Probabilistic Methods in Combinatorics Lecture 8

Linyuan Lu
University of South Carolina

Mathematical Sciences Center at Tsinghua University November 16, 2011 - December 30, 2011

Binomial distribution $B(n, p)$

- n is the number of variables.
- $0<p<1$ is the probability.

Binomial distribution $B(n, p)$

- n is the number of variables.

■ $0<p<1$ is the probability.

$X=\sum_{i=1}^{n} X_{i} . X_{i}$, independent 0-1 random variables.

$$
\operatorname{Pr}\left(X_{i}=1\right)=p, \quad \operatorname{Pr}\left(X_{i}=0\right)=1-p
$$

Binomial distribution $B(n, p)$

- n is the number of variables.

■ $0<p<1$ is the probability.

$X=\sum_{i=1}^{n} X_{i} . X_{i}$, independent 0-1 random variables.

$$
\begin{gathered}
\operatorname{Pr}\left(X_{i}=1\right)=p, \quad \operatorname{Pr}\left(X_{i}=0\right)=1-p \\
B(n, p) \sim N(\mu, \sigma)
\end{gathered}
$$

$N(\mu, \sigma)$: normal distribution with $\mu=n p$ and $\sigma=\sqrt{n p(1-p)}$.

Large deviations

Large deviation inequality I

Chernoff inequalities: Suppose $X=\sum_{i=1}^{n} X_{i}$, where X_{i} are independent 0-1 random variables with

$$
\operatorname{Pr}\left(X_{i}=1\right)=p_{i}, \quad \operatorname{Pr}\left(X_{i}=0\right)=1-p_{i} .
$$

Then we have

$$
\begin{aligned}
& \operatorname{Pr}(X<E(X)-\lambda) \leq e^{-\frac{\lambda^{2}}{2 E(X)}} \\
& \operatorname{Pr}(X>E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2(E(X)+\lambda / 3)}}
\end{aligned}
$$

Large deviation inequality II

A weighted version of Chernoff's inequality:

- $\quad X=\sum_{i=1}^{n} a_{i} X_{i}$

Large deviation inequality II

A weighted version of Chernoff's inequality:

- $\quad X=\sum_{i=1}^{n} a_{i} X_{i}$
$-\quad 0 \leq a_{1}, \ldots, a_{n} \leq M$

Large deviation inequality II

A weighted version of Chernoff's inequality:

- $\quad X=\sum_{i=1}^{n} a_{i} X_{i}$
- $0 \leq a_{1}, \ldots, a_{n} \leq M$
- $\quad X_{1}, \ldots, X_{n}$: independent, 0-1, with $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$

Large deviation inequality II

A weighted version of Chernoff's inequality:

- $\quad X=\sum_{i=1}^{n} a_{i} X_{i}$
- $0 \leq a_{1}, \ldots, a_{n} \leq M$
- $\quad X_{1}, \ldots, X_{n}$: independent, 0-1, with $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$
- $E(X)=\sum_{i=1}^{n} a_{i} p_{i}$

Large deviation inequality II

A weighted version of Chernoff's inequality:

- $\quad X=\sum_{i=1}^{n} a_{i} X_{i}$
- $0 \leq a_{1}, \ldots, a_{n} \leq M$
- $\quad X_{1}, \ldots, X_{n}$: independent, 0-1, with $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$
- $E(X)=\sum_{i=1}^{n} a_{i} p_{i}$
- $\quad \nu=\sum_{i=1}^{n} a_{i}^{2} p_{i}$

Large deviation inequality II

A weighted version of Chernoff's inequality:

- $\quad X=\sum_{i=1}^{n} a_{i} X_{i}$
- $0 \leq a_{1}, \ldots, a_{n} \leq M$
- $\quad X_{1}, \ldots, X_{n}$: independent, 0-1, with $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$
- $E(X)=\sum_{i=1}^{n} a_{i} p_{i}$
- $\quad \nu=\sum_{i=1}^{n} a_{i}^{2} p_{i}$

Theorem [Chung,Lu] We have

$$
\begin{align*}
& \operatorname{Pr}(X<E(X)-\lambda) \leq e^{-\lambda^{2} / 2 \nu} \tag{1}\\
& \operatorname{Pr}(X>E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2(\nu+M \lambda / 3)}} \tag{2}
\end{align*}
$$

Large deviation inequality III

Theorem [McDiarmid]: Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with $X_{i}-E\left(X_{i}\right) \leq M$ for a positive constant M. Let $X=\sum_{i=1}^{n} X_{i}$. Then

$$
\operatorname{Pr}(X-E(X)>\lambda) \leq e^{-\frac{\lambda^{2}}{2(\operatorname{Var}(X)+M \lambda / 3)}} .
$$

Large deviation inequality III

Theorem [McDiarmid]: Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with $X_{i}-E\left(X_{i}\right) \leq M$ for a positive constant M. Let $X=\sum_{i=1}^{n} X_{i}$. Then

$$
\operatorname{Pr}(X-E(X)>\lambda) \leq e^{-\frac{\lambda^{2}}{2(\operatorname{Var}(X)+M \lambda / 3)}} .
$$

Note: If $\operatorname{Pr}\left(X_{i}=a_{i}\right)=p_{i}$ and $\operatorname{Pr}\left(X_{i}=0\right)=1-p_{i}$, then $\operatorname{Var}(X)=a_{i}^{2} p_{i}\left(1-p_{i}\right) \leq \nu$. Thus

$$
\operatorname{Pr}(X-E(X)>\lambda) \leq e^{-\frac{\lambda^{2}}{2(\nu+M \lambda / 3)}} .
$$

Large deviation inequality III

Theorem [McDiarmid]: Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with $X_{i}-E\left(X_{i}\right) \leq M$ for a positive constant M. Let $X=\sum_{i=1}^{n} X_{i}$. Then

$$
\operatorname{Pr}(X-E(X)>\lambda) \leq e^{-\frac{\lambda^{2}}{2(\operatorname{Var}(X)+M \lambda / 3)}} .
$$

Note: If $\operatorname{Pr}\left(X_{i}=a_{i}\right)=p_{i}$ and $\operatorname{Pr}\left(X_{i}=0\right)=1-p_{i}$, then $\operatorname{Var}(X)=a_{i}^{2} p_{i}\left(1-p_{i}\right) \leq \nu$. Thus

$$
\operatorname{Pr}(X-E(X)>\lambda) \leq e^{-\frac{\lambda^{2}}{2(\nu+M \lambda / 3)}} .
$$

This theorem implies inequality of upper tail in previous Theorem.

Large deviation inequality IV

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \leq M$, for $1 \leq i \leq n$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\|X\|=\sqrt{\sum_{i=1}^{n} \mathrm{E}\left(X_{i}^{2}\right)}$. Then we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\|X\|^{2}+M \lambda / 3\right)}} .
$$

Large deviation inequality IV

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \leq M$, for $1 \leq i \leq n$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\|X\|=\sqrt{\sum_{i=1}^{n} \mathrm{E}\left(X_{i}^{2}\right)}$. Then we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\|X\|^{2}+M \lambda / 3\right)}} .
$$

This theorem implies McDiarmid's Theorem.

Large deviation inequality IV

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \leq M$, for $1 \leq i \leq n$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\|X\|=\sqrt{\sum_{i=1}^{n} \mathrm{E}\left(X_{i}^{2}\right)}$. Then we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\|X\|^{2}+M \lambda / 3\right)}} .
$$

This theorem implies McDiarmid's Theorem.

$$
\begin{aligned}
& \text { Let } X_{i}^{\prime}=X_{i}-\mathrm{E}\left(X_{i}\right), \text { and } X^{\prime}=X-\mathrm{E}(X) . \\
& \qquad X-\mathrm{E}(X)=X^{\prime}-\mathrm{E}\left(X^{\prime}\right) \\
& \left\|X^{\prime}\right\|^{2}=\sum_{i=1}^{n} \mathrm{E}\left(X_{i}^{\prime 2}\right)=\operatorname{Var}(X) .
\end{aligned}
$$

Lower tail

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \geq 0$, for $1 \leq i \leq n$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\|X\|=\sqrt{\sum_{i=1}^{n} \mathrm{E}\left(X_{i}^{2}\right)}$. Then we have

$$
\operatorname{Pr}(X \leq E(X)-\lambda) \leq e^{-\frac{\lambda^{2}}{2\|X\|^{2}}}
$$

Lower tail

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \geq 0$, for $1 \leq i \leq n$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\|X\|=\sqrt{\sum_{i=1}^{n} \mathrm{E}\left(X_{i}^{2}\right)}$. Then we have

$$
\operatorname{Pr}(X \leq E(X)-\lambda) \leq e^{-\frac{\lambda^{2}}{2\|X\|^{2}}} .
$$

Proof: Let $X_{i}^{\prime}=-X_{i}$ and $X^{\prime}=-X$. Applying the upper tail to X^{\prime} with $M=0$, we get

$$
\begin{aligned}
\operatorname{Pr}(X \leq E(X)-\lambda) & =\operatorname{Pr}\left(X^{\prime} \geq E\left(X^{\prime}\right)+\lambda\right) \\
& \leq e^{-\frac{\lambda^{2}}{2\left\|X^{\prime}\right\|^{2}}}=e^{-\frac{\lambda^{2}}{2\|X\|^{2}}}
\end{aligned}
$$

A special function

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

A special function

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

Facts:

- $g(0)=1$.

A special function

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

Facts:

- $g(0)=1$.
- $g(y) \leq 1$, for $y<0$.

A special function

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

Facts:

- $g(0)=1$.
- $g(y) \leq 1$, for $y<0$.
- $g(y)$ is monotone increasing, for $y \geq 0$.

A special function

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!}=\frac{2\left(e^{y}-1-y\right)}{y^{2}} .
$$

Facts:

- $g(0)=1$.
- $g(y) \leq 1$, for $y<0$.
- $g(y)$ is monotone increasing, for $y \geq 0$.
- For $y<3$, we have

$$
g(y)=2 \sum_{k=2}^{\infty} \frac{y^{k-2}}{k!} \leq \sum_{k=2}^{\infty} \frac{y^{k-2}}{3^{k-2}}=\frac{1}{1-y / 3} .
$$

Proof of upper tail

$$
\mathrm{E}\left(e^{t X}\right)=\prod_{i=1}^{n} \mathrm{E}\left(e^{t X_{i}}\right)
$$

Proof of upper tail

$$
\begin{aligned}
\mathrm{E}\left(e^{t X}\right) & =\prod_{i=1}^{n} \mathrm{E}\left(e^{t X_{i}}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(\sum_{k=0}^{\infty} \frac{t^{k} X_{1}^{k}}{k!}\right)
\end{aligned}
$$

Proof of upper tail

$$
\begin{aligned}
\mathrm{E}\left(e^{t X}\right) & =\prod_{i=1}^{n} \mathrm{E}\left(e^{t X_{i}}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(\sum_{k=0}^{\infty} \frac{t^{k} X_{i}^{k}}{k!}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(1+t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{2} X_{i}^{2} g\left(t X_{i}\right)\right)
\end{aligned}
$$

Proof of upper tail

$$
\begin{aligned}
\mathrm{E}\left(e^{t X}\right) & =\prod_{i=1}^{n} \mathrm{E}\left(e^{t X_{i}}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(\sum_{k=0}^{\infty} \frac{t^{k} X_{i}^{k}}{k!}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(1+t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{2} X_{i}^{2} g\left(t X_{i}\right)\right) \\
& \leq \prod_{i=1}^{n}\left(1+t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{2} \mathrm{E}\left(X_{i}^{2}\right) g(t M)\right)
\end{aligned}
$$

Proof of upper tail

$$
\begin{aligned}
\mathrm{E}\left(e^{t X}\right) & =\prod_{i=1}^{n} \mathrm{E}\left(e^{t X_{i}}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(\sum_{k=0}^{\infty} \frac{t^{k} X_{i}^{k}}{k!}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(1+t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{2} X_{i}^{2} g\left(t X_{i}\right)\right) \\
& \leq \prod_{i=1}^{n}\left(1+t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{2} \mathrm{E}\left(X_{i}^{2}\right) g(t M)\right) \\
& \leq \prod_{i=1}^{n} \int_{\mathrm{E}}^{t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{t} \mathrm{E}\left(X_{i}^{2}\right) g(t M)}
\end{aligned}
$$

Proof of upper tail

$$
\begin{aligned}
\mathrm{E}\left(e^{t X}\right) & =\prod_{i=1}^{n} \mathrm{E}\left(e^{t X_{i}}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(\sum_{k=0}^{\infty} \frac{t^{k} X_{i}^{k}}{k!}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(1+t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{2} X_{i}^{2} g\left(t X_{i}\right)\right) \\
& \leq \prod_{i=1}^{n}\left(1+t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{2} \mathrm{E}\left(X_{i}^{2}\right) g(t M)\right) \\
& \leq \prod_{i=1}^{n} e^{t \mathrm{E}\left(X_{i}\right)+\frac{1}{2} t^{2} \mathrm{E}\left(X_{i}^{2}\right) g(t M)} \\
& =e^{t \mathbb{E}(X)+\frac{1}{2} t^{2} g(t M)\|X\|^{2}} .
\end{aligned}
$$

Continuous

Hence, for t satisfying $t M<3$, we have

Continuous

Hence, for t satisfying $t M<3$, we have

$$
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda)=\operatorname{Pr}\left(e^{t X} \leq e^{t \mathrm{E}(X)+t \lambda}\right)
$$

Continuous

Hence, for t satisfying $t M<3$, we have

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & =\operatorname{Pr}\left(e^{t X} \leq e^{t \mathrm{E}(X)+t \lambda}\right) \\
& \leq e^{-t \mathrm{E}(X)-t \lambda} \mathrm{E}\left(e^{t X}\right)
\end{aligned}
$$

Continuous

Hence, for t satisfying $t M<3$, we have

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & =\operatorname{Pr}\left(e^{t X} \leq e^{t \mathrm{E}(X)+t \lambda}\right) \\
& \leq e^{-t \mathrm{E}(X)-t \lambda} \mathrm{E}\left(e^{t X}\right) \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2} g(t M)\|X\|^{2}}
\end{aligned}
$$

Continuous

Hence, for t satisfying $t M<3$, we have

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & =\operatorname{Pr}\left(e^{t X} \leq e^{t \mathrm{E}(X)+t \lambda}\right) \\
& \leq e^{-t \mathrm{E}(X)-t \lambda} \mathrm{E}\left(e^{t X}\right) \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2} g(t M)\|X\|^{2}} \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2}\|X\|^{2} \frac{1}{1-t M / 3}}
\end{aligned}
$$

Continuous

Hence, for t satisfying $t M<3$, we have

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & =\operatorname{Pr}\left(e^{t X} \leq e^{t \mathrm{E}(X)+t \lambda}\right) \\
& \leq e^{-t \mathrm{E}(X)-t \lambda} \mathrm{E}\left(e^{t X}\right) \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2} g(t M)\|X\|^{2}} \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2}\|X\|^{2} \frac{1}{1-t M / 3}} .
\end{aligned}
$$

Choose $t=\frac{\lambda}{\|X\|^{2}+M \lambda / 3}$. We have $1-\frac{M t}{3}=\frac{\|X\|^{2}}{\|X\|^{2}+M \lambda / 3}$.

Continuous

Hence, for t satisfying $t M<3$, we have

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & =\operatorname{Pr}\left(e^{t X} \leq e^{t \mathrm{E}(X)+t \lambda}\right) \\
& \leq e^{-t \mathrm{E}(X)-t \lambda} \mathrm{E}\left(e^{t X}\right) \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2} g(t M)\|X\|^{2}} \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2}\|X\|^{2} \frac{1}{1-t M / 3}} .
\end{aligned}
$$

Choose $t=\frac{\lambda}{\|X\|^{2}+M \lambda / 3}$. We have $1-\frac{M t}{3}=\frac{\|X\|^{2}}{\|X\|^{2}+M \lambda / 3}$.
$\operatorname{Pr}(X>E(X)+\lambda) \leq e^{-t \lambda+t^{2}\|X\|^{2} \frac{1}{2(1-M t / 3)}}$

Continuous

Hence, for t satisfying $t M<3$, we have

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & =\operatorname{Pr}\left(e^{t X} \leq e^{t \mathrm{E}(X)+t \lambda}\right) \\
& \leq e^{-t \mathrm{E}(X)-t \lambda} \mathrm{E}\left(e^{t X}\right) \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2} g(t M)\|X\|^{2}} \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2}\|X\|^{2} \frac{1}{1-t M / 3}} .
\end{aligned}
$$

Choose $t=\frac{\lambda}{\|X\|^{2}+M \lambda / 3}$. We have $1-\frac{M t}{3}=\frac{\|X\|^{2}}{\|X\|^{2}+M \lambda / 3}$.

$$
\begin{aligned}
\operatorname{Pr}(X>E(X)+\lambda) & \leq e^{-t \lambda+t^{2}\|X\|^{2} \frac{1}{2(1-M t / 3)}} \\
& =e^{-\frac{\lambda^{2}}{\|X\|^{2}+M \lambda / 3}+\frac{\lambda^{2}}{\left(\|X\|^{2}+M \lambda / 3\right)^{2}}\|X\|^{2} \frac{\|X\|^{2}+M \lambda / 3}{2\|X\|^{2}}}
\end{aligned}
$$

Continuous

Hence, for t satisfying $t M<3$, we have

$$
\begin{aligned}
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) & =\operatorname{Pr}\left(e^{t X} \leq e^{t \mathrm{E}(X)+t \lambda}\right) \\
& \leq e^{-t \mathrm{E}(X)-t \lambda} \mathrm{E}\left(e^{t X}\right) \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2} g(t M)\|X\|^{2}} \\
& \leq e^{-t \lambda+\frac{1}{2} t^{2}\|X\|^{2} \frac{1}{1-t M / 3}} .
\end{aligned}
$$

Choose $t=\frac{\lambda}{\|X\|^{2}+M \lambda / 3}$. We have $1-\frac{M t}{3}=\frac{\|X\|^{2}}{\|X\|^{2}+M \lambda / 3}$.
$\operatorname{Pr}(X>E(X)+\lambda) \leq e^{-t \lambda+t^{2}\|X\|^{2} \frac{1}{2(1-M t / 3)}}$

$$
\begin{aligned}
& =e^{-\frac{\lambda^{2}}{\|X\|^{2}+M \lambda / 3}+\frac{\lambda^{2}}{\left(\|X\|^{2}+M \lambda / 3\right)^{2}}\|X\|^{\|^{2}} \frac{\|X\|^{2}+M \lambda / 3}{2\|X\|^{2}}} \\
& =e^{-\frac{\lambda^{2}}{2\left(\|X\|^{2}+M \lambda / 3\right)}} .
\end{aligned}
$$

Large deviation inequality V

Theorem [Chung, Lu] Let X_{i} denote independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+a_{i}+M$, for $1 \leq i \leq n$. For, $X=\sum_{i=1}^{n} X_{i}$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=1}^{n} a_{i}^{2}+M \lambda / 3\right)}} .
$$

Proof: Let $X_{i}^{\prime}=X_{i}-\mathrm{E}\left(X_{i}\right)-a_{i}$ and $X^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}$. We claim

Large deviation inequality V

Theorem [Chung, Lu] Let X_{i} denote independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+a_{i}+M$, for $1 \leq i \leq n$. For, $X=\sum_{i=1}^{n} X_{i}$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=1}^{n} a_{i}^{2}+M \lambda / 3\right)}} .
$$

Proof: Let $X_{i}^{\prime}=X_{i}-\mathrm{E}\left(X_{i}\right)-a_{i}$ and $X^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}$. We claim

- $\quad X_{i}^{\prime} \leq M$ for $1 \leq i \leq n$.

Large deviation inequality V

Theorem [Chung, Lu] Let X_{i} denote independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+a_{i}+M$, for $1 \leq i \leq n$. For, $X=\sum_{i=1}^{n} X_{i}$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=1}^{n} a_{i}^{2}+M \lambda / 3\right)}} .
$$

Proof: Let $X_{i}^{\prime}=X_{i}-\mathrm{E}\left(X_{i}\right)-a_{i}$ and $X^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}$. We claim

- $\quad X_{i}^{\prime} \leq M$ for $1 \leq i \leq n$.
- $\quad X^{\prime}-\mathrm{E}\left(X^{\prime}\right)=X-\mathrm{E}(X)$.

Large deviation inequality V

Theorem [Chung, Lu] Let X_{i} denote independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+a_{i}+M$, for $1 \leq i \leq n$. For, $X=\sum_{i=1}^{n} X_{i}$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=1}^{n} \sigma_{i}^{2}+M \lambda / 3\right)}} .
$$

Proof: Let $X_{i}^{\prime}=X_{i}-\mathrm{E}\left(X_{i}\right)-a_{i}$ and $X^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}$. We claim

- $\quad X_{i}^{\prime} \leq M$ for $1 \leq i \leq n$.
- $\quad X^{\prime}-\mathrm{E}\left(X^{\prime}\right)=X-\mathrm{E}(X)$.
- $\left\|X^{\prime}\right\|^{2}=\operatorname{Var}(X)+\sum_{i=1}^{n} a_{i}^{2}$.

Large deviation inequality V

Theorem [Chung, Lu] Let X_{i} denote independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+a_{i}+M$, for $1 \leq i \leq n$. For, $X=\sum_{i=1}^{n} X_{i}$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=1}^{n} \sigma_{i}^{2}+M \lambda / 3\right)}} .
$$

Proof: Let $X_{i}^{\prime}=X_{i}-\mathrm{E}\left(X_{i}\right)-a_{i}$ and $X^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}$. We claim

- $\quad X_{i}^{\prime} \leq M$ for $1 \leq i \leq n$.
- $\quad X^{\prime}-\mathrm{E}\left(X^{\prime}\right)=X-\mathrm{E}(X)$.
- $\left\|X^{\prime}\right\|^{2}=\operatorname{Var}(X)+\sum_{i=1}^{n} a_{i}^{2}$.

continue

$$
\operatorname{Pr}(X \geq E(X)+\lambda)=\operatorname{Pr}\left(X^{\prime} \geq E\left(X^{\prime}\right)+\lambda\right)
$$

continue

$$
\begin{aligned}
\operatorname{Pr}(X \geq E(X)+\lambda) & =\operatorname{Pr}\left(X^{\prime} \geq E\left(X^{\prime}\right)+\lambda\right) \\
& \leq e^{-\frac{\lambda^{2}}{2\left(\left\|X^{\prime}\right\|^{2}+M \lambda / 3\right)}}
\end{aligned}
$$

continue

$$
\begin{aligned}
\operatorname{Pr}(X \geq E(X)+\lambda) & =\operatorname{Pr}\left(X^{\prime} \geq E\left(X^{\prime}\right)+\lambda\right) \\
& \leq e^{-\frac{\lambda^{2}}{\left.2\left(\| X^{\prime}\right)^{2}+M \lambda / 3\right)}} \\
& =e^{-\frac{\lambda^{2}\left(\lambda ^ { 2 } \left(\lambda^{2}\right.\right.}{2\left(\operatorname{Tar}(X)+\sum_{i=1}^{n} a_{i}^{2}+M \lambda / 3\right)}} .
\end{aligned}
$$

It remains to verify

$$
\begin{aligned}
& X^{\prime}-\mathrm{E}\left(X^{\prime}\right)=X-\mathrm{E}(X) \\
& \left\|X^{\prime}\right\|^{2}=\operatorname{Var}(X)+\sum_{i=1}^{n} a_{i}^{2}
\end{aligned}
$$

Large deviation inequality VI

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+M_{i}$, for $0 \leq i \leq n$. We order X_{i} 's so that M_{i} are in an increasing order. Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $1 \leq k \leq n$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=k}^{n}\left(M_{i}-M_{k}\right)^{2}+M_{k} \lambda / 3\right)}} .
$$

Large deviation inequality VI

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+M_{i}$, for $0 \leq i \leq n$. We order X_{i} 's so that M_{i} are in an increasing order. Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $1 \leq k \leq n$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=k}^{n}\left(M_{i}-M_{k}\right)^{2}+M_{k} \lambda / 3\right)}} .
$$

Compared with McDiarmid's inequality

Large deviation inequality VI

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+M_{i}$, for $0 \leq i \leq n$. We order X_{i} 's so that M_{i} are in an increasing order. Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $1 \leq k \leq n$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=k}^{n}\left(M_{i}-M_{k}\right)^{2}+M_{k} \lambda / 3\right)}} .
$$

Compared with McDiarmid's inequality

- $\quad M$ is replaced by M_{k}.

Large deviation inequality VI

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+M_{i}$, for $0 \leq i \leq n$. We order X_{i} 's so that M_{i} are in an increasing order. Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $1 \leq k \leq n$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=k}^{n}\left(M_{i}-M_{k}\right)^{2}+M_{k} \lambda / 3\right)}} .
$$

Compared with McDiarmid's inequality

- M is replaced by M_{k}.
- Additional cost $\sum_{i=k}^{n}\left(M_{i}-M_{k}\right)^{2}$.

Large deviation inequality VI

Theorem [Chung, Lu] Suppose X_{i} are independent random variables satisfying $X_{i} \leq \mathrm{E}\left(X_{i}\right)+M_{i}$, for $0 \leq i \leq n$. We order X_{i} 's so that M_{i} are in an increasing order. Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $1 \leq k \leq n$, we have

$$
\operatorname{Pr}(X \geq E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2\left(\operatorname{Var}(X)+\sum_{i=k}^{n}\left(M_{i}-M_{k}\right)^{2}+M_{k} \lambda / 3\right)}} .
$$

Compared with McDiarmid's inequality

- M is replaced by M_{k}.
- Additional cost $\sum_{i=k}^{n}\left(M_{i}-M_{k}\right)^{2}$.
- McDiarmid's inequality is a special case with $k=n$.

Proof

For fixed k, we choose $M=M_{k}$ and

$$
a_{i}= \begin{cases}0 & \text { if } 1 \leq i \leq k \\ M_{i}-M_{k} & \text { if } k \leq i \leq n\end{cases}
$$

Proof

For fixed k, we choose $M=M_{k}$ and

$$
\begin{gathered}
a_{i}= \begin{cases}0 & \text { if } 1 \leq i \leq k \\
M_{i}-M_{k} & \text { if } k \leq i \leq n\end{cases} \\
X_{i}-\mathrm{E}\left(X_{i}\right) \leq M_{i} \leq a_{i}+M_{k} . \quad \text { for } 1 \leq k \leq n .
\end{gathered}
$$

Proof

For fixed k, we choose $M=M_{k}$ and

$$
\begin{gathered}
a_{i}= \begin{cases}0 & \text { if } 1 \leq i \leq k \\
M_{i}-M_{k} & \text { if } k \leq i \leq n\end{cases} \\
X_{i}-\mathrm{E}\left(X_{i}\right) \leq M_{i} \leq a_{i}+M_{k} . \quad \text { for } 1 \leq k \leq n . \\
\sum_{i=1}^{n} a_{i}^{2}=\sum_{i=k}^{n}\left(M_{i}-M_{k}\right)^{2} .
\end{gathered}
$$

Apply previous theorem with these a_{i} 's.

An application

Example: Consider the sum $X=\sum_{i=1}^{n} X_{i}$.

An application

Example: Consider the sum $X=\sum_{i=1}^{n} X_{i}$.

- $\quad X_{1}, X_{2}, \ldots, X_{n}$: independent random variables.

An application

Example: Consider the sum $X=\sum_{i=1}^{n} X_{i}$.

- $X_{1}, X_{2}, \ldots, X_{n}$: independent random variables.
- For $1 \leq i \leq n-1$, we have

$$
\operatorname{Pr}\left(X_{i}=0\right)=1-p \quad \text { and } \quad \operatorname{Pr}\left(X_{i}=1\right)=p
$$

An application

Example: Consider the sum $X=\sum_{i=1}^{n} X_{i}$.

- $X_{1}, X_{2}, \ldots, X_{n}$: independent random variables.
- For $1 \leq i \leq n-1$, we have

$$
\operatorname{Pr}\left(X_{i}=0\right)=1-p \quad \text { and } \quad \operatorname{Pr}\left(X_{i}=1\right)=p
$$

- X_{n} is special.

$$
\operatorname{Pr}\left(X_{n}=0\right)=1-p \quad \text { and } \quad \operatorname{Pr}\left(X_{n}=\sqrt{n}\right)=p
$$

An application

Example: Consider the sum $X=\sum_{i=1}^{n} X_{i}$.

- $X_{1}, X_{2}, \ldots, X_{n}$: independent random variables.
- For $1 \leq i \leq n-1$, we have

$$
\operatorname{Pr}\left(X_{i}=0\right)=1-p \quad \text { and } \quad \operatorname{Pr}\left(X_{i}=1\right)=p
$$

- X_{n} is special.

$$
\operatorname{Pr}\left(X_{n}=0\right)=1-p \quad \text { and } \quad \operatorname{Pr}\left(X_{n}=\sqrt{n}\right)=p
$$

Expectation and Variance

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{i=1}^{n} \mathrm{E}\left(X_{i}\right) \\
& =(n-1) p+\sqrt{n} p .
\end{aligned}
$$

Expectation and Variance

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{i=1}^{n} \mathrm{E}\left(X_{i}\right) \\
& =(n-1) p+\sqrt{n} p .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \\
& =(n-1) p(1-p)+n p(1-p) \\
& =(2 n-1) p(1-p)
\end{aligned}
$$

Comparison

Applying McDiarmid's Theorem

Comparison

Applying McDiarmid's Theorem

- $M=(1-p) \sqrt{n}$

Comparison

Applying McDiarmid's Theorem

- $M=(1-p) \sqrt{n}$

We have

$$
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2((2 n-1) p(1-p)+(1-p) \sqrt{n} \lambda / 3)}}
$$

Comparison

Applying McDiarmid's Theorem

- $\quad M=(1-p) \sqrt{n}$

We have

$$
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2((2 n-1) p(1-p)+(1-p) \sqrt{n} \lambda / 3)}} .
$$

In particular, for constant $p \in(0,1)$ and $\lambda=\Theta\left(n^{\frac{1}{2}+\epsilon}\right)$, we have

$$
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) \leq e^{-\Theta\left(n^{\epsilon}\right)}
$$

Comparison

Applying last Theorem

Comparison

Applying last Theorem

- $M_{1}=\ldots=M_{n-1}=(1-p)$
- $\quad M_{n}=\sqrt{n}(1-p)$

Comparison

Applying last Theorem

- $M_{1}=\ldots=M_{n-1}=(1-p)$
- $\quad M_{n}=\sqrt{n}(1-p)$

We choose $k=n-1$,

$$
\operatorname{Var}(X)+\left(M_{n}-M_{n-1}\right)^{2} \leq\left(1-p^{2}\right) n .
$$

Comparison

Applying last Theorem

- $M_{1}=\ldots=M_{n-1}=(1-p)$
- $M_{n}=\sqrt{n}(1-p)$

We choose $k=n-1$,

$$
\begin{gathered}
\operatorname{Var}(X)+\left(M_{n}-M_{n-1}\right)^{2} \leq\left(1-p^{2}\right) n . \\
\operatorname{Pr}\left(X_{i} \geq E(X)+\lambda\right) \leq e^{-\frac{\lambda^{2}}{2\left(\left(1-p^{2}\right) n+(1-p)^{2} \lambda / 3\right)}}
\end{gathered}
$$

Comparison

Applying last Theorem

- $M_{1}=\ldots=M_{n-1}=(1-p)$
- $\quad M_{n}=\sqrt{n}(1-p)$

We choose $k=n-1$,

$$
\begin{gathered}
\operatorname{Var}(X)+\left(M_{n}-M_{n-1}\right)^{2} \leq\left(1-p^{2}\right) n . \\
\operatorname{Pr}\left(X_{i} \geq E(X)+\lambda\right) \leq e^{-\frac{\lambda^{2}}{2\left(\left(1-p^{2}\right) n+(1-p)^{2} \lambda / 3\right)}}
\end{gathered}
$$

For constant $p \in(0,1)$ and $\lambda=\Theta\left(n^{\frac{1}{2}+\epsilon}\right)$, we have

$$
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) \leq e^{-\Theta\left(n^{2 \epsilon}\right)}
$$

Reference

- C. McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics, edited by M. Habib, C. McDiarmid, J. Ramirez- Alfonsin, and B. Reed, pp. 195248, Algorithms and Combinatorics 16. Berlin: Springer, 1998.
- Chung and Lu, Concentration inequalities and martingale inequalities - a survey, Internet Mathematics, 3 (2006), No. 1, 79-127.
- Chung and Lu, Complex Graphs and Networks, (2006) published by AMS, ISBN-10: 0-8218-3657-9, ISBN-13: 978-0-8218-3657-6.

