Balance graphs

- H has v vertices and e edges.
Balance graphs

- H has v vertices and e edges.
- $\rho(H) = e/v$.
Balance graphs

- H has v vertices and e edges.
- $\rho(H) = e/v$.
- H is called **balanced** if for any subgraph H',
 \[\rho(H') \leq \rho(H). \]
Balance graphs

- H has v vertices and e edges.
- $\rho(H) = e/v$.
- H is called balanced if for any subgraph H',
 \[\rho(H') \leq \rho(H). \]
- H is called strictly balanced if for any proper subgraph H',
 \[\rho(H') < \rho(H). \]
Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshold function for A.
Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshold function for A.

If H is not balanced then $p = n^{-v/e}$ is the threshold function for A.
Theorem: Let \(H \) be a balanced graph with \(v \) vertices and \(e \) edges. Let \(A(G) \) be the event that \(H \) is a subgraph (not necessarily induced) of \(G \). Then \(p = n^{-v/e} \) is the threshold function for \(A \).

If \(H \) is not balanced then \(p = n^{-v/e} \) is the threshold function for \(A \).

Proof: Write \(X = \sum S X_S \). Then \(E(X) = \binom{n}{v} p^e \).
Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshold function for A.

If H is not balanced then $p = n^{-v/e}$ is the threshold function for A.

Proof: Write $X = \sum S X_S$. Then $E(X) = \binom{n}{v} p^e$.

If $p \ll n^{-v/e}$, then $E(X) = o(1)$; $X = 0$ almost surely.
Theorem: Let H be a balanced graph with v vertices and e edges. Let $A(G)$ be the event that H is a subgraph (not necessarily induced) of G. Then $p = n^{-v/e}$ is the threshold function for A.

If H is not balanced then $p = n^{-v/e}$ is the threshold function for A.

Proof: Write $X = \sum S X_S$. Then $E(X) = \binom{n}{v} p^e$.

If $p \ll n^{-v/e}$, then $E(X) = o(1)$; $X = 0$ almost surely.

If $p \gg n^{-v/e}$, then $E(X) \to \infty$. We have

$$\Delta^* = O\left(\sum_{i=2}^{v} n^{v-i} p^{e-(ie/v)}\right) = o(E(X)).$$
Two other results

Theorem: Let H be a strictly balanced graph with v vertices and e edges and α automorphisms. Let X be the copies of H in $G(n, p)$. Assume $p \gg n^{-v/s}$. Then almost always

$$X \sim \frac{n^v p^e}{\alpha}.$$
Two other results

Theorem: Let H be a strictly balanced graph with v vertices and e edges and α automorphisms. Let X be the copies of H in $G(n, p)$. Assume $p \gg n^{-v/s}$. Then almost always

$$X \sim \frac{n^v p^e}{\alpha}.$$

Theorem: Let H be any fixed graph. For every subgraph H' of H (including H itself) let $X_{H'}$ denote the number of copies of H' in $G(n, p)$. Assume p is such that $E(X_{H'}) \to \infty$ for every H'. Then almost surely

$$X_H \sim E(X_H).$$
Clique number of $G(n, 1/2)$

- $\omega(G)$: the clique number of G.
Clique number of $G(n, 1/2)$

- $\omega(G)$: the clique number of G.
- $f(k) = \binom{n}{k} 2^{\binom{k}{2}}$: the expected number of k-cliques.
Clique number of $G(n, 1/2)$

- $\omega(G)$: the clique number of G.
- $f(k) = \binom{n}{k}2^{\binom{k}{2}}$: the expected number of k-cliques.

Theorem: Let $k = k(n)$ satisfying $k \sim 2 \log_2 n$ and $f(k) \to \infty$. Then almost surely $\omega(G) \geq k$.
Clique number of $G(n, 1/2)$

- $\omega(G)$: the clique number of G.
- $f(k) = \binom{n}{k} 2^{\binom{k}{2}}$: the expected number of k-cliques.

Theorem: Let $k = k(n)$ satisfying $k \sim 2 \log_2 n$ and $f(k) \to \infty$. Then almost surely $\omega(G) \geq k$.

Proof: For each k-set S, let X_S be the indicator random variable that S is a clique and $X = \sum_{|S|=k} X_S$.

$$E(X) = \binom{n}{k} 2^{\binom{k}{2}} = f(k).$$
\[\Delta^* = \sum_{i=2}^{k-1} \binom{k}{i} \binom{n-k}{k-i} 2^{(i)} - \binom{k}{2}. \]

\[\frac{\Delta^*}{E(|X|)} = \sum_{i=2}^{k-1} g(i), \]

where \(g(i) = \frac{\binom{k}{i} \binom{n-k}{k-i}}{\binom{n}{k}} 2^{(i)} \).
\[\Delta^* = \sum_{i=2}^{k-1} \binom{k}{i} \binom{n-k}{k-i} 2^{\binom{i}{2}} - \binom{k}{2}. \]

\[\frac{\Delta^*}{E(|X|)} = \sum_{i=2}^{k-1} g(i), \]

where \(g(i) = \frac{\binom{k}{i} \binom{n-k}{k-i}}{\binom{n}{k}} 2^{\binom{i}{2}}. \) Then

\[g(i) \leq \max\{g(2), g(k - 1)\} = o(n^{-1}). \]

Thus, \(\Delta^* = o(E(X)) \).

\[\square \]
Remark

\[\frac{f(k+1)}{f(k)} = \frac{n-k}{k+1} 2^{-k}. \]

For \(k \sim 2 \log_2 n \), then

\[\frac{f(k+1)}{f(k)} = n^{-1+o(1)}. \]
Remark

\[
\frac{f(k + 1)}{f(k)} = \frac{n - k}{k + 1} 2^{-k}.
\]

For \(k \sim 2 \log_2 n \), then

\[
\frac{f(k + 1)}{f(k)} = n^{-1+o(1)}.
\]

Let \(k_0 \) be the value with \(f(k_0) \geq 1 > f(k_0 + 1) \). For most of \(n \), \(f(k) \) will jump from very large to very small. With high probability, \(\omega(G) = k_0 \).
A set \(x_1, \ldots, x_k \) of positive integers is said to have distinct sums if all sums

\[
\sum_{i \in S} x_i, \quad S \subset \{1, \ldots, k\}
\]

are distinct.
Distinct sum

- A set x_1, \ldots, x_k of positive integers is said to have distinct sums if all sums

$$\sum_{i \in S} x_i, \quad S \subset \{1, \ldots, k\}$$

are distinct.

- Let $f(k)$ be the smallest k for which there is a set

$$\{x_1, x_2, \ldots, x_k\} \subset \{1, \ldots, n\}$$

with distinct set.

It is clear $f(n) \geq 1 + \lfloor \log_2 n \rfloor$.
Erdős offered $300 for a proof or disproof that

\[f(n) \leq \log_2 n + O(1). \]
Erdős offered $300 for a proof or disproof that

\[f(n) \leq \log_2 n + O(1). \]

An easy upper bound

\[f(n) < \log_2 n + \log_2 \log_2 n + O(1). \]
Distinct sum

Erdős offered $300 for a proof or disproof that

\[f(n) \leq \log_2 n + O(1). \]

An easy upper bound

\[f(n) < \log_2 n + \log_2 \log_2 n + O(1). \]

Theorem:

\[f(n) < \log_2 n + \frac{1}{2} \log_2 \log_2 n + O(1). \]
Lovász Local Lemma

- A_1, A_2, \ldots, A_n: n events in an arbitrary probability spaces.
Lovász Local Lemma

- A_1, A_2, \ldots, A_n: n events in an arbitrary probability spaces.
- A dependency digraph $D = (V, E)$: if for each A_i, A_i is mutually independent to all the events $\{A_j: A_i A_j \notin E\}$.

Lovász Local Lemma, general case: If there are real number x_1, \ldots, x_n such that $0 \leq x_i < 1$ and

$$\Pr(A_i) \leq x_i \prod_{(i,j) \in E} (1 - x_j)$$

for all $1 \leq i \leq n$. Then

$$\Pr\left(\bigwedge_{i=1}^{n} \bar{A}_i\right) \geq \prod_{i=1}^{n} (1 - x_i) > 0.$$
Lovász Local Lemma, symmetric case: Let A_1, A_2, \ldots, A_n be events in an arbitrary probability space. Suppose that each event A_i is mutually independent of a set of all the other event A_j but at most d, and that $\Pr(A_i) \leq p$ for all $1 \leq i \leq n$. If $ep(d + 1) < 1$, then $\Pr(\bigwedge_{i=1}^{n} \bar{A}_i) > 0$.
Theorem: Let $H = (V, E)$ be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d + 1) \leq 2^{k-1}$, then H has property B.
Theorem: Let $H = (V, E)$ be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d + 1) \leq 2^{k-1}$, then H has property B.

Proof: Color each vertex in two colors randomly and independently. For each edge $f \in E$, let A_f be the event that f is monochromatic. Then

$$\Pr(A_f) = 2^{1-|f|} \leq 2^{1-k}.$$

A_f is independent to all event but at most d. Apply LLL. □
Let $c: \mathbb{R} \rightarrow \{1, 2, \ldots, k\}$ be a k-coloring of \mathbb{R}. A set $T \subset \mathbb{R}$ is multicolored if $c(T) = \{1, 2, \ldots, k\}$.
k-coloring of \mathbb{R}

Let $c : \mathbb{R} \to \{1, 2, \ldots, k\}$ be a k-coloring of \mathbb{R}. A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \ldots, k\}$.

Theorem: Let m and k be two positive integers satisfying

$$e(m(m-1)+1)k(1-\frac{1}{k})^m \leq 1.$$

Then, for any set S of m real numbers there is a k-coloring so that each translation $x + S$ (for $x \in \mathbb{R}$) is multicolored.
Let $c: \mathbb{R} \to \{1, 2, \ldots, k\}$ be a k-coloring of \mathbb{R}. A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \ldots, k\}$.

Theorem: Let m and k be two positive integers satisfying

$$e(m(m - 1) + 1)k(1 - \frac{1}{k})^m \leq 1.$$

Then, for any set S of m real numbers there is a k-coloring so that each translation $x + S$ (for $x \in \mathbb{R}$) is multicolored.

The condition is satisfied if $m > (3 + o(1))k \log k$.

First we use LLL to prove “For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x + S$ (for all $x \in X$) is multi-colored.”
Proof

First we use LLL to prove “For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x + S$ (for all $x \in X$) is multi-colored.”

Let $Y = \bigcup_{x \in X} (x + S)$. Color numbers in Y in k-colors randomly and independently. Let A_x be the event that $x + S$ is not multi-colored.

$$\Pr(A_x) \leq k \left(1 - \frac{1}{k}\right)^{m-1}.$$
Proof

First we use LLL to prove “For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x + S$ (for all $x \in X$) is multi-colored.”

Let $Y = \bigcup_{x \in X} (x + S)$. Color numbers in Y in k-colors randomly and independently. Let A_x be the event that $x + S$ is not multi-colored.

$$\Pr(A_x) \leq k\left(1 - \frac{1}{k}\right)^{m-1}.$$

A_x depends on A_y if $(x + S) \cap (y + S) \neq \emptyset$. Equivalently, $y - x \in S - S$. There are at most $m(m-1)$ such events.

$$d \leq m(m - 1).$$
Applying LLL, we get

\[\Pr(\bigwedge_{x \in X} \tilde{A}_x) > 0. \]

Then by Tikhonov’s theorem, \([k]^\mathbb{R}\) is compact. For any \(x \in \mathbb{R}\), let

\[C_x = \{ c \in [k]^\mathbb{R} : x + S \text{ is multi-colored} \}. \]
Applying LLL, we get

\[\Pr(\bigwedge_{x \in X} \bar{A}_x) > 0. \]

Then by Tikhonov’s theorem, \([k]^{\mathbb{R}}\) is compact. For any \(x \in \mathbb{R}\), let

\[C_x = \{ c \in [k]^{\mathbb{R}} : x + S \text{ is multi-colored} \}. \]

Now \(C_x\) is a closed set and \(\bigcap_{x \in X} C_x \neq \emptyset\) for any finite \(X\). Then \(\bigcap_{x \in \mathbb{R}} C_x \neq \emptyset\). \(\square\)
 Ramsey numbers

Theorem (Spencer, 1975)

\[R(k, k) \geq (1 + o(1)) \frac{\sqrt{2}}{e} k 2^{k/2}. \]
Ramsey numbers

Theorem (Spencer, 1975)

\[R(k, k) \geq (1 + o(1)) \frac{\sqrt{2}}{e} k 2^{k/2} . \]

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k} . \]
Ramsey numbers

Theorem (Spencer, 1975)

\[R(k, k) \geq (1 + o(1)) \frac{\sqrt{2}}{e} k^{2^{k/2}}. \]

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{c k^2}{\log k}. \]

Best bounds for \(R(r, k) \) (for fixed \(r \) and \(k \) large),

\[c \left(\frac{k}{\log k} \right)^{(r+1)/2} < R(r, k) < (1 + o(1)) \frac{k^{r-1}}{\log^{r-2} k}. \]