of edges.

H is r-uniform if |F | = r for
every edge F of H.
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Property B

A hypergraph H has Property B (or 2-colorable) if
there is a red-blue vertex-coloring with no
monochromatic edge.
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Property B

A hypergraph H has Property B (or 2-colorable) if
there is a red-blue vertex-coloring with no
monochromatic edge.

With Property B Without Property B
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History

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite
hypergraph H has countable edges and each edge
has infinite vertices. Then H has Property B.
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History

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite
hypergraph H has countable edges and each edge
has infinite vertices. Then H has Property B.

Erdős (1963) asked:

“What is the minimum edge number m2(r) of a r-

uniform hypergraph not having property B?”
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Edge cardinality matters!

m2(1) = 1:
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Edge cardinality matters!

m2(1) = 1:

m2(2) = 3:
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Edge cardinality matters!

m2(1) = 1:

m2(2) = 3:

m2(3) = 7:

Fano plane
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Erdős and Lovász (1975)

Perhaps r2r is the correct order of magnitude of m2(r);

it seems likely that

m2(r)

2r
→ ∞.

A stronger conjecture would be: Let Em

k=1
be a 3-

chromatic (not necessarily uniform) hypergraph. Let

f(r) = min
m∑

k=1

1

2|Ek|
,

where the minimum is extended over all hypergraphs

with min |Ek| = r. We conjecture that f(r) → ∞ as

r → ∞.
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Previous results

Erdős (1963)

2r−1 ≤ m2(r) ≤ (1 + ǫ)
2 ln 2

4
r22r.
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Previous results

Erdős (1963)

2r−1 ≤ m2(r) ≤ (1 + ǫ)
2 ln 2

4
r22r.

Beck (1978), Spencer (1981)

m2(r) > r
1

3
−o(1)2r.
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Previous results

Erdős (1963)

2r−1 ≤ m2(r) ≤ (1 + ǫ)
2 ln 2

4
r22r.

Beck (1978), Spencer (1981)

m2(r) > r
1

3
−o(1)2r.

Radhakrishnan and Srinivasan (2000)

m2(r) > (

√
2

2
− o(1))

√
r√

ln r
2r.
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Non-uniform hypergraphs

Beck (1978) proved

f(r) ≥ log∗(r) − 100

7
.
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Non-uniform hypergraphs

Beck (1978) proved

f(r) ≥ log∗(r) − 100

7
.

The function log∗(x) grows very slowly since it is

the inverse function of

n → 2

n

︷︸︸︷

2·
·
·
2

.
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Our result

Theorem (Lu) For any ǫ > 0, there is an r0 = r0(ǫ), for all

r > r0, we have

f(r) ≥ (
1

16
− ǫ)

ln r

ln ln r
.
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Our result

Theorem (Lu) For any ǫ > 0, there is an r0 = r0(ǫ), for all

r > r0, we have

f(r) ≥ (
1

16
− ǫ)

ln r

ln ln r
.

An obvious upper bound:

f(r) ≤ m2(r)

2r
≤ (1 + ǫ)

2 ln 2

4
r2.
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Recoloring method

Theorem (Beck 1978) Any r-hypergraph H with at

most r1/3−o(1)2r edges has Property B.
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Recoloring method

Theorem (Beck 1978) Any r-hypergraph H with at

most r1/3−o(1)2r edges has Property B.

Spencer’s Proof:

Randomly and independently color each vertex

red and blue with probability 1
2 .

With small probability p, independently flip the
color of vertices lying in monochromatic edges.
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Type I: a red edge survives.

Let h = |E(H)|2−r be the expected number of red
edges.

The probability of this event is

|E(H)|2−r(1 − p)r ≤ he−rp.
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Type II: a blue edge is created.

∑

i≥1

∑

|F∩F ′|=i

2−2r+i
∑

s≥0

(
r − i

s

)

pi+s

= 2−2r
∑

i≥1

(2p)i
∑

|F∩F ′|=i

(1 + p)r−i

≤ 2−2r(1 + p)r 2p

1 + p
|E(H)|2

≤ 2ph2epr.

S

F F’
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Put together

H has Property B if

2he−rp + 4ph2epr < 1.

Choose h = r(1−ǫ)/3 and p = (1+ǫ) lnh
r . Done!
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The difficulty

A critical case:
S

F’

S is red while F ′ \ S is blue.
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The difficulty

A critical case:
S

F’

S is red while F ′ \ S is blue.

For any v ∈ S, there exists an red edge F
containing v.
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The difficulty

A critical case:
S

F’

S is red while F ′ \ S is blue.

For any v ∈ S, there exists an red edge F
containing v.

The size of F ′ is unbounded.
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The difficulty

A critical case:
S

F’

S is red while F ′ \ S is blue.

For any v ∈ S, there exists an red edge F
containing v.

The size of F ′ is unbounded.

There are too many choices of S.
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Our approach

Extending hypergraphs to “twin-hypergraphs”.
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Our approach

Extending hypergraphs to “twin-hypergraphs”.

Simplifying “twin-hypergraph” into an irreducible
core.
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Our approach

Extending hypergraphs to “twin-hypergraphs”.

Simplifying “twin-hypergraph” into an irreducible
core.

Recoloring vertices in large edges first.
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Twin-hypergraphs

A twin-hypergraph is a pair of hypergraphs (H1, H2)
with the same vertex set V (H1) = V (H2).
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Twin-hypergraphs

A twin-hypergraph is a pair of hypergraphs (H1, H2)
with the same vertex set V (H1) = V (H2). The

twin-hypergraph (H1, H2) is said to have Property B
if there exists a red-blue vertex-coloring satisfying

H1 has no red edge.

H2 has no blue edge.
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A theorem on twin-hypergraph.

Theorem (Lu) Suppose a twin-hypergraph H = (H1, H2)
with minimum edge-cardinality r satisfies

∑

F∈E(Hi)

1

2|F | ≤ (
1

16
− o(1))

ln r

ln ln r

for i = 1, 2. Then H has property B.
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Irreducibility

A twin-hypergraph H = (H1, H2) is called
irreducible if

1. ∀F1 ∈ E(H1) and v ∈ F1, ∃F2 ∈ E(H2) such that
F1 ∩ F2 = {v}.

2. ∀F2 ∈ E(H2) and v ∈ F2, ∃F1 ∈ E(H1) such that
F1 ∩ F2 = {v}.
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Reducibility

A twin-hypergraph H = (H1, H2) is called reducible
if there is an evidence (F, v) satisfying

1. v ∈ F , and F ∈ E(Hi) for i = 1 or 2.

2. ∀F ′ ∈ E(H3−i), if v ∈ F ′ then |F ∩ F ′| ≥ 2.
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Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v).
Repeatedly removing F from H until an irreducible
twin-hypergraph is reached.

H = H(0) ⊃ H(1) ⊃ · · · ⊃ H(s).

H(s) is called the irre-
ducible core.
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Lemma on irreducible core

Lemma 3 A twin-hypergraph H has Property B if and only if

its irreducible core has Property B.
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Lemma on irreducible core

Lemma 3 A twin-hypergraph H has Property B if and only if

its irreducible core has Property B.

Proof: It suffices to add a removed edge F back.

If F is not monochromatic, do nothing.

Otherwise, flip the color of v. For any F ′

containing v, F ′ contains another vertex of F .
Thus, F ′ is not monochromatic.
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Randomized algorithm

Randomly color each vertex red or blue with

probability 1
2 .
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Randomized algorithm

Randomly color each vertex red or blue with

probability 1
2 .

An edge F has rank i if r2i−1 ≤ |F | < r2i. For
each v lying in edges of rank i, flip the color of v
with probability q

r2i−1 independently.
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Randomized algorithm

Randomly color each vertex red or blue with

probability 1
2 .

An edge F has rank i if r2i−1 ≤ |F | < r2i. For
each v lying in edges of rank i, flip the color of v
with probability q

r2i−1 independently.

Red edges with higher rank are destroyed first.
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Randomized algorithm

Randomly color each vertex red or blue with

probability 1
2 .

An edge F has rank i if r2i−1 ≤ |F | < r2i. For
each v lying in edges of rank i, flip the color of v
with probability q

r2i−1 independently.

Red edges with higher rank are destroyed first.

Reduce it to the irreducible core whenever
possible.
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Randomized algorithm

Randomly color each vertex red or blue with

probability 1
2 .

An edge F has rank i if r2i−1 ≤ |F | < r2i. For
each v lying in edges of rank i, flip the color of v
with probability q

r2i−1 independently.

Red edges with higher rank are destroyed first.

Reduce it to the irreducible core whenever
possible.

Abort the program if a red edge survives or a
blue edge is created.
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Sketch of the proof

The probability of success is at least

1 − 2

M
− 2he−q − 2he8Mhq

Mr
.

Choose M = 2(1 + ǫ), q = ln ln r, and h = 1−ǫ
16

ln r
ln ln r .

The above probability is

ǫ

1 + ǫ
− 2h

ln r
− 2h

Mrǫ2
> 0

for sufficiently large r.

Therefore, H has Property B.
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k colors

Theorem (Lu) Let H1, H2, . . . , Hk be hypergraphs over a

common vertex set V with minimum edge cardinality r
satisfying

∑

F∈E(Hi)

1

k|F | ≤ (
k − 1

4k2
− o(1))

ln r

ln ln r
.

Then, there exists a k-coloring of V such that Hi contains no

monochromatic edge in i-th color for all 1 ≤ i ≤ k.
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Open Problems

Is it true f(r) = m2(r)
2r ?
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Open Problems

Is it true f(r) = m2(r)
2r ?

Find a better upper bound for f(r) using
non-uniform hypergraph.
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Open Problems

Is it true f(r) = m2(r)
2r ?

Find a better upper bound for f(r) using
non-uniform hypergraph.

Prove of disprove Erdős-Lovász’s stronger
conjecture m2(r) = Θ(r2r).
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