Probabilistic Methods in Combinatorics
 Lecture 7

Linyuan Lu

University of South Carolina

Mathematical Sciences Center at Tsinghua University
November 16, 2011 - December 30, 2011

Ramsey numbers

Theorem (Spencer, 1975)

$$
R(3, k) \geq \frac{c k^{2}}{\log k} .
$$

Ramsey numbers

Theorem (Spencer, 1975)

$$
R(3, k) \geq \frac{c k^{2}}{\log k} .
$$

Proof: Consider $G(n, p)$. Two bad events:

Ramsey numbers

Theorem (Spencer, 1975)

$$
R(3, k) \geq \frac{c k^{2}}{\log k} .
$$

Proof: Consider $G(n, p)$. Two bad events:

- For $S \in\binom{[n]}{3}$, let A_{S} be the event of $\left.G\right|_{S}$ is a triangle; $\operatorname{Pr}\left(A_{S}\right)=p^{3}$.

Ramsey numbers

Theorem (Spencer, 1975)

$$
R(3, k) \geq \frac{c k^{2}}{\log k}
$$

Proof: Consider $G(n, p)$. Two bad events:

- For $S \in\binom{[n]}{3}$, let A_{S} be the event of $\left.G\right|_{S}$ is a triangle; $\operatorname{Pr}\left(A_{S}\right)=p^{3}$.
- For $T \in\binom{[n]}{k}$, let B_{T} be the event that T is an independent set of G; $\operatorname{Pr}\left(B_{t}\right)=(1-p)^{\binom{k}{2}}$.

Ramsey numbers

Theorem (Spencer, 1975)

$$
R(3, k) \geq \frac{c k^{2}}{\log k} .
$$

Proof: Consider $G(n, p)$. Two bad events:

- For $S \in\binom{[n]}{3}$, let A_{S} be the event of $\left.G\right|_{S}$ is a triangle; $\operatorname{Pr}\left(A_{S}\right)=p^{3}$.
- For $T \in\binom{[n]}{k}$, let B_{T} be the event that T is an independent set of $G ; \operatorname{Pr}\left(B_{t}\right)=(1-p)^{\binom{k}{2}}$.
■ Dependence graph: $d_{S S} \leq 3 n, d_{S T} \leq 3\binom{n}{k-2}$, $d_{T S} \leq\binom{ k}{2} n$, and $d_{T T} \leq\binom{ k}{2}\binom{n}{k-2}$.

Proof

By LLL, we only require

$$
\begin{aligned}
p^{3} & \leq x(1-x)^{3 n}(1-y)^{3\binom{n}{k-2}} \\
(1-p)^{\binom{k}{2}} & \leq y(1-x)^{\binom{k}{2} n}(1-y)^{\binom{k}{2}\binom{n}{k-2} .}
\end{aligned}
$$

Proof

By LLL, we only require

$$
\begin{aligned}
p^{3} & \leq x(1-x)^{3 n}(1-y)^{3\binom{n}{k-2}} \\
(1-p)^{\binom{k}{2}} & \leq y(1-x)^{\binom{k}{2} n}(1-y)^{\binom{k}{2}\binom{n}{k-2} .}
\end{aligned}
$$

We can choose $p=c_{1} n^{-1 / 2}, k=c_{2} n^{1 / 2} \log n, x=c_{3} n^{-3 / 2}$, and $y=c_{4} /\binom{n}{k}$.

Proof

By LLL, we only require

$$
\begin{aligned}
p^{3} & \leq x(1-x)^{3 n}(1-y)^{3\binom{n}{k-2}} \\
(1-p)^{\binom{k}{2}} & \leq y(1-x)^{\binom{k}{2} n}(1-y)^{\binom{k}{2}\binom{n}{k-2} .}
\end{aligned}
$$

We can choose $p=c_{1} n^{-1 / 2}, k=c_{2} n^{1 / 2} \log n, x=c_{3} n^{-3 / 2}$, and $y=c_{4} /\binom{n}{k}$.
This gives $R(3, k)>c_{5} k^{2} / \log ^{2} k$.

$R(4, k)$

Best bounds for $R(r, k)$ (for fixed r and k large),

$$
c\left(\frac{k}{\log k}\right)^{(r+1) / 2}<R(r, k)<(1+o(1)) \frac{k^{r-1}}{\log ^{r-2} k} .
$$

Erdős conjecture \$250: Prove

$$
R(4, k)>c^{\prime} \frac{k^{3}}{\log ^{c} k}
$$

for some constants $c^{\prime}, c>0$.

$R(4, k)$

Best bounds for $R(r, k)$ (for fixed r and k large),

$$
c\left(\frac{k}{\log k}\right)^{(r+1) / 2}<R(r, k)<(1+o(1)) \frac{k^{r-1}}{\log ^{r-2} k}
$$

Erdős conjecture \$250: Prove

$$
R(4, k)>c^{\prime} \frac{k^{3}}{\log ^{c} k}
$$

for some constants $c^{\prime}, c>0$.
The best lower bound is using LLL; $R(4, k)>c^{\prime} \frac{k^{2.5}}{\log ^{2.5} k}$.

Directed cycles

$D=(V, E)$: a simple directed graph.
δ : minimum outdegree.
Δ : maximum indegree.

Directed cycles

■ $D=(V, E)$: a simple directed graph.

- δ : minimum outdegree.
- Δ : maximum indegree.

Theorem [Alon and Linial (1989) If
$e(\Delta \delta+1)(1-1 / k)^{\delta}<1$, then D contains a (directed, simple) cycle of length $0 \bmod k$.

Directed cycles

- $D=(V, E)$: a simple directed graph.
- δ : minimum outdegree.
- Δ : maximum indegree.

Theorem [Alon and Linial (1989) If

$e(\Delta \delta+1)(1-1 / k)^{\delta}<1$, then D contains a (directed, simple) cycle of length $0 \bmod k$.
Proof: First we can assume every out-degree is δ by deleting some edges if necessary. Consider $f: V \rightarrow \mathbb{Z}_{k}$. Bad event A_{v} : no $u \in \Gamma^{+}(v)$ with $f(u)=f(v)+1$.

$$
\operatorname{Pr}\left(A_{v}\right)=(1-1 / k)^{\delta} .
$$

Each event depends on at most $\delta \Delta$ others. Apply LLL.

Linear Arboricity

- Linear forest: disjoint union of paths.

■ Linear arboricity la (G) : the minimum number of linear forests, whose union is $E(G)$.

Linear Arboricity

- Linear forest: disjoint union of paths.
- Linear arboricity $\operatorname{la}(G)$: the minimum number of linear forests, whose union is $E(G)$.

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every d-regular graph G,

$$
\operatorname{la}(G)=\left\lceil\frac{d+1}{2}\right\rceil .
$$

Linear Arboricity

- Linear forest: disjoint union of paths.
- Linear arboricity $\operatorname{la}(G)$: the minimum number of linear forests, whose union is $E(G)$.

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every d-regular graph G,

$$
\operatorname{la}(G)=\left\lceil\frac{d+1}{2}\right\rceil .
$$

If the conjecture is true, then it is tight.

$$
\operatorname{la}(G) \geq \frac{n d}{2(n-1)}>\frac{d}{2}
$$

Directed graphs

- $G=(V, E)$: a directed graph.
- G is d-regular if $d^{+}(v)=d^{-}(v)=d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths. Dilinear arboricity $\mathrm{dla}(G)$: the minimum number of linear directed forests, whose union is $E(G)$.

Directed graphs

- $G=(V, E)$: a directed graph.

■ G is d-regular if $d^{+}(v)=d^{-}(v)=d$ for any vertex v.

- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity dla (G) : the minimum number of linear directed forests, whose union is $E(G)$.

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed $\operatorname{graph} G, \operatorname{dla}(G)=d+1$.

Directed graphs

- $G=(V, E)$: a directed graph.

■ G is d-regular if $d^{+}(v)=d^{-}(v)=d$ for any vertex v.

- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity dla (G) : the minimum number of linear directed forests, whose union is $E(G)$.

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed $\operatorname{graph} G, \operatorname{dla}(G)=d+1$.

DLA conjecture for d implies LA conjecture for $2 d$.

A proposition

Proposition: Let $H=(V, E)$ be a graph with maximum degree d, and let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{r}$ be a partition of V. If $\left|V_{i}\right| \geq 2 e d$, then there is an independent set of vertices W that contains a vertex from each V_{i}.

A proposition

Proposition: Let $H=(V, E)$ be a graph with maximum degree d, and let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{r}$ be a partition of V. If $\left|V_{i}\right| \geq 2 e d$, then there is an independent set of vertices W that contains a vertex from each V_{i}.
Proof: WLOG, we assume

$$
\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{r}\right|=\lceil 2 e d\rceil=g .
$$

Pick from each V_{i} a vertex randomly and independently. Let W be the random set of the vertices picked. For each edge f, let A_{f} be the event that both ends in W. The maximum degree in the dependence graph is at most $2 g d-1$. We have $e \cdot 2 g d \cdot \frac{1}{g^{2}}=\frac{2 e d}{g}<1$. Apply LLL.

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.
Theorem Let $G=(U, F)$ be a d-regular digraph with directed girth $g \geq 8 e d$. Then

$$
\operatorname{dla}(G)=d+1
$$

With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.
Theorem Let $G=(U, F)$ be a d-regular digraph with directed girth $g \geq 8 e d$. Then

$$
\operatorname{dla}(G)=d+1
$$

Proof: Using Hall's matching theorem, we can partition F into d pairwise disjoint 1-regular spanning subgraphs F_{1}, \ldots, F_{d} of G.

Continue

Each F_{i} is a union of vertex disjoint directed cycles. Let V_{1}, \ldots, V_{r} are the sets of edges of all cycles. Then

$$
F=V_{1} \cup \cdots \cup V_{r} .
$$

Continue

Each F_{i} is a union of vertex disjoint directed cycles. Let V_{1}, \ldots, V_{r} are the sets of edges of all cycles. Then

$$
F=V_{1} \cup \cdots \cup V_{r}
$$

By the girth condition, $\left|V_{i}\right| \geq 8 e d$.

Continue

Each F_{i} is a union of vertex disjoint directed cycles. Let V_{1}, \ldots, V_{r} are the sets of edges of all cycles. Then

$$
F=V_{1} \cup \cdots \cup V_{r} .
$$

By the girth condition, $\left|V_{i}\right| \geq 8 e d$.
Apply the proposition to the line-graph H of G. Note H is 4d-2-regular.

Continue

Each F_{i} is a union of vertex disjoint directed cycles. Let V_{1}, \ldots, V_{r} are the sets of edges of all cycles. Then

$$
F=V_{1} \cup \cdots \cup V_{r} .
$$

By the girth condition, $\left|V_{i}\right| \geq 8 e d$.
Apply the proposition to the line-graph H of G. Note H is $4 d$ - 2 -regular.
There exists an independent set M_{1} of H. Now $M_{1}, F_{1} \backslash M_{1}, \ldots, F_{d} \backslash M_{1}$ forms $d+1$ linear directed forests.
\square

General d-regular graphs

Theorem [Alon 1988] There is an absolute constant $c>0$ such that for every d-regular directed graph G

$$
\mathrm{dla}(G) \leq d+c d^{3 / 4} \log ^{1 / 2} d
$$

General d-regular graphs

Theorem [Alon 1988] There is an absolute constant $c>0$ such that for every d-regular directed graph G

$$
\operatorname{dla}(G) \leq d+c d^{3 / 4} \log ^{1 / 2} d
$$

Corollary There is an absolute constant $c>0$ such that for every d-regular graph G

$$
\operatorname{dla}(G) \leq \frac{d}{2}+c d^{3 / 4} \log ^{1 / 2} d
$$

General d-regular graphs

Theorem [Alon 1988] There is an absolute constant $c>0$ such that for every d-regular directed graph G

$$
\operatorname{dla}(G) \leq d+c d^{3 / 4} \log ^{1 / 2} d
$$

Corollary There is an absolute constant $c>0$ such that for every d-regular graph G

$$
\operatorname{dla}(G) \leq \frac{d}{2}+c d^{3 / 4} \log ^{1 / 2} d
$$

The error terms can be improved to $c d^{2 / 3} \log ^{1 / 3} d$.

Proof

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$
f: V \rightarrow \mathbb{Z}_{p}
$$

Proof

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$
f: V \rightarrow \mathbb{Z}_{p}
$$

Define for $i \in \mathbb{Z}_{p}$,

$$
E_{i}=\{(u, v) \in E: f(v)=f(u)+i\} .
$$

Let $G_{i}=\left(V, E_{i}\right)$ and

- Δ_{i}^{+}: the maximum out-degree of G_{i}.
- Δ_{i}^{-}: the maximum in-degree of G_{i}.
- Δ_{i} : the maximum of Δ_{i}^{+}and Δ_{i}^{-}.

Continue

There exists a f satisfying

- All G_{i} are almost regular: $\Delta_{i} \leq \frac{d}{p}+3 \sqrt{d / p} \sqrt{\log d}$.

Continue

There exists a f satisfying

- All G_{i} are almost regular: $\Delta_{i} \leq \frac{d}{p}+3 \sqrt{d / p} \sqrt{\log d}$.

■ $\quad G_{i}$ has large girth $\geq p$ for $i \neq 0$.

Continue

There exists a f satisfying

- All G_{i} are almost regular: $\Delta_{i} \leq \frac{d}{p}+3 \sqrt{d / p} \sqrt{\log d}$.
- G_{i} has large girth $\geq p$ for $i \neq 0$.
- All G_{i} can be completed to a Δ_{i}-regular directed graph without deceasing the girth.

Continue

There exists a f satisfying

- All G_{i} are almost regular: $\Delta_{i} \leq \frac{d}{p}+3 \sqrt{d / p} \sqrt{\log d}$.
- G_{i} has large girth $\geq p$ for $i \neq 0$.
- All G_{i} can be completed to a Δ_{i}-regular directed graph without deceasing the girth.
$\mathrm{dla}(G) \leq 2 \Delta_{0}+\sum_{i=1}^{p-1}\left(\Delta_{i}+1\right) \leq d+d / p+p+C \sqrt{d p \log d}$.
Now choose $p \sim d^{1 / 2}$.

Chernoff Inequality

Suppose $X=\sum_{i=1}^{n} X_{i}$, where X_{i} are independent 0-1 random variables. Then we have

$$
\begin{aligned}
& \operatorname{Pr}(X<E(X)-\lambda) \leq e^{-\frac{\lambda^{2}}{2 E(X)}} \\
& \operatorname{Pr}(X>E(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2(E(X)+\lambda / 3)}}
\end{aligned}
$$

