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Ramsey numbers -

Theorem (Spencer, 1975)

R(3,k) >

log k'

Proof: Consider G(n,p). Two bad events:

For S € ([ ]) let Ag be the event of G|g is a triangle;
PI(AS)

For T' € ([ ]) let B be the event that 7" is an
independent set of G; Pr(B;) = (1 — p)(k)
Dependence graph: dgs < 3n, dgr < 3(k—2)'
drs < (;)n, and drr < (5) ().
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By LLL, we only require

—1/2 3/2

We can choose p = cin k= conl/? logn, x = c3n™

and y = ¢4/ (7).
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- Proof -

By LLL, we only require

—1/2 3/2

We can choose p = cin k= conl/? logn, x = c3n™

and y = 04/(";).
This gives R(3,k) > csk*/log” k.
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r R(4, k)

Best bounds for R(r, k) (for fixed r and k large),

kr—l
log" * k

(r+1)/2
c (101;16) < R(r,k) < (14 0(1))

Erdos conjecture $250: Prove

kS
log k

R(4,k) > ¢

for some constants ¢, ¢ > 0.
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r R(4, k) b

Best bounds for R(r, k) (for fixed r and k large),

kr—l
log" * k

(r+1)/2
c (101;16) < R(r,k) < (14 0(1))

Erdos conjecture $250: Prove

kS
log k

R(4,k) > ¢

for some constants ¢’, ¢ > 0.
The best lower bound is using LLL; R(4, k) > ¢ 5.
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- Directed cycles -

s D= (V,FE): asimple directed graph.
= 0: minimum outdegree.
= A: maximum indegree.
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s D= (V,FE): asimple directed graph.
= 0: minimum outdegree.
= A: maximum indegree.
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e(AJ +1)(1 —1/k)° < 1, then D contains a (directed,
simple) cycle of length 0 mod k.
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- Directed cycles -

s D= (V,FE): asimple directed graph.
= 0: minimum outdegree.
= A: maximum indegree.

Theorem [Alon and Linial (1989) If
e(AJ +1)(1 —1/k)° < 1, then D contains a (directed,
simple) cycle of length 0 mod k.

Proof: First we can assume every out-degree is 0 by

deleting some edges if necessary. Consider f: V — Z;. Bad
event A,: nou € I'(v) with f(u) = f(v) + 1.

Pr(A,) = (1 —1/k)°.

k.8l Each event depends on at most dA others. Apply LLL.
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- Linear Arboricity -

s Linear forest: disjoint union of paths.
n Linear arboricity la(G): the minimum number of linear
forests, whose union is F(G).
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- Linear Arboricity -

s Linear forest: disjoint union of paths.
n Linear arboricity la(G): the minimum number of linear
forests, whose union is F(G).

The Linear Arboricity Conjecture (Akiyama, Exoo,
Harary [1981]): For every d-regular graph G,

d+1

la(G) = [——1.

If the conjecture is true, then it is tight.

la(G) > nd

_ @
~2(n—1) 2
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- Directed graphs -

G = (V, E): a directed graph.

G is d-regular if d™(v) = d~(v) = d for any vertex v.
_inear directed forest: disjoint union of directed paths.
Dilinear arboricity dla(G): the minimum number of
inear directed forests, whose union is E(G).
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- Directed graphs -

G = (V, E): a directed graph.

G is d-regular if d™(v) = d~(v) = d for any vertex v.
_inear directed forest: disjoint union of directed paths.
Dilinear arboricity dla(G): the minimum number of
inear directed forests, whose union is E(G).

The Linear Arboricity Conjecture for directed graph
(Nakayama, Peroche [1981]): For every d-regular
directed graph G, dla(G) =d + 1.

DLA conjecture for d implies LA conjecture for 2d.
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- A proposition -

Proposition: Let H = (V, E/) be a graph with maximum
degree d, and let V =V, U Vo U ---UV, be a partition of V.
If |V;| > 2ed, then there is an independent set of vertices W
that contains a vertex from each V.
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- A proposition -

Proposition: Let H = (V, E/) be a graph with maximum
degree d, and let V =V, U Vo U ---UV, be a partition of V.
If |V;| > 2ed, then there is an independent set of vertices W
that contains a vertex from each V.

Proof: WLOG, we assume

Vil = Vo = - = [V} = [2ed] =

Pick from each V; a vertex randomly and independently. Let
W be the random set of the vertices picked. For each edge
/. let A; be the event that both ends in /. The maximum
degree in the dependence graph is at most 2gd — 1. We
have e - 2gd - ; = 20 < 1. Apply LLL.
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- With large girth -

The directed girth of a digraph is the minimum length of a
directed cycle in it.
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- With large girth -

The directed girth of a digraph is the minimum length of a
directed cycle in it.

Theorem Let G = (U, F') be a d-regular digraph with
directed girth g > 8ed. Then

dla(G) = d + 1.
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r With large girth b

The directed girth of a digraph is the minimum length of a
directed cycle in it.

Theorem Let G = (U, F') be a d-regular digraph with
directed girth g > 8ed. Then

dla(G) =d + 1.

Proof: Using Hall's matching theorem, we can partition F'
into d pairwise disjoint 1-regular spanning subgraphs
lga,. ..,_fii(Df G.
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- Continue '

Each Fj} is a union of vertex disjoint directed cycles. Let
Vi,...,V, are the sets of edges of all cycles. Then
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By the girth condition, |V;| > 8ed.
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4d — 2-regular.
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- Continue -

Each Fj} is a union of vertex disjoint directed cycles. Let
Vi,...,V, are the sets of edges of all cycles. Then

By the girth condition, |V;| > 8ed.

Apply the proposition to the line-graph H of G. Note H is
4d — 2-regular.

There exists an independent set M of H. Now
My, Fy \ My, ..., F;\ M; forms d + 1 linear directed forests.
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- General d-regular graphs -

Theorem [Alon 1988] There is an absolute constant ¢ > 0
such that for every d-regular directed graph G

dla(G) < d + cd®*log!? d.
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- General d-regular graphs -

Theorem [Alon 1988] There is an absolute constant ¢ > 0
such that for every d-regular directed graph G

dla(G) < d + cd®*log!? d.

Corollary There is an absolute constant ¢ > 0 such that for
every d-regular graph G

d
dla(G) < 5 + cd®*1log!/? d.

The error terms can be improved to cd?/3log!/? d.

11 / 14



- Proof '

Pick a prime p. Color each vertex randomly and uniformly
into p colors. l.e., consider a random map

[V =7,
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- Proof '

Pick a prime p. Color each vertex randomly and uniformly
into p colors. l.e., consider a random map

[V =7,
Define for i € Z,,

Ei ={(u,v) € E: f(v) = f(u) +1}.

Let G; = (V, E;) and

= A the maximum out-degree of G;.
s A: the maximum in-degree of Gj.
n A, the maximum of A and A; .
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- Continue -

There exists a f satisfying
s All G; are almost regular: A; < g + 3+/d/py/log d.
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- Continue -

There exists a f satisfying

s All G; are almost regular: A; < g + 3+/d/py/log d.
s () has large girth > p for 1 £ 0.

s All GG; can be completed to a A;-regular directed graph
without deceasing the girth.

dla(G) <200+ ) (A;+1) <d+d/p+p+ Cy/dplogd.

Now choose p ~ d'/2.
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- Chernoff Inequality

Suppose X = > " | X;, where X; are independent 0-1
random variables. Then we have

Pr(X < E(X) — \)
Pr(X > E(X) + \)

VAN
N
\V]
h2|
x

VAN

e 2(E(X)+A/3)
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