

Probabilistic Methods in Combinatorics Lecture 7

Linyuan Lu University of South Carolina

Mathematical Sciences Center at Tsinghua University November 16, 2011 – December 30, 2011

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Proof: Consider G(n, p). Two bad events:

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Proof: Consider G(n, p). Two bad events:

For $S \in {\binom{[n]}{3}}$, let A_S be the event of $G|_S$ is a triangle; $\Pr(A_S) = p^3$.

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Proof: Consider G(n, p). Two bad events:

- For $S \in {\binom{[n]}{3}}$, let A_S be the event of $G|_S$ is a triangle; $\Pr(A_S) = p^3$.
- For $T \in {\binom{[n]}{k}}$, let B_T be the event that T is an independent set of G; $\Pr(B_t) = (1-p)^{\binom{k}{2}}$.

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Proof: Consider G(n, p). Two bad events:

- For $S \in {\binom{[n]}{3}}$, let A_S be the event of $G|_S$ is a triangle; $\Pr(A_S) = p^3$.
- For $T \in {\binom{[n]}{k}}$, let B_T be the event that T is an independent set of G; $\Pr(B_t) = (1-p)^{\binom{k}{2}}$.
- Dependence graph: $d_{SS} \leq 3n$, $d_{ST} \leq 3\binom{n}{k-2}$, $d_{TS} \leq \binom{k}{2}n$, and $d_{TT} \leq \binom{k}{2}\binom{n}{k-2}$.

By LLL, we only require

$$p^{3} \leq x(1-x)^{3n}(1-y)^{3\binom{n}{k-2}}$$
$$(1-p)^{\binom{k}{2}} \leq y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{k}{2}\binom{n}{k-2}}.$$

By LLL, we only require

$$p^{3} \leq x(1-x)^{3n}(1-y)^{3\binom{n}{k-2}}$$
$$(1-p)^{\binom{k}{2}} \leq y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{k}{2}\binom{n}{k-2}}.$$

We can choose $p = c_1 n^{-1/2}$, $k = c_2 n^{1/2} \log n$, $x = c_3 n^{-3/2}$, and $y = c_4 / \binom{n}{k}$.

By LLL, we only require

$$p^{3} \leq x(1-x)^{3n}(1-y)^{3\binom{n}{k-2}}$$
$$(1-p)^{\binom{k}{2}} \leq y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{k}{2}\binom{n}{k-2}}.$$

We can choose $p = c_1 n^{-1/2}$, $k = c_2 n^{1/2} \log n$, $x = c_3 n^{-3/2}$, and $y = c_4 / \binom{n}{k}$.

This gives $R(3, k) > c_5 k^2 / \log^2 k$.

R(4,k)

Best bounds for R(r, k) (for fixed r and k large),

$$c\left(\frac{k}{\log k}\right)^{(r+1)/2} < R(r,k) < (1+o(1))\frac{k^{r-1}}{\log^{r-2}k}.$$

Erdős conjecture \$250: Prove

$$R(4,k) > c' \frac{k^3}{\log^c k}$$

for some constants c', c > 0.

R(4,k)

Best bounds for R(r, k) (for fixed r and k large),

$$c\left(\frac{k}{\log k}\right)^{(r+1)/2} < R(r,k) < (1+o(1))\frac{k^{r-1}}{\log^{r-2}k}.$$

Erdős conjecture \$250: Prove

$$R(4,k) > c' \frac{k^3}{\log^c k}$$

for some constants c', c > 0.

The best lower bound is using LLL; $R(4,k) > c' \frac{k^{2.5}}{\log^{2.5} k}$.

Directed cycles

- D = (V, E): a simple directed graph.
- δ : minimum outdegree.
- Δ : maximum indegree.

Directed cycles

- D = (V, E): a simple directed graph.
- δ : minimum outdegree.
- Δ : maximum indegree.

Theorem [Alon and Linial (1989) If $e(\Delta\delta+1)(1-1/k)^{\delta} < 1$, then D contains a (directed, simple) cycle of length $0 \mod k$.

Directed cycles

- D = (V, E): a simple directed graph.
- δ : minimum outdegree.
 - Δ : maximum indegree.

Theorem [Alon and Linial (1989) If $e(\Delta\delta+1)(1-1/k)^{\delta} < 1$, then D contains a (directed, simple) cycle of length $0 \mod k$.

Proof: First we can assume every out-degree is δ by deleting some edges if necessary. Consider $f: V \to \mathbb{Z}_k$. Bad event A_v : no $u \in \Gamma^+(v)$ with f(u) = f(v) + 1.

$$\Pr(A_v) = (1 - 1/k)^{\delta}.$$

Each event depends on at most $\delta\Delta$ others. Apply LLL. \Box

Linear Arboricity

Linear Arboricity

Linear forest: disjoint union of paths.
Linear arboricity la(G): the minimum number of linear forests, whose union is E(G).

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every *d*-regular graph *G*,

$$\operatorname{la}(G) = \lceil \frac{d+1}{2} \rceil.$$

Linear Arboricity

Linear forest: disjoint union of paths.
Linear arboricity la(G): the minimum number of linear forests, whose union is E(G).

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every *d*-regular graph *G*,

$$\operatorname{la}(G) = \lceil \frac{d+1}{2} \rceil.$$

If the conjecture is true, then it is tight.

$$\operatorname{la}(G) \ge \frac{nd}{2(n-1)} > \frac{d}{2}.$$

Directed graphs

- G = (V, E): a directed graph.
- G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity dla(G): the minimum number of linear directed forests, whose union is E(G).

Directed graphs

- G = (V, E): a directed graph.
 - G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity dla(G): the minimum number of linear directed forests, whose union is E(G).

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed graph G, dla(G) = d + 1.

Directed graphs

- G = (V, E): a directed graph.
 - G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity dla(G): the minimum number of linear directed forests, whose union is E(G).
- The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed graph G, dla(G) = d + 1.

DLA conjecture for d implies LA conjecture for 2d.

A proposition

Proposition: Let H = (V, E) be a graph with maximum degree d, and let $V = V_1 \cup V_2 \cup \cdots \cup V_r$ be a partition of V. If $|V_i| \ge 2ed$, then there is an independent set of vertices W that contains a vertex from each V_i .

A proposition

Proposition: Let H = (V, E) be a graph with maximum degree d, and let $V = V_1 \cup V_2 \cup \cdots \cup V_r$ be a partition of V. If $|V_i| \ge 2ed$, then there is an independent set of vertices W that contains a vertex from each V_i .

Proof: WLOG, we assume

$$|V_1| = |V_2| = \cdots = |V_r| = \lceil 2ed \rceil = g.$$

Pick from each V_i a vertex randomly and independently. Let W be the random set of the vertices picked. For each edge f, let A_f be the event that both ends in W. The maximum degree in the dependence graph is at most 2gd - 1. We have $e \cdot 2gd \cdot \frac{1}{g^2} = \frac{2ed}{g} < 1$. Apply LLL.

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.

Theorem Let G = (U, F) be a *d*-regular digraph with directed girth $g \ge 8ed$. Then

dla(G) = d + 1.

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.

Theorem Let G = (U, F) be a *d*-regular digraph with directed girth $g \ge 8ed$. Then

dla(G) = d + 1.

Proof: Using Hall's matching theorem, we can partition F into d pairwise disjoint 1-regular spanning subgraphs F_1, \ldots, F_d of G.

Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \ge 8ed$.

Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \ge 8ed$.

Apply the proposition to the line-graph H of G. Note H is $4d-2\mbox{-regular}.$

Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \ge 8ed$.

Apply the proposition to the line-graph H of G. Note H is 4d-2-regular.

There exists an independent set M_1 of H. Now $M_1, F_1 \setminus M_1, \ldots, F_d \setminus M_1$ forms d + 1 linear directed forests.

General *d*-regular graphs

Theorem [Alon 1988] There is an absolute constant c > 0 such that for every d-regular directed graph G

 $dla(G) \le d + cd^{3/4} \log^{1/2} d.$

General *d*-regular graphs

Theorem [Alon 1988] There is an absolute constant c > 0 such that for every d-regular directed graph G

$$dla(G) \le d + cd^{3/4} \log^{1/2} d.$$

Corollary There is an absolute constant c > 0 such that for every d-regular graph G

$$dla(G) \le \frac{d}{2} + cd^{3/4} \log^{1/2} d.$$

General *d*-regular graphs

Theorem [Alon 1988] There is an absolute constant c > 0 such that for every d-regular directed graph G

$$dla(G) \le d + cd^{3/4} \log^{1/2} d.$$

Corollary There is an absolute constant c > 0 such that for every d-regular graph G

dla(G)
$$\leq \frac{d}{2} + cd^{3/4} \log^{1/2} d.$$

The error terms can be improved to $cd^{2/3}\log^{1/3} d$.

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$f\colon V\to\mathbb{Z}_p.$$

Proof

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$f\colon V\to\mathbb{Z}_p.$$

Define for $i \in \mathbb{Z}_p$,

$$E_i = \{ (u, v) \in E \colon f(v) = f(u) + i \}.$$

Let $G_i = (V, E_i)$ and

- Δ_i^+ : the maximum out-degree of G_i .
 - Δ_i^- : the maximum in-degree of G_i .
- Δ_i : the maximum of Δ_i^+ and Δ_i^- .

There exists a f satisfying

• All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.

There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.

There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
- All G_i can be completed to a Δ_i -regular directed graph without deceasing the girth.

There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
- All G_i can be completed to a Δ_i -regular directed graph without deceasing the girth.

dla(G)
$$\leq 2\Delta_0 + \sum_{i=1}^{p-1} (\Delta_i + 1) \leq d + d/p + p + C\sqrt{dp \log d}.$$

Now choose $p \sim d^{1/2}$.

Chernoff Inequality

Suppose $X = \sum_{i=1}^{n} X_i$, where X_i are independent 0-1 random variables. Then we have

$$Pr(X < E(X) - \lambda) \leq e^{-\frac{\lambda^2}{2E(X)}}$$
$$Pr(X > E(X) + \lambda) \leq e^{-\frac{\lambda^2}{2(E(X) + \lambda/3)}}$$

