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Balance graphs -

m [ has v vertices and e edges.

] p(H) — 6/2}.
s H is called balanced of for any subgraph H’,

p(H") < p(H).

s H is called strictly balanced of for any proper subgraph
H’
p(H') < p(H).
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- Results '

Theorem: Let H be a balanced graph with v vertices and e
edges. Let A(G) be the event that H is a subgraph (not

necessarily induced) of G. Then p = n~"/¢ is the threshod
function for A.
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- Results '

Theorem: Let H be a balanced graph with v vertices and e
edges. Let A(G) be the event that H is a subgraph (not
necessarily induced) of G. Then p = n~"/¢ is the threshod
function for A.

If H is not balanced then p = n~"/¢ is the threshod function
for A.

Proof: Write X =Y ¢ Xg. Then E(X) = (")p°.
If p < n=¢, then E(X) = o(1); X = 0 almost surely.
If p > n="/¢ then E(X) — 00. We have

va ipe=ie/v)y = o(E(X)).
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- Two other results '

Theorem: Let H be a strictly balanced graph with v
vertices and e edges and a automorphisms. Let X be the
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- Two other results '

Theorem: Let H be a strictly balanced graph with v
vertices and e edges and a automorphisms. Let X be the
copies of H in G(n,p). Assume p > n~"/*. Then almost
always

Theorem: Let H be any fixed graph. For every subgraph
H' of H (including H itself) let Xy denote the number of
copies of H' in G(n,p). Assume p is such that

E(Xp) — oo for every H'. Then almost surely

Xy ~ BE(Xy).
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- Cligue number of G(n,1/2) '

s w(G): the clique number of G.

k

n f(k) = (2)2(2): the expected number of k-cliques.

Theorem: Let k = k(n) satisfying k ~ 2log, n and
f(k) — oo. Then almost surely w(G) > k.

Proof: For each k-set S, let X¢ be the indicator random
variable that S is a clique and X = Z‘S‘:k Xg.
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Continue

A k—1 |
B(xpy ~ 290
where g(i) = ( )((Z%k)2(2)
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- Remark

f(k+1) _n—kz_k
flk)  k+1"

For k ~ 2log, n, then
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- Remark

f(k+1) _n—kz_k
flk)  k+1"

For k ~ 2log, n, then

f(k + 1) _ n—1+0(1)
f(k) |

Let ko be the value with f(ky) > 1> f(kg+1). For most of
n, f(k) will jJump from very large to ver small. With high
probabilty, w(G) = k.
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- Distinct sum '

m Aset xq,...,x; of positive integers is said to have
distinct sums if all sums

Zil?i, SC{L,]C}

1€S

are distinct.
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- Distinct sum -

m Aset xq,...,x; of positive integers is said to have
distinct sums if all sums

leji, SC{I,,]C}

1€S

are distinct.

n Let f(k) be the smallest k for which there is a set

{x1,29,...,2:} C{1,...,n}
with distinct set.

It is clear f(n) > 1+ [logyn].
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- Distinct sum -

Erdos offered $300 for a proof or disproof that

f(n) <logymn + O(1).
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- Distinct sum

Erdos offered $300 for a proof or disproof that
f(n) <logyn + O(1).
An easy upper bound
f(n) < logyn + log,logan + O(1).

Theorem:

1
f(n) <logyn + 5 log, logyn + O(1).
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- Lovasz Local Lemma '

s A, Ay, ..., A,: neventsin an arbitrary probability
spaces.
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- Lovasz Local Lemma '

s A, Ay, ..., A,: neventsin an arbitrary probability
spaces.

s A dependency digraph D = (V, E): if for each A;, A; is
mutually independent to all the events {A,: A;A; € E'}.

Lovasz Local Lemma, general case: If there are real
number x1,...,x, such that 0 < z; <1 and

Pr(4;) <] ep(l — ;) forall 1 <7 <n. Then

Pr (AL A;) > 1] =) > 0.
1=1
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Symmetric Case

Lovasz Local Lemma, symmetric case: Let

Aq,As, ... A, be events in an arbitrary probability space.
Suppose that each event A; is mutually independent of a set
of all the other event A; but at most d, and that Pr(4;) <p
forall 1 <i<mn. Ifep(d+1) <1, then Pr(AL, A;) > 0.
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- Property B -

Theorem: Let H = (V, E) be a hypergraph in which every
edge has at least k elements, and suppose that each edge of
H intersects at most d other edges. If e(d + 1) < 271, then
H has property B.
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- Property B -

Theorem: Let H = (V, E) be a hypergraph in which every
edge has at least k elements, and suppose that each edge of
H intersects at most d other edges. If e(d + 1) < 271, then
H has property B.

Proof: Color each vertex in two colors randomly and

independently. For each edge f € E, let A, be the event
that f is monochromatic. Then

Pr(A;) =217 < 217k,

Ay is independent to all event but at most d. Aplly LLL.
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- k-coloring of R -

Let c: R — {1,2,...,k} be a k-coloring of R. Aset T'C R
is multicolored if ¢(T) ={1,2,...,k}.
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Let c: R — {1,2,...,k} be a k-coloring of R. Aset T'C R
is multicolored if ¢(T) ={1,2,...,k}.

Theorem: Let m and k£ be two positive intergers satisfying

e(m(m — 1) + 1)k(1 — %)m <1

Then, for any set S of m real numbers there is a k-coloring
so that each translantion x 4+ .5 (for x € R) is multicolored.

The condition is satisfied if m > (3 + o(1))klog k.
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- Proof '

First we use LLL to prove “For any finite set X C R, there is
a k-coloring so that x 4+ 5 (for all x € X) is multi-colored.”
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- Proof '

First we use LLL to prove “For any finite set X C R, there is
a k-coloring so that x 4+ 5 (for all x € X) is multi-colored.”

Let Y = Uex(x +.5). Color numbers in Y in k-colors
randomly and independently. Let A, be the event that
x + S is not multi-colored.

Pr(A,) < k(1 — %)ml.

A, depends on A, if (x+5)N (y+ S) # 0. Equivalently,
y—x €5 — 5. There are at most m(m — 1) such events.

d<m(m—1).
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- continue

Apllying LLL, we get

Then by Tikhonov's theorem, [k]® is compact. For any
r € R, let

C, ={ce[k]®: 2+ S is multi-colored}.
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- continue

Apllying LLL, we get

Then by Tikhonov's theorem, [k]® is compact. For any
r € R, let

C, ={ce[k]®: 2+ S is multi-colored}.

Now C is a closed set and N,cxC, # 0 for any finite X.
Then NerC, # 0.

15 / 16



- Ramsey numbers -

Theorem (Spencer, 1975)

Rk, k) > (1+ 0(1))@&%/2.

€
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- Ramsey numbers

Theorem (Spencer, 1975)

Rk, k) > (1+ 0(1))@&%/2.

€

Theorem (Spencer, 1975)

ck?
R(3. k) > .
(3 )_logk

Best bounds for R(r, k) (for fixed r and k large),

kr—l
log" * k

(r+1)/2
c (10];16) < R(r,k) < (1+0(1))

16 / 16
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