Complex Graphs and Networks

Lecture 4: The rise of
the giant component

Linyuan Lu

lu@math.sc.edu

University of South Carolina

BASICS2008 SUMMER SCHOOL
July 27 – August 2, 2008
Overview of talks

- Lecture 1: Overview and outlines
- Lecture 2: Generative models - preferential attachment schemes
- Lecture 3: Duplication models for biological networks
- Lecture 4: The rise of the giant component
- Lecture 5: The small world phenomenon: average distance and diameter
- Lecture 6: Spectrum of random graphs with given degrees
Random graphs

A random graph is a set of graphs together with a probability distribution on that set.
A random graph is a set of graphs together with a probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with the uniform distribution on it.
A random graph is a set of graphs together with a probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with the uniform distribution on it.

A random graph G *almost surely* satisfies a property P, if

$$Pr(G \text{ satisfies } P) = 1 - o_n(1).$$
Erdős-Rényi model $G(n, p)$

- n nodes
Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e (1 - p)^{\binom{n}{2} - e}$.
Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.

![Diagram of a graph with nodes and edges]
Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e (1 - p)^{\binom{n}{2} - e}$.

![Diagram of Erdős-Rényi model](image)
Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e (1 - p)^{\binom{n}{2} - e}$.
Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1 - p)^{\binom{n}{2} - e}$.

The probability of this graph is $p^4(1 - p)^2$.
A example: $G(3, \frac{1}{2})$
Paul Erdős and A. Rényi, On the evolution of random graphs
ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ERDŐS and A. RÉNYI

Institute of Mathematics
Hungarian Academy of Sciences, Hungary

1. Definition of a random graph

Let $E_{n,N}$ denote the set of all graphs having n given labelled vertices V_1, V_2, \ldots, V_n and N edges. The graphs considered are supposed to be not oriented, without parallel edges and without slings (such graphs are sometimes called linear graphs). Thus a graph belonging to the set $E_{n,N}$ is obtained by choosing N out of the possible $\binom{n}{2}$ edges between the points V_1, V_2, \ldots, V_n, and therefore the number of elements of $E_{n,N}$ is equal to $\binom{n}{2}$. A random graph $\Gamma_{n,N}$ can be defined as an element of $E_{n,N}$ chosen at random, so that each of the elements of $E_{n,N}$ have the same probability to be chosen, namely $1/\binom{n}{2}$. There is however an other slightly
Evolution of $G(n, p)$

<table>
<thead>
<tr>
<th>p</th>
<th>Property Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>the empty graph.</td>
</tr>
<tr>
<td>c/n</td>
<td>disjoint union of trees.</td>
</tr>
<tr>
<td>$1/n$</td>
<td>cycles of any size.</td>
</tr>
<tr>
<td>c'/n</td>
<td>the double jumps.</td>
</tr>
<tr>
<td>$\log n/n$</td>
<td>one giant component, others are trees.</td>
</tr>
<tr>
<td>$\Omega(\log n/n)$</td>
<td>$G(n, p)$ is connected.</td>
</tr>
<tr>
<td>$\Omega(n^{\epsilon-1})$</td>
<td>connected and almost regular.</td>
</tr>
<tr>
<td>$\Theta(1)$</td>
<td>finite diameter.</td>
</tr>
<tr>
<td>1</td>
<td>dense graphs, diameter is 2.</td>
</tr>
<tr>
<td>1</td>
<td>the complete graph.</td>
</tr>
</tbody>
</table>

$Linyuan Lu$ (University of South Carolina) – 8 / 47
Evolution of $G(n, p)$

Range I \(p = o(1/n) \)

The random graph \(G_{n,p} \) is the disjoint union of trees. In fact, trees on \(k \) vertices, for \(k = 3, 4, \ldots \) only appear when \(p \) is of the order \(n^{-k/(k-1)} \).
Range I \(p = o(1/n) \)

The random graph \(G_{n,p} \) is the disjoint union of trees. In fact, trees on \(k \) vertices, for \(k = 3, 4, \ldots \) only appear when \(p \) is of the order \(n^{-k/(k-1)} \).

Furthermore, for \(p = cn^{-k/(k-1)} \) and \(c > 0 \), let \(\tau_k(G) \) denote the number of connected components of \(G \) formed by trees on \(k \) vertices and \(\lambda = (2c)^{k-1} k^{k-2} / k! \). Then,

\[
\Pr(\tau_k(G_{n,p}) = j) \rightarrow \frac{\lambda^j e^{-\lambda}}{j!}
\]

for \(j = 0, 1, \ldots \) as \(n \to \infty \).
Range II \quad p \sim c/n \text{ for } 0 < c < 1

- In this range of p, $G_{n,p}$ contains cycles of any given size with probability tending to a positive limit.
Range II \[p \sim \frac{c}{n} \text{ for } 0 < c < 1 \]

- In this range of \(p \), \(G_{n,p} \) contains cycles of any given size with probability tending to a positive limit.
- All connected components of \(G_{n,p} \) are either trees or unicyclic components. Almost all (i.e., \(n - o(n) \)) vertices are in components which are trees.
Evolution of $G(n, p)$

Range II \(p \sim c/n \) for \(0 < c < 1 \)

- In this range of \(p \), \(G_{n,p} \) contains cycles of any given size with probability tending to a positive limit.
- All connected components of \(G_{n,p} \) are either trees or unicyclic components. Almost all (i.e., \(n - o(n) \)) vertices are in components which are trees.
- The largest connected component of \(G_{n,p} \) is a tree and has about \(\frac{1}{\alpha}(\log n - \frac{5}{2}\log\log n) \) vertices, where \(\alpha = c - 1 - \log c \).
Range III \(p \sim 1/n + \mu/n \), the double jump

- If \(\mu < 0 \), the largest component has size
 \[(\mu - \log(1 + \mu))^{-1} \log n + O(\log \log n). \]
Range III \[p \sim \frac{1}{n} + \frac{\mu}{n}, \] the double jump

- If \(\mu < 0 \), the largest component has size
 \[(\mu - \log(1 + \mu))^{-1} \log n + O(\log \log n). \]

- If \(\mu = 0 \), the largest component has size of order
 \[n^{2/3}. \]
Evolution of $G(n, p)$

Range III $p \sim 1/n + \mu/n$, the double jump

- If $\mu < 0$, the largest component has size $(\mu - \log(1 + \mu))^{-1} \log n + O(\log \log n)$.
- If $\mu = 0$, the largest component has size of order $n^{2/3}$.
- If $\mu > 0$, there is a unique giant component of size αn where $\mu = -\alpha^{-1} \log(1 - \alpha) - 1$.
Range III \(p \sim 1/n + \mu/n \), the double jump

- If \(\mu < 0 \), the largest component has size
 \((\mu - \log(1 + \mu))^{-1} \log n + O(\log \log n)\).

- If \(\mu = 0 \), the largest component has size of order
 \(n^{2/3}\).

- If \(\mu > 0 \), there is a unique giant component of size
 \(\alpha n\) where \(\mu = -\alpha^{-1} \log(1 - \alpha) - 1\).

- Bollobás showed that a component of size at least
 \(n^{2/3}\) in \(G_{n,p}\) is almost always unique if \(p\) exceeds
 \(1/n + 4(\log n)^{1/2}n^{-4/3}\).
Range IV \(p \sim c/n \) for \(c > 1 \)

- Except for one “giant” component, all the other components are relatively small, and most of them are trees.
Range IV \(p \sim c/n \) for \(c > 1 \)

- Except for one “giant” component, all the other components are relatively small, and most of them are trees.
- The total number of vertices in components which are trees is approximately \(n - f(c)n + o(n) \).
Range IV \(p \sim c/n \) for \(c > 1 \)

- Except for one “giant” component, all the other components are relatively small, and most of them are trees.
- The total number of vertices in components which are trees is approximately \(n - f(c)n + o(n) \).
- The largest connected component of \(G_{n,p} \) has approximately \(f(c)n \) vertices, where

\[
f(c) = 1 - \frac{1}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} (ce^{-c})^k.
\]
Range V \[p = \frac{c \log n}{n} \quad \text{with} \quad c \geq 1 \]

- The graph \(G_{n,p} \) almost surely becomes connected.
Range V \(p = c \log n/n \) with \(c \geq 1 \)

- The graph \(G_{n,p} \) almost surely becomes connected.
- If

\[
p = \frac{\log n}{kn} + \frac{(k - 1) \log \log n}{kn} + \frac{y}{n} + o\left(\frac{1}{n}\right),
\]

then there are only trees of size at most \(k \) except for the giant component. The distribution of the number of trees of \(k \) vertices again has a Poisson distribution with mean value \(\frac{e^{-ky}}{k!} \).
Range VI \(p \sim \omega(n) \log n / n \) where \(\omega(n) \to \infty \).
In this range, \(G_{n,p} \) is not only almost surely connected, but the degrees of almost all vertices are asymptotically equal.
Random graph model with given expected degree sequence
- n nodes with weights w_1, w_2, \ldots, w_n.

Model $G(w_1, w_2, \ldots, w_n)$
Model $G(w_1, w_2, \ldots, w_n)$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n.
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^{n} w_i}$.
Model $G(w_1, w_2, \ldots, w_n)$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n.

- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^{n} w_i}$.

- The graph H has probability

\[
\prod_{ij \in E(H)} p_{ij} \prod_{ij \notin E(H)} (1 - p_{ij}).
\]
Model \(G(w_1, w_2, \ldots, w_n) \)

Random graph model with given expected degree sequence

- \(n \) nodes with weights \(w_1, w_2, \ldots, w_n \).
- For each pair \((i, j)\), create an edge independently with probability \(p_{ij} = w_i w_j \rho \), where \(\rho = \frac{1}{\sum_{i=1}^{n} w_i} \).
- The graph \(H \) has probability

\[
\prod_{ij \in E(H)} p_{ij} \prod_{ij \notin E(H)} (1 - p_{ij}).
\]

- The expected degree of vertex \(i \) is \(w_i \).
Model $G(w_1, w_2, \ldots, w_n)$

Random graph model with given expected degree sequence
- n nodes with weights w_1, w_2, \ldots, w_n.
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^{n} w_i}$.
- The graph H has probability
 $$\prod_{ij \in E(H)} p_{ij} \prod_{ij \notin E(H)} (1 - p_{ij}).$$
- The expected degree of vertex i is w_i.
An example: $G(w_1, w_2, w_3, w_4)$
An example: $G(w_1, w_2, w_3, w_4)$
An example: $G(w_1, w_2, w_3, w_4)$
An example: \[G(w_1, w_2, w_3, w_4) \]
An example: $G(w_1, w_2, w_3, w_4)$
An example: \(G(w_1, w_2, w_3, w_4) \)

The probability of the graph is

\[
\begin{aligned}
w_1^3 w_2^2 w_3^2 w_4^4 (1 - w_2 w_4 \rho) \times (1 - w_3 w_4 \rho) \prod_{i=1}^{4} (1 - w_i^2 \rho).
\end{aligned}
\]
A example: $G(1, 2, 1)$

Loops are omitted here.
For $G = G(w_1, \ldots, w_n)$, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$
- $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
- The volume of S: $\text{Vol}(S) = \sum_{i \in S} w_i$.
For $G = G(w_1, \ldots, w_n)$, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$
- $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$
- The volume of S: $\text{Vol}(S) = \sum_{i \in S} w_i$. We have $\tilde{d} \geq d$.

"\(=\)" holds if and only if $w_1 = \cdots = w_n$.
For $G = G(w_1, \ldots, w_n)$, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$
- $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
- The volume of S: $\text{Vol}(S) = \sum_{i \in S} w_i$.

We have

$$\tilde{d} \geq d$$

“=” holds if and only if $w_1 = \cdots = w_n$.

A connected component S is called a giant component if

$$\text{vol}(S) = \Theta(\text{vol}(G)).$$
If $np < 1$, almost surely there is no giant component.

If $np > 1$, almost surely there is a unique giant component.

$$\tilde{d} = d = np.$$
Four questions

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $d < 1$?
Four questions

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $d < 1$?

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $\tilde{d} > 1$?
Four questions

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $d < 1$?

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $\tilde{d} > 1$?

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $\tilde{d} < 1$?
Four questions

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $d < 1$?

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $\tilde{d} > 1$?

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $\tilde{d} < 1$?

- Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $d > 1$?
Case \(d < 1 \)

Is it true that \(G(w_1, \ldots, w_n) \) almost surely has no giant component if \(d < 1 \)?
Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $d < 1$?

No.
Case $d < 1$

Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $d < 1$?

No. A counter-example: $G\left(\frac{n}{2}, 0\right) + G\left(\frac{n}{2}, \frac{3}{n}\right)$.

Since $G\left(\frac{n}{2}, \frac{3}{n}\right)$ has

$$n'p' = \frac{n \cdot 3}{2 \cdot n} = \frac{3}{2} > 1.$$

It has a giant component. But as the whole graph, the average degree is $d = \frac{3}{4} < 1$.

Case $\tilde{d} > 1$

Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $\tilde{d} > 1$?
Case $\tilde{d} > 1$

Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $\tilde{d} > 1$?

No.
Case $\tilde{d} > 1$

Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $\tilde{d} > 1$?

No. A counter-example: $V = S \cup T$ (with $|S| = \log n$), weights are defined as follows.

$$w_i = \begin{cases} \sqrt{n} & \text{if } v_i \in S' \\ 1 - \epsilon & \text{otherwise.} \end{cases}$$
Case $\tilde{d} > 1$

Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $\tilde{d} > 1$?

No. A counter-example: $V = S \cup T$ (with $|S| = \log n$), weights are defined as follows.

$$w_i = \begin{cases} \sqrt{n} & \text{if } v_i \in S' \\ 1 - \epsilon & \text{otherwise.} \end{cases}$$

Every component in $G|_T$ has size at most $O(\log n)$. Adding S can join at most $O(\sqrt{n \log^2 n})$ vertices in T. The volume of maximum component is at most $O(\sqrt{n \log^2 n})$.

Case $\tilde{d} > 1$

Is it true that $G(w_1, \ldots, w_n)$ almost surely has a giant component if $\tilde{d} > 1$?

No. A counter-example: $V = S \cup T$ (with $|S| = \log n$), weights are defined as follows.

$$w_i = \begin{cases} \sqrt{n} & \text{if } v_i \in S' \\ 1 - \epsilon & \text{otherwise.} \end{cases}$$

Every component in $G|_T$ has size at most $O(\log n)$. Adding S can join at most $O(\sqrt{n} \log^2 n)$ vertices in T. The volume of maximum component is at most $O(\sqrt{n} \log^2 n)$.

$$\tilde{d} = \frac{n \log n + (1 - \epsilon)(n - \log n)}{\sqrt{n} \log n + \sqrt{(1 - \epsilon)(n - \log n)}} > \log n.$$
Case $\tilde{d} < 1$

Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $\tilde{d} < 1$?
Case $\tilde{d} < 1$

Is it true that $G(w_1, \ldots, w_n)$ almost surely has no giant component if $\tilde{d} < 1$?

Yes. Chung and Lu (2001) Suppose that $\tilde{d} < 1 - \delta$. For any $\alpha > 0$, with probability at least $1 - \frac{d \tilde{d}^2}{\alpha^2 (1 - d)}$, a random graph G in $G(w_1, \ldots, w_n)$ has all connected components with volume at most $\alpha \sqrt{n}$.
Proof

Let $x = \Pr(\exists \text{ a component } S, \ vol(S') \geq \alpha \sqrt{n})$.
Proof

Let $x = \Pr(\exists \text{ a component } S, \text{ vol}(S) \geq \alpha \sqrt{n})$.

Choose two vertices u and v randomly with probability proportional to their weights.
Let \(x = \Pr(\exists \text{ a component } S, \text{ vol}(S) \geq \alpha \sqrt{n}) \).

Choose two vertices \(u \) and \(v \) randomly with probability proportional to their weights.

Two ways to estimate \(z = \Pr(u \sim v) \) the probability that \(u \) and \(v \) are connected by a path.
Proof

Let \(x = \Pr(\exists \text{ a component } S, \text{ vol}(S) \geq \alpha \sqrt{n}) \).

Choose two vertices \(u \) and \(v \) randomly with probability proportional to their weights.

Two ways to estimate \(z = \Pr(u \sim v) \) the probability that \(u \) and \(v \) are connected by a path.

One the one hand,

\[
\begin{align*}
 z \geq & \quad \Pr(u \sim v, \exists \text{ a component } S \ \text{vol}(S) \geq \alpha \sqrt{n}) \\
 = & \quad \Pr(u \sim v \mid \exists \text{ a component } S \ \text{vol}(S) \geq \alpha \sqrt{n}) x \\
 \geq & \quad \Pr(u, v \in S \mid \exists \text{ a component } S \ \text{vol}(S) \geq \alpha \sqrt{n}) x \\
 \geq & \quad \alpha^2 n \rho^2 x.
\end{align*}
\]
On the other hand, the probability $P_k(u, v)$ of u and v being connected by a path of length $k + 1$ is at most

$$P_k(u, v) \leq \sum_{i_1, i_2, \ldots, i_k} (w_u w_{i_1} \rho) (w_{i_1} w_{i_2} \rho) \cdots (w_{i_k} w_v \rho) = w_u w_v \rho d^k.$$
On the other hand, the probability \(P_k(u, v) \) of \(u \) and \(v \) being connected by a path of length \(k + 1 \) is at most

\[
P_k(u, v) \leq \sum_{i_1, i_2, \ldots, i_k} (w_u w_{i_1} \rho) (w_{i_1} w_{i_2} \rho) \cdots (w_{i_k} w_v \rho)
\]

\[= w_u w_v \rho \tilde{d}^k.
\]

The probability that \(u \) and \(v \) are connected is at most

\[
\sum_{k=0}^{n} P_k(u, v) \leq \sum_{k \geq 0} w_u w_v \rho \tilde{d}^k = \frac{1}{1 - \tilde{d} w_u w_v \rho}.
\]
Proof

\[z \leq \sum_{u,v} w_u \rho w_v \rho \frac{1}{1 - \tilde{w}} w_u w_v \rho = \frac{\tilde{d}^2}{1 - \tilde{d}} \rho. \]

Combining this with \(z \geq x \alpha^2 n \rho^2 \) we have

\[\alpha^2 x n \rho^2 \leq \frac{\tilde{d}^2}{1 - \tilde{d}} \rho \]

which implies that

\[x \leq \frac{d \tilde{d}^2}{\alpha^2 (1 - \tilde{d})}. \]

The proof is finished. \(\square \)
Case $d > 1$

Gap theorem:
- Almost surely G has a unique giant component (GCC).

\[
\text{vol}(GCC) \geq \begin{cases}
(1 - \frac{2}{\sqrt{d}e} + o(1))\text{Vol}(G) & \text{if } d \geq \frac{4}{e}. \\
(1 - \frac{1 + \log d}{d} + o(1))\text{Vol}(G) & \text{if } d < 2.
\end{cases}
\]

- The second largest component almost surely has size at most $(1 + o(1))\mu(d) \log n$, where

\[
\mu(d) = \begin{cases}
\frac{1}{1 + \log d - \log 4} & \text{if } d > 4/e; \\
\frac{1}{d - 1 - \log d} & \text{if } 1 < d < 2.
\end{cases}
\]
Kirchhoff (1847) The number of spanning trees in a graph G is equal to any cofactor of $L = D - A$, where $D = \text{diag}(d_1, \ldots, d_n)$ is the diagonal degree matrix and A is the adjacency matrix.
Kirchhoff (1847) The number of spanning trees in a graph G is equal to any cofactor of $L = D - A$, where $D = \text{diag}(d_1, \ldots, d_n)$ is the diagonal degree matrix and A is the adjacency matrix.

The matrix-tree theorem holds for weighted graphs.

$$\sum_T \prod_{f \in E(T)} w_e = |\det M|.$$

Here M is obtained by deleting one row and one column from $D - A$.

[Image 551x22 to 600x73]
A set S as component

Let $S = \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\}$ with weights $w_{i_1}, w_{i_2}, \ldots, w_{i_k}$. The probability that there is no edge leaving S is

$$
\prod_{v_i \in S, v_j \notin S} (1 - w_i w_j \rho)
\approx e^{-\rho \sum_{v_i \in S, v_j \notin S} w_i w_j}
= e^{-\rho \text{vol}(S)(\text{vol}(G) - \text{vol}(S))}.
$$
Let $S = \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\}$ with weights $w_{i_1}, w_{i_2}, \ldots, w_{i_k}$. The probability that there is no edge leaving S is

$$\prod_{v_i \in S, v_j \notin S} (1 - w_i w_j \rho) \approx e^{-\rho \sum_{v_i \in S, v_j \notin S} w_i w_j} = e^{-\rho \text{vol}(S)(\text{vol}(G) - \text{vol}(S))}.$$

The probability $G \mid_S$ is connected is at most

$$\sum \prod_{T} w_{i_j} w_{i_l} \rho = w_{i_1} w_{i_2} \cdots w_{i_k} \text{vol}(S)^{k-2} \rho^{k-1}.$$

Computation is done by matrix-tree theorem.
Let

$$A = \begin{pmatrix}
0 & w_{i_1} w_{i_2} \rho & \cdots & w_{i_1} w_{i_k} \rho \\
 w_{i_2} w_{i_1} \rho & 0 & \cdots & w_{i_2} w_{i_k} \rho \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{i_k} w_{i_1} \rho & w_{i_k} w_{i_2} \rho & \cdots & 0
\end{pmatrix}$$

and D is the diagonal matrix

$diag(w_{i_1}(\text{vol}(S) - w_{i_1}) \rho, \ldots, w_{i_k}(\text{vol}(S)w_{i_k} - w_{i_k}) \rho)$.

Then compute the determinant of any $k - 1 \times k - 1$ sub-matrix.
The probability that S is a component is at most

$$\sum_{S} w_{i_1} w_{i_2} \cdots w_{i_k} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\operatorname{vol}(S)/\operatorname{vol}(G))}.$$

The probability that there exists a connected component on size k with volume less than $\epsilon \operatorname{vol}(G)$ is at most

$$f(k, \epsilon) = \sum_{|S|=k} w_{i_1} w_{i_2} \cdots w_{i_k} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\epsilon)}.$$
Case $d > \frac{4}{e(1-\epsilon)^2}$

\[
f(k, \epsilon) = \sum_{S} w_{i_1}w_{i_2}\cdots w_{i_k} \text{vol}(S)^{k-2} \rho^{k-1} e^{-\text{vol}(S)(1-\epsilon)}
\]

\[
\leq \sum_{S} \frac{\rho^{k-1}}{k^k} \text{vol}(S)^{2k-2} e^{-\text{vol}(S)(1-\epsilon)}
\]

\[
\leq \sum_{S} \frac{\rho^{k-1}}{k^k} \left(\frac{2k - 2}{1 - \epsilon} \right)^{2k-2} e^{-(2k-2)}
\]

\[
\leq \frac{n^k}{k!} \frac{\rho^{k-1}}{k^k} \left(\frac{2k - 2}{1 - \epsilon} \right)^{2k-2} e^{-(2k-2)}
\]

\[
\leq \frac{1}{4\rho(k - 1)^2} \left(\frac{4}{de(1 - \epsilon)^2} \right)^k
\]
Case $\frac{1}{1-\epsilon} < d < \frac{2}{1-\epsilon}$

First, we split $f(k, \epsilon)$ into two parts as follows:

$$f(k, \epsilon) = f_1(k, \epsilon) + f_2(k, \epsilon)$$

where

$$f_1(k, \epsilon) = \sum_{\text{vol}(S)<dk} w_1 w_2 \cdots w_k \text{vol}(S)^{k-2} \rho^{k-1} e^{-\text{vol}(S)(1-\epsilon)}$$

and

$$f_2(k, \epsilon) = \sum_{\text{vol}(S)\geq dk} w_1 w_2 \cdots w_k \text{vol}(S)^{k-2} \rho^{k-1} e^{-\text{vol}(S)(1-\epsilon)}$$
Bounding $f_1(k, \epsilon)$

$$f_1(k, \epsilon) = \sum_{\text{vol}(S') < dk} w_{i_1} \cdots w_{i_k} \text{vol}(S)^{k-2} \rho^{k-1} e^{-\text{vol}(S)(1-\epsilon)}$$

$$\leq \sum_{\text{vol}(S') < dk} \rho^{k-1} \text{vol}(S)^{2k-2} e^{-\text{vol}(S)(1-\epsilon)}$$

$$\leq \sum_{\text{vol}(S') < dk} \rho^{k-1} \frac{(dk)^{2k-2} e^{-dk(1-\epsilon)}}{k^k}$$

$$\leq \binom{n}{k} \frac{\rho^{k-1}}{k^k} (dk)^{2k-2} e^{-dk(1-\epsilon)}$$

$$\leq \frac{n}{dk^2} \left(\frac{d}{e^{d(1-\epsilon)-1}} \right)^k$$
Bounding $f_2(k, \epsilon)$

$$f_2(k, \epsilon) = \sum_{\text{vol}(S) \geq dk} w_{i_1} w_{i_2} \cdots w_{i_k} \text{vol}(S)^{k-2} \rho^{k-1} e^{-\text{vol}(S)(1-\epsilon)}$$

$$\leq \sum_{\text{vol}(S) \geq dk} w_{i_1} \cdots w_{i_k} \rho^{k-1} (dk)^{k-2} e^{-dk(1-\epsilon)}$$

$$\leq \sum_{S} w_{i_1} w_{i_2} \cdots w_{i_k} \rho^{k-1} (dk)^{k-2} e^{-dk(1-\epsilon)}$$

$$\leq \frac{\text{vol}(G)^k}{k!} \rho^{k-1} (dk)^{k-2} e^{-dk(1-\epsilon)}$$

$$\leq \frac{n}{dk^2} \left(\frac{d}{e(d(1-\epsilon)-1)} \right)^k$$
If $d > \frac{4}{e(1-\epsilon)^2}$, then

$$f(k, \epsilon) \leq \frac{1}{4\rho(k-1)^2} \left(\frac{4}{de(1-\epsilon)^2}\right)^k.$$

If $\frac{1}{1-\epsilon} < d < \frac{2}{1-\epsilon}$, then

$$f(k, \epsilon) \leq 2\frac{n}{dk^2} \left(\frac{d}{e(d(1-\epsilon)-1)}\right)^k.$$

Choose $k = \mu(d) \log n$, then $f(k, \epsilon) = o(1)$. The gap theorem is proved.
Chung and Lu (2004)

If the average degree is strictly greater than 1, then almost surely the giant component in a graph G in $G(w)$ has volume $(\lambda_0 + O(\sqrt{n \log^{3.5} n})) \Vol(G)$, where λ_0 is the unique positive root of the following equation:

$$\sum_{i=1}^{n} w_i e^{-w_i \lambda} = (1 - \lambda) \sum_{i=1}^{n} w_i.$$
With probability at least $1 - 2n^{-k}$, a vertex with weight greater than \(\max\{8k, 2(k + 1 + o(1))\mu(d)\} \log n \) is in the GCC.
With probability at least $1 - 2n^{-k}$, a vertex with weight greater than $\max\{8k, 2(k + 1 + o(1))\mu(d)\} \log n$ is in the GCC.

For any $k > 2$, with probability at least $1 - 6n^{-k+2}$, we have $|\text{Vol}(GCC) - E(\text{Vol}(GCC))| \leq 2C_1(k + 1)^2\sqrt{k} - 2\sqrt{n} \log^{2.5} n$, where $C_1 = 10\mu(d) + 2\mu(d)^2$.
With probability at least $1 - 2n^{-k}$, a vertex with weight greater than \(\max\{8k, 2(k + 1 + o(1))\mu(d)\} \log n \) is in the GCC.

For any $k > 2$, with probability at least $1 - 6n^{-k+2}$, we have \(|\text{Vol}(\text{GCC}) - E(\text{Vol}(\text{GCC}))| \leq 2C_1(k + 1)^2 \sqrt{k - 2} \sqrt{n} \log^{2.5} n \), where \(C_1 = 10\mu(d) + 2\mu(d)^2 \).

\[
\text{Vol}(G) - E(\text{vol}(\text{GCC}')) = \sum_{w_v < C_k \log n} w_v e^{-w_v E(\text{Vol}(\text{GCC}'))} \rho + O(k^3 \sqrt{n} \log^{3.5} n).
\]
Suppose that z is a function of x and y in terms of another analytic function ϕ as follows:

$$z = x + y\phi(z).$$

Then z can be written as a power series in y as follows:

$$z = x + \sum_{k=1}^{\infty} \frac{y^k}{k!}D^{(k-1)}\phi^k(x)$$

where $D^{(t)}$ denotes the t-th derivative.
Apply it to $G(n, p)$

For the $G(n, p)$, the equation is simply $e^{-d\lambda} = (1 - \lambda)$. Let $\lambda = 1 - \frac{z}{d}$. We have $z = d e^{-d} e^{z}$.
Apply it to $G(n,p)$

For the $G(n,p)$, the equation is simply $e^{-d\lambda} = (1 - \lambda)$. Let $\lambda = 1 - \frac{z}{d}$. We have $z = de^{-d}e^z$. We apply Lagrange inversion formula with $x = 0$, $y = de^{-d}$, and $\phi(z) = e^z$. Then we have

$$z = \sum_{k=1}^{\infty} \frac{y^k}{k!} D^{(k-1)} e^{kx} \bigg|_{x=0}$$

$$= \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} (de^{-d})^k$$

This is exactly Erdős and Rényi’s result on $G(n,p)$.
Question: Does the random graph with equal expected degrees generates the smallest giant component among all possible degree distribution with the same volume?
Question: Does the random graph with equal expected degrees generates the smallest giant component among all possible degree distribution with the same volume?

Chung Lu (2004)

- Yes, for $1 < d \leq \frac{e}{e-1}$.

$G(n, p)$ verse $G(w_1, \ldots, w_n)$
Question: Does the random graph with equal expected degrees generates the smallest giant component among all possible degree distribution with the same volume?

Chung Lu (2004)

- Yes, for $1 < d \leq \frac{e}{e-1}$.
- No, for sufficiently large d.

$G(n, p)$ verse $G(w_1, \ldots, w_n)$
Question: Does the random graph with equal expected degrees generates the smallest giant component among all possible degree distribution with the same volume?

Chung Lu (2004)

- Yes, for $1 < d \leq \frac{e}{e-1}$.
- No, for sufficiently large d.
- When $d \geq \frac{4}{e}$, almost surely the giant component of $G(w_1, \ldots, w_n)$ has volume at least

$$\left(\frac{1}{2} \left(1 + \sqrt{1 - \frac{4}{de}} \right) + o(1) \right) \text{Vol}(G).$$

This is asymptotically best possible.
Chung, Lu (2004) *If the expected average degree is strictly greater than 1, then almost surely the giant component in a random graph of given expected degrees* \(w_i, i = 1, \ldots, n \), *has* \(n - \sum_{i=1}^{n} e^{-w_i \lambda_0} + O(\sqrt{n \log^{3.5} n}) \) *vertices and* \((\lambda_0 - \frac{1}{2} \lambda_0^2) \text{Vol}(G) + O(\sqrt{\text{Vol}(G) \log^{3.5} n}) \) *edges.*
In the collaboration graph

\[\lambda_0(2 - \lambda_0) \approx \frac{\text{Vol}(GCC')}{\text{Vol}(G)} \approx \frac{248000}{284000}. \]

We have \(\lambda_0 \approx 0.644 \).

Let \(n_k \) denote the number of vertices of degree \(k \). We have

\[n_k \approx \mathbb{E}(n_k) \approx \sum_{i \geq 0} \frac{w_i^k}{k!} e^{-w_i}. \]

<table>
<thead>
<tr>
<th>(n_0)</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(n_4)</th>
<th>(n_5)</th>
<th>(n_6)</th>
<th>(n_7)</th>
<th>(n_8)</th>
<th>(n_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>166381</td>
<td>145872</td>
<td>34227</td>
<td>16426</td>
<td>9913</td>
<td>6670</td>
<td>4643</td>
<td>3529</td>
<td>2611</td>
<td>203</td>
</tr>
</tbody>
</table>
Compute \(|GCC|\)

\[
|GCC| \approx n - \sum_{i=1}^{n} e^{-\lambda_0 w_i}
\]

\[
= n - \sum_{i=1}^{n} e^{(1-\lambda_0)w_i} e^{-w_i}
\]

\[
= \sum_{k \geq 0} n_k - \sum_{i=1}^{n} \sum_{k=0}^{\infty} \frac{(1 - \lambda_0)^k}{k!} w_i^k e^{-w_i}
\]

\[
\approx \sum_{k \geq 0} n_k (1 - (1 - \lambda_0)^k)
\]

\[
= \sum_{k \geq 1} n_k (1 - (1 - \lambda_0)^k).
\]
The size of giant component is predicted to be about 177,400 by our theory. This is rather close to the actual value 176,000, within an error bound of less than 1%.
References

Overview of talks

- Lecture 1: Overview and outlines
- Lecture 2: Generative models - preferential attachment schemes
- Lecture 3: Duplication models for biological networks
- Lecture 4: The rise of the giant component
- Lecture 5: The small world phenomenon: average distance and diameter
- Lecture 6: Spectrum of random graphs with given degrees