

Probabilistic Methods in Combinatorics Lecture 6

Linyuan Lu University of South Carolina

Mathematical Sciences Center at Tsinghua University November 16, 2011 – December 30, 2011

 \blacksquare *H* has *v* vertices and *e* edges.

 $\blacksquare \quad H \text{ has } v \text{ vertices and } e \text{ edges.}$

$$\bullet \quad \rho(H) = e/v.$$

- $\blacksquare \quad H \text{ has } v \text{ vertices and } e \text{ edges.}$
- $\bullet \quad \rho(H) = e/v.$
- H is called **balanced** of for any subgraph H',

 $\rho(H') \le \rho(H).$

- I H has v vertices and e edges.
- $\bullet \quad \rho(H) = e/v.$
- H is called **balanced** of for any subgraph H',

 $\rho(H') \le \rho(H).$

H is called **strictly balanced** of for any proper subgraph H',

$$\rho(H') < \rho(H).$$

Theorem: Let H be a balanced graph with v vertices and e edges. Let A(G) be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshod function for A.

Theorem: Let H be a balanced graph with v vertices and e edges. Let A(G) be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshod function for A.

If H is not balanced then $p = n^{-v/e}$ is the threshod function for A.

Theorem: Let H be a balanced graph with v vertices and e edges. Let A(G) be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshod function for A.

If H is not balanced then $p = n^{-v/e}$ is the threshod function for A.

Proof: Write $X = \sum_{S} X_{S}$. Then $E(X) = {n \choose v} p^{e}$.

Theorem: Let H be a balanced graph with v vertices and e edges. Let A(G) be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshod function for A.

If H is not balanced then $p = n^{-v/e}$ is the threshod function for A.

Proof: Write $X = \sum_{S} X_{S}$. Then $E(X) = {n \choose v} p^{e}$. If $p \ll n^{-v/e}$, then E(X) = o(1); X = 0 almost surely.

Theorem: Let H be a balanced graph with v vertices and e edges. Let A(G) be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshod function for A.

If H is not balanced then $p = n^{-v/e}$ is the threshod function for A.

Proof: Write $X = \sum_{S} X_{S}$. Then $E(X) = {n \choose v} p^{e}$. If $p \ll n^{-v/e}$, then E(X) = o(1); X = 0 almost surely. If $p \gg n^{-v/e}$, then $E(X) \to \infty$. We have

$$\Delta^* = O(\sum_{i=2}^{v} n^{v-i} p^{e-(ie/v)}) = o(\mathbf{E}(X)).$$

Two other results

Theorem: Let H be a strictly balanced graph with v vertices and e edges and a automorphisms. Let X be the copies of H in G(n, p). Assume $p \gg n^{-v/s}$. Then almost always

$$X \sim \frac{n^v p^e}{a}.$$

Two other results

Theorem: Let H be a strictly balanced graph with v vertices and e edges and a automorphisms. Let X be the copies of H in G(n, p). Assume $p \gg n^{-v/s}$. Then almost always

Theorem: Let H be any fixed graph. For every subgraph H' of H (including H itself) let $X_{H'}$ denote the number of copies of H' in G(n, p). Assume p is such that $E(X_{H'}) \rightarrow \infty$ for every H'. Then almost surely

 $X_H \sim \mathrm{E}(X_H).$

• $\omega(G)$: the clique number of G.

- $\omega(G)$: the clique number of G.
- $f(k) = \binom{n}{k} 2^{\binom{k}{2}}$: the expected number of k-cliques.

- $\omega(G)$: the clique number of G.
- $f(k) = \binom{n}{k} 2^{\binom{k}{2}}$: the expected number of k-cliques.

Theorem: Let k = k(n) satisfying $k \sim 2 \log_2 n$ and $f(k) \to \infty$. Then almost surely $\omega(G) \ge k$.

• $\omega(G)$: the clique number of G.

• $f(k) = \binom{n}{k} 2^{\binom{k}{2}}$: the expected number of k-cliques.

Theorem: Let k = k(n) satisfying $k \sim 2 \log_2 n$ and $f(k) \to \infty$. Then almost surely $\omega(G) \ge k$.

Proof: For each k-set S, let X_S be the indicator random variable that S is a clique and $X = \sum_{|S|=k} X_S$.

$$\mathcal{E}(X) = \binom{n}{k} 2^{\binom{k}{2}} = f(k).$$

Continue

$$\begin{split} \Delta^* &= \sum_{i=2}^{k-1} \binom{k}{i} \binom{n-k}{k-i} 2^{\binom{i}{2} - \binom{k}{2}} \\ &\frac{\Delta^*}{E(|X|)} = \sum_{i=2}^{k-1} g(i), \end{split}$$
 where $g(i) = \frac{\binom{k}{i}\binom{n-k}{k-i}}{\binom{n}{k}} 2^{\binom{i}{2}}.$

Continue

$$\Delta^* = \sum_{i=2}^{k-1} \binom{k}{i} \binom{n-k}{k-i} 2^{\binom{i}{2} - \binom{k}{2}}$$
$$\frac{\Delta^*}{E(|X|)} = \sum_{i=2}^{k-1} g(i),$$

where $g(i) = \frac{\binom{k}{i}\binom{n-k}{k-i}}{\binom{n}{k}} 2^{\binom{i}{2}}$. Then

$$g(i) \le \max\{g(2), g(k-1)\} = o(n^{-1}).$$

Thus, $\Delta^* = o(\mathcal{E}(X)).$

$$\frac{f(k+1)}{f(k)} = \frac{n-k}{k+1}2^{-k}.$$

For $k \sim 2 \log_2 n$, then

$$\frac{f(k+1)}{f(k)} = n^{-1+o(1)}.$$

$$\frac{f(k+1)}{f(k)} = \frac{n-k}{k+1}2^{-k}.$$

For $k \sim 2 \log_2 n$, then

$$\frac{f(k+1)}{f(k)} = n^{-1+o(1)}.$$

Let k_0 be the value with $f(k_0) \ge 1 > f(k_0 + 1)$. For most of n, f(k) will jump from very large to ver small. With high probability, $\omega(G) = k_0$.

• A set x_1, \ldots, x_k of positive integers is said to have distinct sums if all sums

$$\sum_{i \in S} x_i, \quad S \subset \{1, \dots, k\}$$

are distinct.

A set x_1, \ldots, x_k of positive integers is said to have distinct sums if all sums

$$\sum_{i \in S} x_i, \quad S \subset \{1, \dots, k\}$$

are distinct.

Let f(k) be the smallest k for which there is a set

$$\{x_1, x_2, \ldots, x_k\} \subset \{1, \ldots, n\}$$

with distinct set.

It is clear $f(n) \ge 1 + \lfloor \log_2 n \rfloor$.

Erdős offered \$300 for a proof or disproof that

$$f(n) \le \log_2 n + O(1).$$

Erdős offered \$300 for a proof or disproof that

$$f(n) \le \log_2 n + O(1).$$

An easy upper bound

$$f(n) < \log_2 n + \log_2 \log_2 n + O(1).$$

Erdős offered \$300 for a proof or disproof that

$$f(n) \le \log_2 n + O(1).$$

An easy upper bound

$$f(n) < \log_2 n + \log_2 \log_2 n + O(1).$$

Theorem:

$$f(n) < \log_2 n + \frac{1}{2}\log_2 \log_2 n + O(1).$$

Lovász Local Lemma

• A_1, A_2, \ldots, A_n : *n* events in an arbitrary probability spaces.

Lovász Local Lemma

- A_1, A_2, \ldots, A_n : *n* events in an arbitrary probability spaces.
- A dependency digraph D = (V, E): if for each A_i , A_i is mutually independent to all the events $\{A_j : A_i A_j \notin E\}$.

Lovász Local Lemma, general case: If there are real number x_1, \ldots, x_n such that $0 \le x_i < 1$ and $\Pr(A_i) \le x_i \prod_{(i,j) \in E} (1-x_j)$ for all $1 \le i \le n$. Then

$$\Pr\left(\wedge_{i=1}^{n}\bar{A}_{i}\right) \geq \prod_{i=1}^{n}(1-x_{i}) > 0.$$

Symmetric Case

Lovász Local Lemma, symmetric case: Let A_1, A_2, \ldots, A_n be events in an arbitrary probability space. Suppose that each event A_i is mutually independent of a set of all the other event A_j but at most d, and that $\Pr(A_i) \leq p$ for all $1 \leq i \leq n$. If ep(d+1) < 1, then $\Pr(\wedge_{i=1}^n \bar{A}_i) > 0$.

Property B

Theorem: Let H = (V, E) be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d+1) \leq 2^{k-1}$, then H has property B.

Property B

Theorem: Let H = (V, E) be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d + 1) \leq 2^{k-1}$, then H has property B.

Proof: Color each vertex in two colors randomly and independently. For each edge $f \in E$, let A_f be the event that f is monochromatic. Then

$$\Pr(A_f) = 2^{1-|f|} \le 2^{1-k}.$$

 A_f is independent to all event but at most d. Aplly LLL.

$k\text{-coloring of }\mathbb{R}$

Let $c \colon \mathbb{R} \to \{1, 2, \dots, k\}$ be a k-coloring of \mathbb{R} . A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \dots, k\}$.

$k\text{-coloring of }\mathbb{R}$

Let $c \colon \mathbb{R} \to \{1, 2, \dots, k\}$ be a k-coloring of \mathbb{R} . A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \dots, k\}$.

Theorem: Let m and k be two positive intergers satisfying

$$e(m(m-1)+1)k(1-\frac{1}{k})^m \le 1.$$

Then, for any set S of m real numbers there is a k-coloring so that each translantion x + S (for $x \in \mathbb{R}$) is multicolored.

$k\text{-coloring of }\mathbb{R}$

Let $c \colon \mathbb{R} \to \{1, 2, \dots, k\}$ be a k-coloring of \mathbb{R} . A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \dots, k\}$.

Theorem: Let m and k be two positive intergers satisfying

$$e(m(m-1)+1)k(1-\frac{1}{k})^m \le 1.$$

Then, for any set S of m real numbers there is a k-coloring so that each translantion x + S (for $x \in \mathbb{R}$) is multicolored. The condition is satisfied if $m > (3 + o(1))k \log k$.

Proof

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that x + S (for all $x \in X$) is multi-colored."

Proof

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that x + S (for all $x \in X$) is multi-colored."

Let $Y = \bigcup_{x \in X} (x + S)$. Color numbers in Y in k-colors randomly and independently. Let A_x be the event that x + S is not multi-colored.

$$\Pr(A_x) \le k(1 - \frac{1}{k})^{m-1}.$$

Proof

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that x + S (for all $x \in X$) is multi-colored."

Let $Y = \bigcup_{x \in X} (x + S)$. Color numbers in Y in k-colors randomly and independently. Let A_x be the event that x + S is not multi-colored.

$$\Pr(A_x) \le k(1 - \frac{1}{k})^{m-1}$$

 A_x depends on A_y if $(x + S) \cap (y + S) \neq \emptyset$. Equivalently, $y - x \in S - S$. There are at most m(m - 1) such events.

 $d \le m(m-1).$

Apllying LLL, we get

$$\Pr(\wedge_{x\in X}\bar{A}_x)>0.$$

Then by Tikhonov's theorem, $[k]^{\mathbb{R}}$ is compact. For any $x\in\mathbb{R},$ let

 $C_x = \{ c \in [k]^{\mathbb{R}} \colon x + S \text{ is multi-colored} \}.$

Apllying LLL, we get

$$\Pr(\wedge_{x\in X}\bar{A}_x)>0.$$

Then by Tikhonov's theorem, $[k]^{\mathbb{R}}$ is compact. For any $x\in\mathbb{R},$ let

$$C_x = \{ c \in [k]^{\mathbb{R}} \colon x + S \text{ is multi-colored} \}.$$

Now C_x is a closed set and $\bigcap_{x \in X} C_x \neq \emptyset$ for any finite X. Then $\bigcap_{x \in \mathbb{R}} C_x \neq \emptyset$.

Ramsey numbers

Theorem (Spencer, 1975)

$$R(k,k) \ge (1+o(1))\frac{\sqrt{2}}{e}k2^{k/2}.$$

Ramsey numbers

Theorem (Spencer, 1975)

$$R(k,k) \ge (1+o(1))\frac{\sqrt{2}}{e}k2^{k/2}.$$

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Ramsey numbers

Theorem (Spencer, 1975)

$$R(k,k) \ge (1+o(1))\frac{\sqrt{2}}{e}k2^{k/2}.$$

Theorem (Spencer, 1975)

$$R(3,k) \ge \frac{ck^2}{\log k}.$$

Best bounds for R(r, k) (for fixed r and k large),

$$c\left(\frac{k}{\log k}\right)^{(r+1)/2} < R(r,k) < (1+o(1))\frac{k^{r-1}}{\log^{r-2}k}.$$

