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Theorem (Spencer, 1975)

R(3, k) ≥ ck2

log k
.

Proof: Consider G(n, p). Two bad events:

■ For S ∈
(

[n]
3

)

, let AS be the event of G|S is a triangle;
Pr(AS) = p3.

■ For T ∈
(

[n]
k

)

, let BT be the event that T is an

independent set of G; Pr(Bt) = (1 − p)(
k
2).

■ Dependence graph: dSS ≤ 3n, dST ≤ 3
(

n
k−2

)

,

dTS ≤
(

k
2

)

n, and dTT ≤
(

k
2

)(

n
k−2

)

.
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By LLL, we only require

p3 ≤ x(1 − x)3n(1 − y)3( n
k−2)

(1 − p)(
k
2) ≤ y(1 − x)(

k
2)n(1 − y)(

k
2)(

n
k−2).

We can choose p = c1n
−1/2, k = c2n

1/2 log n, x = c3n
−3/2,

and y = c4/
(

n
k

)

.

This gives R(3, k) > c5k
2/ log2 k. �
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Best bounds for R(r, k) (for fixed r and k large),
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Best bounds for R(r, k) (for fixed r and k large),

c

(

k

log k

)(r+1)/2

< R(r, k) < (1 + o(1))
kr−1

logr−2 k
.

Erdős conjecture $250: Prove

R(4, k) > c′
k3

logc k

for some constants c′, c > 0.

The best lower bound is using LLL; R(4, k) > c′ k2.5

log2.5 k
.
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■ D = (V, E): a simple directed graph.
■ δ: minimum outdegree.
■ ∆: maximum indegree.

Theorem [Alon and Linial (1989) If
e(∆δ + 1)(1 − 1/k)δ < 1, then D contains a (directed,
simple) cycle of length 0 mod k.

Proof: First we can assume every out-degree is δ by
deleting some edges if necessary. Consider f : V → Zk. Bad
event Av: no u ∈ Γ+(v) with f(u) = f(v) + 1.

Pr(Av) = (1 − 1/k)δ.

Each event depends on at most δ∆ others. Apply LLL. �
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■ Linear forest: disjoint union of paths.
■ Linear arboricity la(G): the minimum number of linear

forests, whose union is E(G).

The Linear Arboricity Conjecture (Akiyama, Exoo,
Harary [1981]): For every d-regular graph G,

la(G) = ⌈d + 1

2
⌉.

If the conjecture is true, then it is tight.

la(G) ≥ nd

2(n − 1)
>

d

2
.
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■ G = (V, E): a directed graph.
■ G is d-regular if d+(v) = d−(v) = d for any vertex v.
■ Linear directed forest: disjoint union of directed paths.
■ Dilinear arboricity dla(G): the minimum number of

linear directed forests, whose union is E(G).

The Linear Arboricity Conjecture for directed graph
(Nakayama, Peroche [1981]): For every d-regular
directed graph G, dla(G) = d + 1.

DLA conjecture for d implies LA conjecture for 2d.
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that contains a vertex from each Vi.
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Proposition: Let H = (V, E) be a graph with maximum

degree d, and let V = V1 ∪ V2 ∪ · · · ∪ Vr be a partition of V .

If |Vi| ≥ 2ed, then there is an independent set of vertices W
that contains a vertex from each Vi.

Proof: WLOG, we assume

|V1| = |V2| = · · · = |Vr| = ⌈2ed⌉ = g.

Pick from each Vi a vertex randomly and independently. Let
W be the random set of the vertices picked. For each edge
f , let Af be the event that both ends in W . The maximum
degree in the dependence graph is at most 2gd − 1. We
have e · 2gd · 1

g2 = 2ed
g < 1. Apply LLL. �
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The directed girth of a digraph is the minimum length of a
directed cycle in it.

Theorem Let G = (U, F ) be a d-regular digraph with
directed girth g ≥ 8ed. Then

dla(G) = d + 1.

Proof: Using Hall’s matching theorem, we can partition F
into d pairwise disjoint 1-regular spanning subgraphs
F1, . . . , Fd of G.
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Each Fi is a union of vertex disjoint directed cycles. Let
V1, . . . , Vr are the sets of edges of all cycles. Then

F = V1 ∪ · · · ∪ Vr.

By the girth condition, |Vi| ≥ 8ed.

Apply the proposition to the line-graph H of G. Note H is
4d − 2-regular.

There exists an independent set M1 of H. Now
M1, F1 \ M1, . . . , Fd \ M1 forms d + 1 linear directed forests.
�
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Theorem [Alon 1988] There is an absolute constant c > 0
such that for every d-regular directed graph G

dla(G) ≤ d + cd3/4 log1/2 d.

Corollary There is an absolute constant c > 0 such that for
every d-regular graph G

dla(G) ≤ d

2
+ cd3/4 log1/2 d.

The error terms can be improved to cd2/3 log1/3 d.
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Pick a prime p. Color each vertex randomly and uniformly
into p colors. I.e., consider a random map

f : V → Zp.

Define for i ∈ Zp,

Ei = {(u, v) ∈ E : f(v) = f(u) + i}.

Let Gi = (V, Ei) and

■ ∆+
i : the maximum out-degree of Gi.

■ ∆−
i : the maximum in-degree of Gi.

■ ∆i: the maximum of ∆+
i and ∆−

i .
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There exists a f satisfying

■ All Gi are almost regular: ∆i ≤ d
p + 3

√

d/p
√

log d.

■ Gi has large girth ≥ p for i 6= 0.

■ All Gi can be completed to a ∆i-regular directed graph
without deceasing the girth.

dla(G) ≤ 2∆0 +

p−1
∑

i=1

(∆i + 1) ≤ d + d/p + p + C
√

dp log d.

Now choose p ∼ d1/2.
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Suppose X =
∑n

i=1 Xi, where Xi are independent 0-1
random variables. Then we have

Pr(X < E(X) − λ) ≤ e−
λ2

2E(X)

Pr(X > E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3)
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