Explicit Construction of Small Folkman Graphs

Linyuan Lu
lu@math.sc.edu.

University of South Carolina

The 22nd Clemson Mini-Conference
on Discrete Mathematics and Algorithms
Ramsey number $R(3, 3) = 6$

If edges of K_6 are 2-colored then there exists a monochromatic triangle.
Ramsey number \(R(3, 3) = 6 \)

- If edges of \(K_6 \) are 2-colored then there exists a monochromatic triangle.

- There exists a 2-coloring of edges of \(K_5 \) with no monochromatic triangle.
Rado’s arrow notation

\[G \to (H) : \text{if the edges of } G \text{ are 2-colored then there exists a monochromatic subgraph of } G \text{ isomorphic to } H. \]
Rado’s arrow notation

\[G \rightarrow (H) \]: if the edges of \(G \) are 2-colored then there exists a monochromatic subgraph of \(G \) isomorphic to \(H \).

Fact: If \(K_6 \subset G \), then \(G \rightarrow (K_3) \).
Is there a K_6-free graph G with $G \rightarrow (K_3)$?
A question of Erdős and Hajnal

Is there a K_6-free graph G with $G \rightarrow (K_3)$?

Graham (1968): Yes!

$K_8 \setminus C_5$
Suppose G has no monochromatic triangle.
Graham’s graph \[K_8 \setminus C_5 = K_3 \ast C_5 \]

Suppose \(G \) has no monochromatic triangle.
Graham’s graph \(K_8 \setminus C_5 = K_3 \ast C_5 \)

Suppose \(G \) has no monochromatic triangle.
Graham’s graph \(K_8 \setminus C_5 = K_{3} \ast C_5 \)

Suppose \(G \) has no monochromatic triangle.
Graham’s graph $K_8 \setminus C_5 = K_3 \ast C_5$

Suppose G has no monochromatic triangle.
Suppose G has no monochromatic triangle.

Label the vertices of C_5 by either (r, b) or (b, r).

Graham’s graph $K_8 \setminus C_5 = K_3 \ast C_5$
Graham’s graph \(K_8 \setminus C_5 = K_3 \ast C_5 \)

Suppose \(G \) has no monochromatic triangle.

Label the vertices of \(C_5 \) by either \((r, b)\) or \((b, r)\).

A red triangle is unavoidable since \(\chi(C_5) = 3 \).
K_5-free graphs G with $G \to (K_3)$

| Year | Authors | $|G|$ |
|-------|-----------------------------|-----|
| 1969 | Schäuble | 42 |
| 1971 | Graham, Spencer | 23 |
| 1973 | Irving | 18 |
| 1979 | Hadziivanov, Nenov | 16 |
| 1981 | Nenov | 15 |
K_5-free graphs G with $G \rightarrow (K_3)$

| Year | Authors | $|G|$ |
|------|--------------------------|------|
| 1969 | Schäuble | 42 |
| 1971 | Graham, Spencer | 23 |
| 1973 | Irving | 18 |
| 1979 | Hadziivanov, Nenov | 16 |
| 1981 | Nenov | 15 |

In 1998, Piwakowski, Radziszowski and Urbański used a computer-aided exhaustive search to rule out all possible graphs on less than 15 vertices.
General results

Folkman’s theorem (1970): For any $k_2 > k_1 \geq 3$, there exists a K_{k_2}-free graph G with $G \rightarrow (K_{k_1})$.

These graphs are called Folkman Graphs.
General results

Folkman’s theorem (1970): For any \(k_2 > k_1 \geq 3 \), there exists a \(K_{k_2} \)-free graph \(G \) with \(G \rightarrow (K_{k_1}) \).

These graphs are called Folkman Graphs.

Nešetřil-Rödl’s theorem (1976): For \(p \geq 2 \) and any \(k_2 > k_1 \geq 3 \), there exists a \(K_{k_2} \)-free graph \(G \) with \(G \rightarrow (K_{k_1})_p \).

Here \(G \rightarrow (H)_p \): if the edges of \(G \) are \(p \)-colored then there exists a monochromatic subgraph of \(G \) isomorphic to \(H \).
Let $f(p, k_1, k_2)$ denote the smallest integer n such that there exists a K_{k_2}-free graph G on n vertices with $G \rightarrow (K_{k_1})_p$.

Graham

$$f(2, 3, 6) = 8.$$
Let $f(p, k_1, k_2)$ denote the smallest integer n such that there exists a K_{k_2}-free graph G on n vertices with $G \rightarrow (K_{k_1})^p$.

- **Graham**

 $f(2, 3, 6) = 8$.

- **Nenov, Piwakowski, Radziszowski and Urbański**

 $f(2, 3, 5) = 15$.

Let \(f(p, k_1, k_2) \) denote the smallest integer \(n \) such that there exists a \(K_{k_2} \)-free graph \(G \) on \(n \) vertices with \(G \to (K_{k_1})^p \).

- **Graham**
 \[
f(2, 3, 6) = 8.
 \]

- **Nenov, Piwakowski, Radziszowski and Urbański**
 \[
f(2, 3, 5) = 15.
 \]

- **What about \(f(2, 3, 4) \)?**
Upper bound of $f(2, 3, 4)$

Folkman, Nešetřil-Rödl’s upper bound is huge.
Upper bound of $f(2, 3, 4)$

- Folkman, Nešetřil-Rödl’s upper bound is huge.
- Frankl and Rödl (1986)

$$f(2, 3, 4) \leq 7 \times 10^{11}.$$
Upper bound of $f(2, 3, 4)$

- Folkman, Nešetřil-Rödl’s upper bound is huge.
- Frankl and Rödl (1986)

$$f(2, 3, 4) \leq 7 \times 10^{11}.$$

- Erdős set a prize of $100 for the challenge

$$f(2, 3, 4) \leq 10^{10}.$$
Folkman, Nešetřil-Rödl’s upper bound is huge.

Frankl and Rödl (1986)

\[f(2, 3, 4) \leq 7 \times 10^{11}. \]

Erdős set a prize of $100 for the challenge

\[f(2, 3, 4) \leq 10^{10}. \]

Spencer (1988) claimed the prize.

\[f(2, 3, 4) \leq 3 \times 10^{9}. \]
Upper bound of $f(2, 3, 4)$

- Folkman, Nešetřil-Rödl’s upper bound is huge.
- Frankl and Rödl (1986)

 \[f(2, 3, 4) \leq 7 \times 10^{11}. \]

- Erdős set a prize of 100 for the challenge

 \[f(2, 3, 4) \leq 10^{10}. \]

- Spencer (1988) claimed the prize.

 \[f(2, 3, 4) \leq 3 \times 10^{9}. \]

- Erdős re-set a prize of 100 for the new challenge

 \[f(2, 3, 4) \leq 10^6. \]
The most wanted Folkman Graph
The most wanted Folkman Graph

Problem on triangle-free subgraphs in graphs containing no K_4
(proposed by Erdős)

Let $f(p, k_1, k_2)$ denote the smallest integer n such that there is a graph G with n vertices satisfying the properties:
(1) any edge coloring in p colors contains a monochromatic K_{k_1};
(2) G contains no K_{k_2}.
Prove or disprove:

$$f(2, 3, 4) < 10^6.$$
Difficulty

There is no efficient algorithm to test whether
\[G \rightarrow (K_3) . \]
There is no efficient algorithm to test whether $G \rightarrow (K_3)$.

For moderate n, Folkman graphs are very rare among all K_4-free graphs on n vertices.
Difficulty

- There is no efficient algorithm to test whether $G \rightarrow (K_3)$.

- For moderate n, Folkman graphs are very rare among all K_4-free graphs on n vertices.

- Probabilistic methods are generally good choices for asymptotic results. However, it is not good for moderate size n.
Our approach

Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
Our approach

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.

- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
Our approach

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.

- Search a special class of graphs so that we have a better chance of finding a Folkman graph.

- Use spectral analysis instead of probabilistic methods.
Our approach

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.

- Search a special class of graphs so that we have a better chance of finding a Folkman graph.

- Use spectral analysis instead of probabilistic methods.

- Localization and δ-fairness.
Our approach

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.

- Search a special class of graphs so that we have a better chance of finding a Folkman graph.

- Use spectral analysis instead of probabilistic methods.

- Localization and δ-fairness.

- Circulant graphs and $L(m, s)$.
Our result

We claim the reward by proving

Theorem 1 (Lu, 2007) \(f(2, 3, 4) \leq 9697. \)
Our result

We claim the reward by proving

Theorem 1 (Lu, 2007) \(f(2, 3, 4) \leq 9697. \)

We explicitly constructed 4 Folkman graphs with orders

9697, 30193, 33121, 57401.
Our result

We claim the reward by proving

Theorem 1 (Lu, 2007) \(f(2, 3, 4) \leq 9697 \).

We explicitly constructed 4 Folkman graphs with orders

\[9697, \quad 30193, \quad 33121, \quad 57401. \]

Recent update: Dudek and Rödl (2008) proved

\[f(2, 3, 4) \leq 941. \]
Spencer’s Lemma

Notations:
- G_v: the induced graph on the neighborhood of v.
- $b(H)$: the maximum size of edge-cuts for H.
Spencer’s Lemma

Notations:
- G_v: the induced graph on the neighborhood of v.
- $b(H)$: the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_v b(G_v) < \frac{2}{3} \sum_v |E(G_v)|$, then $G \to (K_3)$.
Spencer’s Lemma

Notations:
- G_v: the induced graph on the neighborhood of v.
- $b(H)$: the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_v b(G_v) < \frac{2}{3} \sum_v |E(G_v)|$, then $G \rightarrow (K_3)$.
Localization

For $0 < \delta < \frac{1}{2}$, a graph H is δ-fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$
Localization

For $0 < \delta < \frac{1}{2}$, a graph H is δ-fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$

G is a Folkman graph if for each v

- G_v is $\frac{1}{6}$-fair.
- G_v is K_3-free.
Localization

For $0 < \delta < \frac{1}{2}$, a graph H is δ-fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$

G is a Folkman graph if for each v

- G_v is $\frac{1}{6}$-fair.
- G_v is K_3-free.

For vertex transitive graph G, all G_v's are isomorphic.
Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- $d = (d_1, d_2, \ldots, d_n)$: degrees of H
- $\text{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\bar{d} = \frac{\text{Vol}(H)}{n}$: the average degree
Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- $d = (d_1, d_2, \ldots, d_n)$: degrees of H
- $\text{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\bar{d} = \frac{\text{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M = A - \frac{1}{\text{Vol}(H)} d \cdot d'$ is greater than $-2\delta \bar{d}$, then H is δ-fair.
Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- $d = (d_1, d_2, \ldots, d_n)$: degrees of H
- $\text{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\bar{d} = \frac{\text{Vol}(H)}{n}$: the average degree

Lemma (Lu) *If the smallest eigenvalue of $M = A - \frac{1}{\text{Vol}(H)}d \cdot d'$ is greater than $-2\delta \bar{d}$, then H is δ-fair.*

Similar results hold for A and L. However, they are weaker than using M in experiments.
Corollary

Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2\delta d$. Then H is δ-fair.
Corollary Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2\delta d$. Then H is δ-fair.

Proof: We can replace M by A in the previous lemma.

- 1 is an eigenvector of A with respect to d.
- M is the projection of A to the hyperspace 1^\perp.
- M and A have the same smallest eigenvalues.
The proof of the Lemma

\[V(H) = X \cup Y: \text{a partition of the vertex-set.} \]
The proof of the Lemma

- $V(H) = X \cup Y$: a partition of the vertex-set.
- $1_X, 1_Y$: indicated functions of X and Y.

\[1_X + 1_Y = 1. \]
The proof of the Lemma

- $V(H) = X \cup Y$: a partition of the vertex-set.
- $1_X, 1_Y$: indicated functions of X and Y.

\[1_X + 1_Y = 1. \]

- We observe $M1 = 0.$
The proof of the Lemma

- $V(H) = X \cup Y$: a partition of the vertex-set.
- $1_X, 1_Y$: indicated functions of X and Y.

$$1_X + 1_Y = 1.$$

- We observe $M1 = 0$.

- For each $t \in (0, 1)$, let $\alpha(t) = (1 - t)1_X - t1_Y$. We have

$$\alpha(t)' \cdot M \cdot \alpha(t) = -e(X, Y) + \frac{1}{\Vol(H) \Vol(X) \Vol(Y)}.$$
The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$e(X, Y) - \frac{\text{Vol}(X)\text{Vol}(Y)}{\text{Vol}(H)} \leq -\alpha(t)' \cdot M \cdot \alpha(t) \leq -\rho \|\alpha_t\|^2.$$
The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$e(X, Y) - \frac{\text{Vol}(X)\text{Vol}(Y)}{\text{Vol}(H)} \leq -\alpha(t)' \cdot M \cdot \alpha(t) \leq -\rho\|\alpha_t\|^2.$$

Choose $t = \frac{|X|}{n}$ so that $\|\alpha(t)\|^2$ reaches its minimum $\frac{|X||Y|}{n}$.
The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$e(X, Y) - \frac{\text{Vol}(X)\text{Vol}(Y)}{\text{Vol}(H)} \leq -\alpha(t)\ ' \cdot M \cdot \alpha(t) \leq -\rho \|\alpha_t\|^2.$$

Choose $t = \frac{|X|}{n}$ so that $\|\alpha(t)\|^2$ reaches its minimum $\frac{|X||Y|}{n}$. We have

$$e(X, Y) \leq \frac{\text{Vol}(X)\text{Vol}(Y)}{\text{Vol}(H)} + \rho \frac{|X||Y|}{n}.$$

$$\leq \frac{\text{Vol}(H)}{4} - \rho \frac{n}{4}$$

$$< \left(\frac{1}{2} + \delta\right)|E(H)|, \text{ since } \rho > -2\delta \bar{d}. \quad \Box$$
Circulant graphs

- \(\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} \)
- \(S \): a subset of \(\mathbb{Z}_n \) satisfying \(-S = S\) and \(0 \notin S \).

We define a circulant graph \(H \) by

- \(V(H) = \mathbb{Z}_n \)
- \(E(H) = \{xy \mid x - y \in S\} \).

Example: A circulant graph with \(n = 8 \) and \(S = \{\pm1, \pm3\} \).
Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_n$ are

$$
\sum_{s \in S} \cos \frac{2\pi is}{n}
$$

for $i = 0, \ldots, n - 1$.

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_n$ are

$$\sum_{s \in S} \cos \frac{2\pi is}{n}$$

for $i = 0, \ldots, n - 1$.

Proof: Note $A = g(J)$, where

$$g(x) = \sum_{s \in S} x^s.$$

$$J = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{pmatrix}$$
Proof continues...

Let \(\phi = e^{\frac{2\pi\sqrt{-1}}{n}} \) denote the primitive \(n \)-th unit root.
\(J \) has eigenvalues

\[1, \phi, \phi^2, \ldots, \phi^{n-1}. \]
Proof continues...

Let $\phi = e^{\frac{2\pi\sqrt{-1}}{n}}$ denote the primitive n-th unit root. J has eigenvalues

$$1, \phi, \phi^2, \ldots, \phi^{n-1}.$$

Thus, the eigenvalues of $A = g(J)$ are

$$g(1), g(\phi), \ldots, g(\phi^{n-1}).$$
Proof continues...

Let \(\phi = e^{\frac{2\pi \sqrt{-1}}{n}} \) denote the primitive \(n \)-th unit root.

\(J \) has eigenvalues

\[1, \phi, \phi^2, \ldots, \phi^{n-1}. \]

Thus, the eigenvalues of \(A = g(J) \) are

\[g(1), g(\phi), \ldots, g(\phi^{n-1}). \]

For \(i = 0, 1, 2, \ldots, n - 1 \), we have

\[g(\phi^i) = \Re(g(\phi^i)) = \sum_{s \in S} \cos \frac{2\pi i s}{n}. \]
Graph $L(m, s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$s^n \equiv 1 \mod m.$$
Graph $L(m, s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$s^n \equiv 1 \mod m.$$

We define the graph $L(m, s)$ to be a circulant graph on m vertices with

$$S = \{ s^i \mod m \mid i = 0, 1, 2, \ldots, n - 1 \}.$$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$s^n \equiv 1 \mod m.$$

We define the graph $L(m, s)$ to be a circulant graph on m vertices with

$$S = \{s^i \mod m \mid i = 0, 1, 2, \ldots, n - 1\}.$$

Proposition: The local graph G_v of $L(m, s)$ is also a circulant graph.
Algorithm

For each $L(m, s)$, compute the local graph G_v.
Algorithm

- For each $L(m, s)$, compute the local graph G_v.
- If G_v is not triangle-free, reject it and try a new graph $L(m, s)$.
Algorithm

- For each $L(m, s)$, compute the local graph G_v.
- If G_v is not triangle-free, reject it and try a new graph $L(m, s)$.
- If the ratio the smallest eigenvalue verse the largest eigenvalue of G_v is less than $-\frac{1}{3}$, reject it and try a new graph $L(m, s)$.
Algorithm

- For each $L(m, s)$, compute the local graph G_v.
- If G_v is not triangle-free, reject it and try a new graph $L(m, s)$.
- If the ratio the smallest eigenvalue verse the largest eigenvalue of G_v is less than $-\frac{1}{3}$, reject it and try a new graph $L(m, s)$.
- Output a Folkman graph $L(m, s)$.
Computational results

<table>
<thead>
<tr>
<th>$L(m, s)$</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(127, 5)$</td>
<td>$-0.6363\ldots$</td>
</tr>
<tr>
<td>$L(761, 3)$</td>
<td>$-0.5613\ldots$</td>
</tr>
<tr>
<td>$L(785, 53)$</td>
<td>$-0.5404\ldots$</td>
</tr>
<tr>
<td>$L(941, 12)$</td>
<td>$-0.5376\ldots$</td>
</tr>
<tr>
<td>$L(1777, 53)$</td>
<td>$-0.5216\ldots$</td>
</tr>
<tr>
<td>$L(1801, 125)$</td>
<td>$-0.4912\ldots$</td>
</tr>
<tr>
<td>$L(2641, 2)$</td>
<td>$-0.4275\ldots$</td>
</tr>
<tr>
<td>$L(9697, 4)$</td>
<td>$-0.3307\ldots$</td>
</tr>
<tr>
<td>$L(30193, 53)$</td>
<td>$-0.3094\ldots$</td>
</tr>
<tr>
<td>$L(33121, 2)$</td>
<td>$-0.2665\ldots$</td>
</tr>
<tr>
<td>$L(57401, 7)$</td>
<td>$-0.3289\ldots$</td>
</tr>
</tbody>
</table>

σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.
Computational results

<table>
<thead>
<tr>
<th>$L(m, s)$</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(127, 5)$</td>
<td>$-0.6363 \ldots$</td>
</tr>
<tr>
<td>$L(761, 3)$</td>
<td>$-0.5613 \ldots$</td>
</tr>
<tr>
<td>$L(785, 53)$</td>
<td>$-0.5404 \ldots$</td>
</tr>
<tr>
<td>$L(941, 12)$</td>
<td>$-0.5376 \ldots$</td>
</tr>
<tr>
<td>$L(1777, 53)$</td>
<td>$-0.5216 \ldots$</td>
</tr>
<tr>
<td>$L(1801, 125)$</td>
<td>$-0.4912 \ldots$</td>
</tr>
<tr>
<td>$L(2641, 2)$</td>
<td>$-0.4275 \ldots$</td>
</tr>
<tr>
<td>$L(9697, 4)$</td>
<td>$-0.3307 \ldots$</td>
</tr>
<tr>
<td>$L(30193, 53)$</td>
<td>$-0.3094 \ldots$</td>
</tr>
<tr>
<td>$L(33121, 2)$</td>
<td>$-0.2665 \ldots$</td>
</tr>
<tr>
<td>$L(57401, 7)$</td>
<td>$-0.3289 \ldots$</td>
</tr>
</tbody>
</table>

σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.

All graphs on the left are K_4-free.
Computational results

<table>
<thead>
<tr>
<th>$L(m, s)$</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(127, 5)$</td>
<td>$-0.6363\ldots$</td>
</tr>
<tr>
<td>$L(761, 3)$</td>
<td>$-0.5613\ldots$</td>
</tr>
<tr>
<td>$L(785, 53)$</td>
<td>$-0.5404\ldots$</td>
</tr>
<tr>
<td>$L(941, 12)$</td>
<td>$-0.5376\ldots$</td>
</tr>
<tr>
<td>$L(1777, 53)$</td>
<td>$-0.5216\ldots$</td>
</tr>
<tr>
<td>$L(1801, 125)$</td>
<td>$-0.4912\ldots$</td>
</tr>
<tr>
<td>$L(2641, 2)$</td>
<td>$-0.4275\ldots$</td>
</tr>
<tr>
<td>$L(9697, 4)$</td>
<td>$-0.3307\ldots$</td>
</tr>
<tr>
<td>$L(30193, 53)$</td>
<td>$-0.3094\ldots$</td>
</tr>
<tr>
<td>$L(33121, 2)$</td>
<td>$-0.2665\ldots$</td>
</tr>
<tr>
<td>$L(57401, 7)$</td>
<td>$-0.3289\ldots$</td>
</tr>
</tbody>
</table>

σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.

All graphs on the left are K_4-free.

Graphs in red are Folkman graphs.
Computational results

<table>
<thead>
<tr>
<th>$L(m, s)$</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(127, 5)$</td>
<td>$-0.6363 \cdots$</td>
</tr>
<tr>
<td>$L(761, 3)$</td>
<td>$-0.5613 \cdots$</td>
</tr>
<tr>
<td>$L(785, 53)$</td>
<td>$-0.5404 \cdots$</td>
</tr>
<tr>
<td>$L(941, 12)$</td>
<td>$-0.5376 \cdots$</td>
</tr>
<tr>
<td>$L(1777, 53)$</td>
<td>$-0.5216 \cdots$</td>
</tr>
<tr>
<td>$L(1801, 125)$</td>
<td>$-0.4912 \cdots$</td>
</tr>
<tr>
<td>$L(2641, 2)$</td>
<td>$-0.4275 \cdots$</td>
</tr>
<tr>
<td>$L(9697, 4)$</td>
<td>$-0.3307 \cdots$</td>
</tr>
<tr>
<td>$L(30193, 53)$</td>
<td>$-0.3094 \cdots$</td>
</tr>
<tr>
<td>$L(33121, 2)$</td>
<td>$-0.2665 \cdots$</td>
</tr>
<tr>
<td>$L(57401, 7)$</td>
<td>$-0.3289 \cdots$</td>
</tr>
</tbody>
</table>

- σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.
- All graphs on the left are K_4-free.
- Graphs in red are Folkman graphs.
- Graphs in black are good candidates.
Open questions

Exoo conjectured $L(127, 5)$ is a Folkman graph.
Open questions

- Exoo conjectured $L(127, 5)$ is a Folkman graph.
- Is $L(2641, 2)$ a Folkman graph?
Open questions

- Exoo conjectured $L(127, 5)$ is a Folkman graph.
- Is $L(2641, 2)$ a Folkman graph?
- Our method works for graphs other than $L(m, s)$. Is there any other construction for smaller Folkman graphs?
Open questions

- Exoo conjectured $L(127, 5)$ is a Folkman graph.
- Is $L(2641, 2)$ a Folkman graph?
- Our method works for graphs other than $L(m, s)$. Is there any other construction for smaller Folkman graphs?
- A new challenge: prove or disprove $f(2, 3, 4) \leq 100$.

Explicit Construction of Small Folkman Graphs – p.26/26