Ramsey numbers

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{c k^2}{\log k}. \]
Ramsey numbers

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]

Proof: Consider \(G(n, p) \). Two bad events:
Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]

Proof: Consider \(G(n, p) \). Two bad events:

- For \(S \in \binom{[n]}{3} \), let \(A_S \) be the event of \(G|_S \) is a triangle; \[\Pr(A_S) = p^3. \]
Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]

Proof: Consider \(G(n, p) \). Two bad events:

- For \(S \in \binom{[n]}{3} \), let \(A_S \) be the event of \(G|_S \) is a triangle; \(\Pr(A_S) = p^3 \).
- For \(T \in \binom{[n]}{k} \), let \(B_T \) be the event that \(T \) is an independent set of \(G \); \(\Pr(B_t) = (1 - p)^\binom{k}{2} \).
Ramsey numbers

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]

Proof: Consider \(G(n, p) \). Two bad events:

- For \(S \in \binom{[n]}{3} \), let \(A_S \) be the event of \(G|_S \) is a triangle; \(\Pr(A_S) = p^3 \).

- For \(T \in \binom{[n]}{k} \), let \(B_T \) be the event that \(T \) is an independent set of \(G \); \(\Pr(B_t) = (1 - p)^{\binom{k}{2}} \).

- Dependence graph: \(d_{SS} \leq 3n \), \(d_{ST} \leq 3\binom{n}{k-2} \), \(d_{TS} \leq \binom{k}{2}n \), and \(d_{TT} \leq \binom{k}{2}\binom{n}{k-2} \).
Proof

By LLL, we only require

\[p^3 \leq x(1 - x)^3n(1 - y)^3\binom{n}{k-2} \]

\[(1 - p)^\binom{k}{2} \leq y(1 - x)^\binom{k}{2}n(1 - y)^\binom{k}{2}\binom{n}{k-2}. \]
Proof

By LLL, we only require

\[
p^3 \leq x(1 - x)^{3n}(1 - y)^3\binom{n}{k-2} \leq (1 - p)^{\binom{k}{2}} \leq y(1 - x)^{\binom{k}{2}n}(1 - y)^{\binom{k}{2}\binom{n}{k-2}}.
\]

We can choose \(p = c_1n^{-1/2} \), \(k = c_2n^{1/2}\log n \), \(x = c_3n^{-3/2} \), and \(y = c_4/\binom{n}{k} \).
Proof

By LLL, we only require

\[p^3 \leq x (1 - x)^{3n} (1 - y)^{3}\binom{n}{k-2} \]
\[(1 - p)\binom{k}{2} \leq y (1 - x)\binom{k}{2} n (1 - y)\binom{k}{2}\binom{n}{k-2}. \]

We can choose \(p = c_1 n^{-1/2}, \) \(k = c_2 n^{1/2} \log n, \) \(x = c_3 n^{-3/2}, \) and \(y = c_4 / \binom{n}{k}. \)

This gives \(R(3, k) > c_5 k^2 / \log^2 k. \) □
Best bounds for $R(r, k)$ (for fixed r and k large),

$$c \left(\frac{k}{\log k} \right)^{(r+1)/2} < R(r, k) < (1 + o(1)) \frac{k^{r-1}}{\log^{r-2} k}.$$

Erdős conjecture $\$250$: Prove

$$R(4, k) > c' \frac{k^3}{\log^c k}$$

for some constants $c', c > 0$.
Best bounds for $R(r, k)$ (for fixed r and k large),

$$c \left(\frac{k}{\log k} \right)^{(r+1)/2} < R(r, k) < (1 + o(1)) \frac{k^{r-1}}{\log^{r-2} k}.$$

Erdős conjecture 250: Prove

$$R(4, k) > c' \frac{k^3}{\log^c k}$$

for some constants $c', c > 0$.

The best lower bound is using LLL; $R(4, k) > c' \frac{k^{2.5}}{\log^{2.5} k}$.
Directed cycles

- \(D = (V, E) \): a simple directed graph.
- \(\delta \): minimum outdegree.
- \(\Delta \): maximum indegree.
Directed cycles

- $D = (V, E)$: a simple directed graph.
- δ: minimum outdegree.
- Δ: maximum indegree.

Theorem [Alon and Linial (1989)]

If $e(\Delta \delta + 1)(1 - 1/k)^\delta < 1$, then D contains a (directed, simple) cycle of length $0 \mod k$.

Directed cycles

- $D = (V, E)$: a simple directed graph.
- δ: minimum outdegree.
- Δ: maximum indegree.

Theorem [Alon and Linial (1989)] If $e(\Delta \delta + 1)(1 - 1/k)^\delta < 1$, then D contains a (directed, simple) cycle of length $0 \mod k$.

Proof: First we can assume every out-degree is δ by deleting some edges if necessary. Consider $f : V \to \mathbb{Z}_k$. Bad event A_v: no $u \in \Gamma^+(v)$ with $f(u) = f(v) + 1$.

$$\Pr(A_v) = (1 - 1/k)^\delta.$$

Each event depends on at most $\delta \Delta$ others. Apply LLL. □
Linear Arboricity

- Linear forest: disjoint union of paths.
- Linear arboricity $la(G)$: the minimum number of linear forests, whose union is $E(G)$.
Linear Arboricity

- Linear forest: disjoint union of paths.
- Linear arboricity \(\text{la}(G) \): the minimum number of linear forests, whose union is \(E(G) \).

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every \(d \)-regular graph \(G \),

\[
\text{la}(G) = \left\lceil \frac{d + 1}{2} \right\rceil.
\]
Linear Arboricity

- Linear forest: disjoint union of paths.
- Linear arboricity $\text{la}(G)$: the minimum number of linear forests, whose union is $E(G)$.

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every d-regular graph G,

$$\text{la}(G) = \left\lceil \frac{d + 1}{2} \right\rceil.$$

If the conjecture is true, then it is tight.

$$\text{la}(G) \geq \frac{nd}{2(n - 1)} > \frac{d}{2}.$$
Directed graphs

- $G = (V, E)$: a directed graph.
- G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity $\text{dla}(G)$: the minimum number of linear directed forests, whose union is $E(G)$.
Directed graphs

- $G = (V, E)$: a directed graph.
- G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity $dla(G)$: the minimum number of linear directed forests, whose union is $E(G)$.

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed graph G, $dla(G) = d + 1$.
Directed graphs

■ $G = (V, E)$: a directed graph.
■ G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
■ Linear directed forest: disjoint union of directed paths.
■ Dilinear arboricity $\text{dla}(G)$: the minimum number of linear directed forests, whose union is $E(G)$.

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed graph G, $\text{dla}(G) = d + 1$.

DLA conjecture for d implies LA conjecture for $2d$.
Proposition: Let $H = (V, E)$ be a graph with maximum degree d, and let $V = V_1 \cup V_2 \cup \cdots \cup V_r$ be a partition of V. If $|V_i| \geq 2ed$, then there is an independent set of vertices W that contains a vertex from each V_i.
A proposition

Proposition: Let $H = (V, E)$ be a graph with maximum degree d, and let $V = V_1 \cup V_2 \cup \cdots \cup V_r$ be a partition of V. If $|V_i| \geq 2ed$, then there is an independent set of vertices W that contains a vertex from each V_i.

Proof: WLOG, we assume

\[
|V_1| = |V_2| = \cdots = |V_r| = \lceil 2ed \rceil = g.
\]

Pick from each V_i a vertex randomly and independently. Let W be the random set of the vertices picked. For each edge f, let A_f be the event that both ends in W. The maximum degree in the dependence graph is at most $2gd - 1$. We have $e \cdot 2gd \cdot \frac{1}{g^2} = \frac{2ed}{g} < 1$. Apply LLL. \qed
With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.
With large girth

The directed girth of a digraph is the minimum length of a directed cycle in it.

Theorem Let $G = (U, F)$ be a d-regular digraph with directed girth $g \geq 8ed$. Then

$$\text{dla}(G) = d + 1.$$
The directed girth of a digraph is the minimum length of a directed cycle in it.

Theorem Let $G = (U, F)$ be a d-regular digraph with directed girth $g \geq 8ed$. Then

$$dla(G) = d + 1.$$

Proof: Using Hall’s matching theorem, we can partition F into d pairwise disjoint 1-regular spanning subgraphs F_1, \ldots, F_d of G.

With large girth
Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$
Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \geq 8ed$.
Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \geq 8ed$.

Apply the proposition to the line-graph H of G. Note H is $4d - 2$-regular.
Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \geq 8ed$.

Apply the proposition to the line-graph H of G. Note H is $4d - 2$-regular.

There exists an independent set M_1 of H. Now $M_1, F_1 \setminus M_1, \ldots, F_d \setminus M_1$ forms $d + 1$ linear directed forests. □
Theorem [Alon 1988] There is an absolute constant $c > 0$ such that for every d-regular directed graph G

$$\text{dla}(G) \leq d + cd^{3/4} \log^{1/2} d.$$
Theorem [Alon 1988] There is an absolute constant $c > 0$ such that for every d-regular directed graph G

$$dla(G) \leq d + cd^{3/4} \log^{1/2} d.$$

Corollary There is an absolute constant $c > 0$ such that for every d-regular graph G

$$dla(G) \leq \frac{d}{2} + cd^{3/4} \log^{1/2} d.$$
Theorem [Alon 1988] There is an absolute constant $c > 0$ such that for every d-regular directed graph G

$$\text{dla}(G) \leq d + cd^{3/4} \log^{1/2} d.$$

Corollary There is an absolute constant $c > 0$ such that for every d-regular graph G

$$\text{dla}(G) \leq \frac{d}{2} + cd^{3/4} \log^{1/2} d.$$

The error terms can be improved to $cd^{2/3} \log^{1/3} d$.

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$f : V \rightarrow \mathbb{Z}_p.$$
Proof

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$f : V \rightarrow \mathbb{Z}_p.$$

Define for $i \in \mathbb{Z}_p$,

$$E_i = \{(u, v) \in E : f(v) = f(u) + i\}.$$

Let $G_i = (V, E_i)$ and

- Δ_i^+: the maximum out-degree of G_i.
- Δ_i^-: the maximum in-degree of G_i.
- Δ_i: the maximum of Δ_i^+ and Δ_i^-.
There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{\frac{d}{p}}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
- All G_i can be completed to a Δ_i-regular directed graph without decreasing the girth.
There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
- All G_i can be completed to a Δ_i-regular directed graph without decreasing the girth.

$$\text{dla}(G) \leq 2\Delta_0 + \sum_{i=1}^{p-1} (\Delta_i + 1) \leq d + d/p + p + C\sqrt{dp\log d}.$$

Now choose $p \sim d^{1/2}$.
Suppose $X = \sum_{i=1}^{n} X_i$, where X_i are independent 0-1 random variables. Then we have

$$Pr(X < E(X) - \lambda) \leq e^{-\frac{\lambda^2}{2E(X)}}$$

$$Pr(X > E(X) + \lambda) \leq e^{-\frac{\lambda^2}{2(E(X)+\lambda/3)}}$$