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■ H has v vertices and e edges.

■ ρ(H) = e/v.

■ H is called balanced of for any subgraph H ′,

ρ(H ′) ≤ ρ(H).

■ H is called strictly balanced of for any proper subgraph
H ′,

ρ(H ′) < ρ(H).
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Theorem: Let H be a balanced graph with v vertices and e
edges. Let A(G) be the event that H is a subgraph (not
necessarily induced) of G. Then p = n−v/e is the threshod
function for A.

If H is not balanced then p = n−v/e is the threshod function
for A.

Proof: Write X =
∑

S XS. Then E(X) =
(

n
v

)

pe.

If p ≪ n−v/e, then E(X) = o(1); X = 0 almost surely.

If p ≫ n−v/e, then E(X) → ∞. We have

∆∗ = O(
v

∑

i=2

nv−ipe−(ie/v)) = o(E(X)).
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Theorem: Let H be a strictly balanced graph with v
vertices and e edges and a automorphisms. Let X be the
copies of H in G(n, p). Assume p ≫ n−v/s. Then almost
always

X ∼ nvpe

a
.

Theorem: Let H be any fixed graph. For every subgraph
H ′ of H (including H itself) let XH ′ denote the number of
copies of H ′ in G(n, p). Assume p is such that
E(XH ′) → ∞ for every H ′. Then almost surely

XH ∼ E(XH).
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■ ω(G): the clique number of G.

■ f(k) =
(

n
k

)

2(k

2
): the expected number of k-cliques.

Theorem: Let k = k(n) satisfying k ∼ 2 log2 n and
f(k) → ∞. Then almost surely ω(G) ≥ k.

Proof: For each k-set S, let XS be the indicator random
variable that S is a clique and X =

∑

|S|=k XS.

E(X) =

(

n

k

)

2(k

2
) = f(k).
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∆∗ =
k−1
∑

i=2

(

k

i

)(

n − k

k − i

)

2(i

2
)−(k

2
).

∆∗

E(|X|) =
k−1
∑

i=2

g(i),

where g(i) =
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∆∗ =
k−1
∑

i=2

(

k

i

)(

n − k

k − i

)

2(i

2
)−(k

2
).

∆∗

E(|X|) =
k−1
∑

i=2

g(i),

where g(i) =
(k

i)(
n−k

k−i)
(n

k)
2(i

2
). Then

g(i) ≤ max{g(2), g(k − 1)} = o(n−1).

Thus, ∆∗ = o(E(X)). �
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n − k

k + 1
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f(k + 1)

f(k)
=

n − k

k + 1
2−k.

For k ∼ 2 log2 n, then

f(k + 1)

f(k)
= n−1+o(1).

Let k0 be the value with f(k0) ≥ 1 > f(k0 + 1). For most of
n, f(k) will jump from very large to ver small. With high
probabilty, ω(G) = k0.
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■ A set x1, . . . , xk of positive integers is said to have
distinct sums if all sums

∑

i∈S

xi, S ⊂ {1, . . . , k}

are distinct.

■ Let f(k) be the smallest k for which there is a set

{x1, x2, . . . , xk} ⊂ {1, . . . , n}

with distinct set.

It is clear f(n) ≥ 1 + ⌊log2 n⌋.
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Erdős offered $300 for a proof or disproof that

f(n) ≤ log2 n + O(1).

An easy upper bound

f(n) < log2 n + log2 log2 n + O(1).

Theorem:

f(n) < log2 n +
1

2
log2 log2 n + O(1).
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■ A1, A2, . . . , An: n events in an arbitrary probability
spaces.

■ A dependency digraph D = (V, E): if for each Ai, Ai is
mutually independent to all the events {Aj : AiAj 6∈ E}.

Lovász Local Lemma, general case: If there are real
number x1, . . . , xn such that 0 ≤ xi < 1 and
Pr(Ai) ≤ xi

∏

(i,j)∈E(1 − xj) for all 1 ≤ i ≤ n. Then

Pr
(

∧n
i=1Āi

)

≥
n

∏

i=1

(1 − xi) > 0.
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Lovász Local Lemma, symmetric case: Let
A1, A2, . . . , An be events in an arbitrary probability space.
Suppose that each event Ai is mutually independent of a set
of all the other event Aj but at most d, and that Pr(Ai) ≤ p
for all 1 ≤ i ≤ n. If ep(d + 1) < 1, then Pr(∧n

i=1Āi) > 0.
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edge has at least k elements, and suppose that each edge of
H intersects at most d other edges. If e(d + 1) ≤ 2k−1, then
H has property B.
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Theorem: Let H = (V, E) be a hypergraph in which every
edge has at least k elements, and suppose that each edge of
H intersects at most d other edges. If e(d + 1) ≤ 2k−1, then
H has property B.

Proof: Color each vertex in two colors randomly and
independently. For each edge f ∈ E, let Af be the event
that f is monochromatic. Then

Pr(Af) = 21−|f | ≤ 21−k.

Af is independent to all event but at most d. Aplly LLL. �
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Let c : R → {1, 2, . . . , k} be a k-coloring of R. A set T ⊂ R

is multicolored if c(T ) = {1, 2, . . . , k}.
Theorem: Let m and k be two positive intergers satisfying

e(m(m − 1) + 1)k(1 − 1

k
)m ≤ 1.

Then, for any set S of m real numbers there is a k-coloring
so that each translantion x + S (for x ∈ R) is multicolored.

The condition is satisfied if m > (3 + o(1))k log k.
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First we use LLL to prove “For any finite set X ⊂ R, there is
a k-coloring so that x + S (for all x ∈ X) is multi-colored.”

Let Y = ∪x∈X(x + S). Color numbers in Y in k-colors
randomly and independently. Let Ax be the event that
x + S is not multi-colored.

Pr(Ax) ≤ k(1 − 1

k
)m−1.

Ax depends on Ay if (x + S) ∩ (y + S) 6= ∅. Equivalently,
y − x ∈ S − S. There are at most m(m − 1) such events.

d ≤ m(m − 1).
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Apllying LLL, we get

Pr(∧x∈XĀx) > 0.

Then by Tikhonov’s theorem, [k]R is compact. For any
x ∈ R, let

Cx = {c ∈ [k]R : x + S is multi-colored}.
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Apllying LLL, we get

Pr(∧x∈XĀx) > 0.

Then by Tikhonov’s theorem, [k]R is compact. For any
x ∈ R, let

Cx = {c ∈ [k]R : x + S is multi-colored}.

Now Cx is a closed set and ∩x∈XCx 6= ∅ for any finite X.
Then ∩x∈RCx 6= ∅. �
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Theorem (Spencer, 1975)

R(k, k) ≥ (1 + o(1))

√
2

e
k2k/2.

Theorem (Spencer, 1975)

R(3, k) ≥ ck2

log k
.

Best bounds for R(r, k) (for fixed r and k large),

c

(

k

log k

)(r+1)/2

< R(r, k) < (1 + o(1))
kr−1

logr−2 k
.
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