Probabilistic Methods in Combinatorics

 Lecture 6

 Lecture 6}

Linyuan Lu

University of South Carolina

Mathematical Sciences Center at Tsinghua University
November 16, 2011 - December 30, 2011

Balance graphs

- $\quad H$ has v vertices and e edges.

Balance graphs

- $\quad H$ has v vertices and e edges.
- $\rho(H)=e / v$.

Balance graphs

- H has v vertices and e edges.
$\rho(H)=e / v$.
H is called balanced of for any subgraph H^{\prime},

$$
\rho\left(H^{\prime}\right) \leq \rho(H)
$$

Balance graphs

- H has v vertices and e edges.
$\rho(H)=e / v$.
H is called balanced of for any subgraph H^{\prime},

$$
\rho\left(H^{\prime}\right) \leq \rho(H)
$$

- H is called strictly balanced of for any proper subgraph H^{\prime},

$$
\rho\left(H^{\prime}\right)<\rho(H)
$$

Results

Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p=n^{-v / e}$ is the threshod function for A.

Results

Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p=n^{-v / e}$ is the threshod function for A.
If H is not balanced then $p=n^{-v / e}$ is the threshod function for A.

Results

Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p=n^{-v / e}$ is the threshod function for A.
If H is not balanced then $p=n^{-v / e}$ is the threshod function for A.
Proof: Write $X=\sum_{S} X_{S}$. Then $\mathrm{E}(X)=\binom{n}{v} p^{e}$.

Results

Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p=n^{-v / e}$ is the threshod function for A.
If H is not balanced then $p=n^{-v / e}$ is the threshod function for A.
Proof: Write $X=\sum_{S} X_{S}$. Then $\mathrm{E}(X)=\binom{n}{v} p^{e}$.
If $p \ll n^{-v / e}$, then $\mathrm{E}(X)=o(1) ; X=0$ almost surely.

Results

Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p=n^{-v / e}$ is the threshod function for A.
If H is not balanced then $p=n^{-v / e}$ is the threshod function for A.
Proof: Write $X=\sum_{S} X_{S}$. Then $\mathrm{E}(X)=\binom{n}{v} p^{e}$.
If $p \ll n^{-v / e}$, then $\mathrm{E}(X)=o(1) ; X=0$ almost surely.
If $p \gg n^{-v / e}$, then $\mathrm{E}(X) \rightarrow \infty$. We have

$$
\Delta^{*}=O\left(\sum_{i=2}^{v} n^{v-i} p^{e-(i e / v)}\right)=o(\mathrm{E}(X))
$$

Two other results

Theorem: Let H be a strictly balanced graph with v vertices and e edges and a automorphisms. Let X be the copies of H in $G(n, p)$. Assume $p \gg n^{-v / s}$. Then almost always

$$
X \sim \frac{n^{v} p^{e}}{a}
$$

Two other results

Theorem: Let H be a strictly balanced graph with v vertices and e edges and a automorphisms. Let X be the copies of H in $G(n, p)$. Assume $p \gg n^{-v / s}$. Then almost always

$$
X \sim \frac{n^{v} p^{e}}{a}
$$

Theorem: Let H be any fixed graph. For every subgraph H^{\prime} of H (including H itself) let $X_{H^{\prime}}$ denote the number of copies of H^{\prime} in $G(n, p)$. Assume p is such that $E\left(X_{H^{\prime}}\right) \rightarrow \infty$ for every H^{\prime}. Then almost surely

$$
X_{H} \sim \mathrm{E}\left(X_{H}\right) .
$$

Clique number of $G(n, 1 / 2)$

$\omega(G)$: the clique number of G.

Clique number of $G(n, 1 / 2)$

$\omega(G)$: the clique number of G.
$f(k)=\binom{n}{k} 2^{\binom{k}{2}}$: the expected number of k-cliques.

Clique number of $G(n, 1 / 2)$

- $\omega(G)$: the clique number of G.
- $f(k)=\binom{n}{k} 2^{\binom{k}{2}}$: the expected number of k-cliques.

Theorem: Let $k=k(n)$ satisfying $k \sim 2 \log _{2} n$ and $f(k) \rightarrow \infty$. Then almost surely $\omega(G) \geq k$.

Clique number of $G(n, 1 / 2)$

- $\omega(G)$: the clique number of G.
- $f(k)=\binom{n}{k} 2^{\binom{k}{2}}$: the expected number of k-cliques.

Theorem: Let $k=k(n)$ satisfying $k \sim 2 \log _{2} n$ and $f(k) \rightarrow \infty$. Then almost surely $\omega(G) \geq k$.
Proof: For each k-set S, let X_{S} be the indicator random variable that S is a clique and $X=\sum_{|S|=k} X_{S}$.

$$
\mathrm{E}(X)=\binom{n}{k} 2^{\binom{k}{2}}=f(k)
$$

Continue

$$
\begin{gathered}
\Delta^{*}=\sum_{i=2}^{k-1}\binom{k}{i}\binom{n-k}{k-i} 2^{\binom{i}{2}-\binom{k}{2} .} \\
\frac{\Delta^{*}}{E(|X|)}=\sum_{i=2}^{k-1} g(i),
\end{gathered}
$$

Continue

$$
\begin{gathered}
\Delta^{*}=\sum_{i=2}^{k-1}\binom{k}{i}\binom{n-k}{k-i} 2^{\binom{i}{2}-\binom{k}{2}} . \\
\frac{\Delta^{*}}{E(|X|)}=\sum_{i=2}^{k-1} g(i),
\end{gathered}
$$

where $g(i)=\frac{\binom{k}{i}\binom{n-k}{k-i}}{\binom{n}{k}} 2^{\binom{i}{2}}$. Then

$$
g(i) \leq \max \{g(2), g(k-1)\}=o\left(n^{-1}\right) .
$$

Thus, $\Delta^{*}=o(\mathrm{E}(X))$.

Remark

$$
\frac{f(k+1)}{f(k)}=\frac{n-k}{k+1} 2^{-k} .
$$

For $k \sim 2 \log _{2} n$, then

$$
\frac{f(k+1)}{f(k)}=n^{-1+o(1)} .
$$

Remark

$$
\frac{f(k+1)}{f(k)}=\frac{n-k}{k+1} 2^{-k}
$$

For $k \sim 2 \log _{2} n$, then

$$
\frac{f(k+1)}{f(k)}=n^{-1+o(1)}
$$

Let k_{0} be the value with $f\left(k_{0}\right) \geq 1>f\left(k_{0}+1\right)$. For most of $n, f(k)$ will jump from very large to ver small. With high probabilty, $\omega(G)=k_{0}$.

Distinct sum

A set x_{1}, \ldots, x_{k} of positive integers is said to have distinct sums if all sums

$$
\sum_{i \in S} x_{i}, \quad S \subset\{1, \ldots, k\}
$$

are distinct.

Distinct sum

A set x_{1}, \ldots, x_{k} of positive integers is said to have distinct sums if all sums

$$
\sum_{i \in S} x_{i}, \quad S \subset\{1, \ldots, k\}
$$

are distinct.

- Let $f(k)$ be the smallest k for which there is a set

$$
\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset\{1, \ldots, n\}
$$

with distinct set.
It is clear $f(n) \geq 1+\left\lfloor\log _{2} n\right\rfloor$.

Distinct sum

Erdős offered \$300 for a proof or disproof that

$$
f(n) \leq \log _{2} n+O(1)
$$

Distinct sum

Erdős offered \$300 for a proof or disproof that

$$
f(n) \leq \log _{2} n+O(1)
$$

An easy upper bound

$$
f(n)<\log _{2} n+\log _{2} \log _{2} n+O(1) .
$$

Distinct sum

Erdős offered $\$ 300$ for a proof or disproof that

$$
f(n) \leq \log _{2} n+O(1)
$$

An easy upper bound

$$
f(n)<\log _{2} n+\log _{2} \log _{2} n+O(1)
$$

Theorem:

$$
f(n)<\log _{2} n+\frac{1}{2} \log _{2} \log _{2} n+O(1) .
$$

Lovász Local Lemma

$A_{1}, A_{2}, \ldots, A_{n}: n$ events in an arbitrary probability spaces.

Lovász Local Lemma

- $A_{1}, A_{2}, \ldots, A_{n}: n$ events in an arbitrary probability spaces.
- A dependency digraph $D=(V, E)$: if for each A_{i}, A_{i} is mutually independent to all the events $\left\{A_{j}: A_{i} A_{j} \notin E\right\}$.

Lovász Local Lemma, general case: If there are real number x_{1}, \ldots, x_{n} such that $0 \leq x_{i}<1$ and
$\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)$ for all $1 \leq i \leq n$. Then

$$
\operatorname{Pr}\left(\wedge_{i=1}^{n} \bar{A}_{i}\right) \geq \prod_{i=1}^{n}\left(1-x_{i}\right)>0
$$

Symmetric Case

Lovász Local Lemma, symmetric case: Let

$A_{1}, A_{2}, \ldots, A_{n}$ be events in an arbitrary probability space.
Suppose that each event A_{i} is mutually independent of a set of all the other event A_{j} but at most d, and that $\operatorname{Pr}\left(A_{i}\right) \leq p$ for all $1 \leq i \leq n$. If $e p(d+1)<1$, then $\operatorname{Pr}\left(\wedge_{i=1}^{n} \bar{A}_{i}\right)>0$.

Property B

Theorem: Let $H=(V, E)$ be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d+1) \leq 2^{k-1}$, then H has property B.

Property B

Theorem: Let $H=(V, E)$ be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d+1) \leq 2^{k-1}$, then H has property B.
Proof: Color each vertex in two colors randomly and independently. For each edge $f \in E$, let A_{f} be the event that f is monochromatic. Then

$$
\operatorname{Pr}\left(A_{f}\right)=2^{1-|f|} \leq 2^{1-k} .
$$

A_{f} is independent to all event but at most d. Aplly LLL.

k-coloring of \mathbb{R}

Let $c: \mathbb{R} \rightarrow\{1,2, \ldots, k\}$ be a k-coloring of \mathbb{R}. A set $T \subset \mathbb{R}$ is multicolored if $c(T)=\{1,2, \ldots, k\}$.

k-coloring of \mathbb{R}

Let $c: \mathbb{R} \rightarrow\{1,2, \ldots, k\}$ be a k-coloring of \mathbb{R}. A set $T \subset \mathbb{R}$ is multicolored if $c(T)=\{1,2, \ldots, k\}$.
Theorem: Let m and k be two positive intergers satisfying

$$
e(m(m-1)+1) k\left(1-\frac{1}{k}\right)^{m} \leq 1 .
$$

Then, for any set S of m real numbers there is a k-coloring so that each translantion $x+S$ (for $x \in \mathbb{R}$) is multicolored.

k-coloring of \mathbb{R}

Let $c: \mathbb{R} \rightarrow\{1,2, \ldots, k\}$ be a k-coloring of \mathbb{R}. A set $T \subset \mathbb{R}$ is multicolored if $c(T)=\{1,2, \ldots, k\}$.
Theorem: Let m and k be two positive intergers satisfying

$$
e(m(m-1)+1) k\left(1-\frac{1}{k}\right)^{m} \leq 1 .
$$

Then, for any set S of m real numbers there is a k-coloring so that each translantion $x+S$ (for $x \in \mathbb{R}$) is multicolored.
The condition is satisfied if $m>(3+o(1)) k \log k$.

Proof

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x+S$ (for all $x \in X$) is multi-colored."

Proof

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x+S$ (for all $x \in X$) is multi-colored."
Let $Y=\cup_{x \in X}(x+S)$. Color numbers in Y in k-colors randomly and independently. Let A_{x} be the event that $x+S$ is not multi-colored.

$$
\operatorname{Pr}\left(A_{x}\right) \leq k\left(1-\frac{1}{k}\right)^{m-1}
$$

Proof

First we use LLL to prove "For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x+S$ (for all $x \in X$) is multi-colored."
Let $Y=\cup_{x \in X}(x+S)$. Color numbers in Y in k-colors randomly and independently. Let A_{x} be the event that $x+S$ is not multi-colored.

$$
\operatorname{Pr}\left(A_{x}\right) \leq k\left(1-\frac{1}{k}\right)^{m-1} .
$$

A_{x} depends on A_{y} if $(x+S) \cap(y+S) \neq \emptyset$. Equivalently, $y-x \in S-S$. There are at most $m(m-1)$ such events.

$$
d \leq m(m-1)
$$

continue

Apllying LLL, we get

$$
\operatorname{Pr}\left(\wedge_{x \in X} \bar{A}_{x}\right)>0 .
$$

Then by Tikhonov's theorem, $[k]^{\mathbb{R}}$ is compact. For any $x \in \mathbb{R}$, let

$$
C_{x}=\left\{c \in[k]^{\mathbb{R}}: x+S \text { is multi-colored }\right\} .
$$

continue

Apllying LLL, we get

$$
\operatorname{Pr}\left(\wedge_{x \in X} \bar{A}_{x}\right)>0
$$

Then by Tikhonov's theorem, $[k]^{\mathbb{R}}$ is compact. For any $x \in \mathbb{R}$, let

$$
C_{x}=\left\{c \in[k]^{\mathbb{R}}: x+S \text { is multi-colored }\right\} .
$$

Now C_{x} is a closed set and $\cap_{x \in X} C_{x} \neq \emptyset$ for any finite X. Then $\cap_{x \in \mathbb{R}} C_{x} \neq \emptyset$.

Ramsey numbers

Theorem (Spencer, 1975)

$$
R(k, k) \geq(1+o(1)) \frac{\sqrt{2}}{e} k 2^{k / 2}
$$

Ramsey numbers

Theorem (Spencer, 1975)

$$
R(k, k) \geq(1+o(1)) \frac{\sqrt{2}}{e} k 2^{k / 2}
$$

Theorem (Spencer, 1975)

$$
R(3, k) \geq \frac{c k^{2}}{\log k} .
$$

Ramsey numbers

Theorem (Spencer, 1975)

$$
R(k, k) \geq(1+o(1)) \frac{\sqrt{2}}{e} k 2^{k / 2}
$$

Theorem (Spencer, 1975)

$$
R(3, k) \geq \frac{c k^{2}}{\log k} .
$$

Best bounds for $R(r, k)$ (for fixed r and k large),

$$
c\left(\frac{k}{\log k}\right)^{(r+1) / 2}<R(r, k)<(1+o(1)) \frac{k^{r-1}}{\log ^{r-2} k} .
$$

