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Recoloring

Property B problem revisited:
Let m(r) denote the minimum possible number of edges of

an r-uniform hypergraph that does not have property B.
Theorem [Radhakrishnan-Srinivasan 2000]:

m(r) > Q ((ﬁ)m 27“) |

Proof: For a fixed r-uniform hypergraph H = (V, F/) with
|E| = k2" 1. Let p € [0, 1] satisfying k(1 — p)" + k*p < 1.
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Coloring process

Here is a two-round coloring process.

First round: Color each vertex independently in red or
blue with equal probability. It ends with a coloring with
expected £ monochromatic edges. Let U be the set of
vertices in some monochromatic edges.
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Coloring process -

Here is a two-round coloring process.

First round: Color each vertex independently in red or
blue with equal probability. It ends with a coloring with
expected £ monochromatic edges. Let U be the set of
vertices iIn some monochromatic edges.

Second round: Consider vertices in U sequentially in
the (random) order of V. A vertex u € U is still
dangerous if there is some monochromatic edge in the
first coloring and for which no vertex has yet changed
color.

O If w is not dangerous, do nothing.
O If w is still dangerous; with probability p, flip the
color of u.
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- Claim -

Claim: The algorithm fails with probability at most
k(1 —p)" + k*p.
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Claim: The algorithm fails with probability at most
k(1 —p)" + k*p.

Bad events: An edge ¢ is red in the final coloring if

m ¢ was red in the first coloring and remained red through
the final coloring; call this event A..

m ¢ was not red in the first coloring but was red in the final
coloring; call this event C..

Pr(Ac) =27"(1-p)".
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- Estimating Pr(C.) -

For two edge e, f, we say e blames f if

s en f={v} for some v.

s In the first coloring f was blue and in the final coloring €
was red.

= v was the last vertex of e that changed color from blue
to red.

= When v changed its color f was still entire blue.
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Estimating Pr(C.) -

For two edge e, f, we say e blames f if

eN f ={v} for some v.

In the first coloring f was blue and in the final coloring e
was red.

v was the last vertex of e that changed color from blue
to red.

When v changed its color f was still entire blue.

Call this event B.¢. Then

> Pr(Ce) <) Pr(By).

e+
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- continue -

Let e, f with e f = {v} be fixed. The random ordering of
V induced a random ordering o on e U f.
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- continue -

Let e, f with e f = {v} be fixed. The random ordering of
V induced a random ordering o on e U f.

s ¢ =1(0): the number of v’ € e coming before v.
s j = j(0): the number of v' € f coming before v.

| /1 !
PY(Bef | O') < gQ—TnLl(l _p)jz—”r—i—l—i—z (%) .

We have

2 pE[(1 4 p)'(1 - p)’].
21—27°p.

PI’(Bef)

VARVA
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- Estimating £ '

The failure probability is at most

2 Z (Pr(A.) +Pr(C.)) < k(1 —p)" + k?p < ke ™ + k*p.
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- Estimating £ '

The failure probability is at most

2 Z (Pr(A4,) +Pr(C.)) < k(1 —p) +k’p < ke " + k*p.

The function f(p) = ke P" + k?p reaches its minimum at
__ In(r/F)

. The minimum value is less than 1 iIf
2r

Inr

k< (1+o(1))
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- Continuous time -

Spencer modified the Radhakrishnan-Srinivasan's proof
slightly. To assign a random ordering of the vertex in V/, it is
sufficient to assign each vertex v a birth time z, € |0, 1].
The birth time z, is assigned uniformly and independently.

8 /18



- Continuous time -

Spencer modified the Radhakrishnan-Srinivasan's proof
slightly. To assign a random ordering of the vertex in V/, it is
sufficient to assign each vertex v a birth time z, € |0, 1].
The birth time z, is assigned uniformly and independently.

r—1 r— 1 1
( )2127“/ [ l—|—1(1 . ZCp)T 1d£C
1=0 0

8 /18



- Continuous time -

Spencer modified the Radhakrishnan-Srinivasan's proof
slightly. To assign a random ordering of the vertex in V/, it is
sufficient to assign each vertex v a birth time z, € |0, 1].
The birth time z, is assigned uniformly and independently.

Pl”(Bef)

AN

: r—1 !
Z( )2127“/ [ l—|—1(1 _xp)r 1d£C
0
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- Continuous time -

Spencer modified the Radhakrishnan-Srinivasan's proof
slightly. To assign a random ordering of the vertex in V/, it is
sufficient to assign each vertex v a birth time z, € |0, 1].
The birth time z, is assigned uniformly and independently.

—1 1
— 1
Pr(B.;) < Z (T )2127“ / L — 2p) e
I—0 0
1
_ 2127“p/ (:l_l_ajp)r—l(l_ajp)r—ldaj
0
S 21—27“p

=8 he rest of proof is the same.
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- Variance

s \ariance:
Var(X) = E(X — E(X))? = E(X?) — (E(X)).
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- Variance -

s \ariance:
Var(X) = E(X — E(X))? = E(X?) — (E(X)).

s Co-Variance: Cov(X,Y) =
E((X — EX))(Y —E(Y))) = E(XY) - E(X)E(Y) .

s If X and Y are independent, then Cov(X,Y) = 0.

If X = 2?21 XZ', then

Var(X) = ZV&I’(XZ') + Z Cov(X;, X;).
i=1 i£j
If X1,...,X,, are mutually independent, then
Var(X) = > " | Var(X;).
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- Chebyshev’s Inequality '

| E(X) — W,
s Var(X) = o

Theorem [Chebyshev’s Inequality]: For any positive A,

1
Pr(| X —u| > o) < ek
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- Chebyshev’s Inequality '

| E(X) — W,
s Var(X) = o

Theorem [Chebyshev’s Inequality]: For any positive A,

1
Pr(| X —u| > o) < ek

Proof:

o’ = Var(X)

= E((X - p)*)
No?Pr(| X — p| > Mo).

IV
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- Number theory -

v(n): the number of primes p dividing n.
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- Number theory -

v(n): the number of primes p dividing n.

Hardy, Ramanujan [1920]: For “almost all” n,
v(n) ~ Inlnn.

Theorem [Turdn (1934)]: Let w(n) — oo arbitrarily
slowly. Then the number of z in [n] :={1,2,...,n} such
that

v(z) — Inlnz| > w(n)VInlnn.

is o(n).

11 /18



- Proof -

Let  be randomly chosen from |n|. For p prime set

Xp:{l if p |z,

0 otherwise.
Set M =n'/"and X =3 _, X, Then

v(z) —10 < X(z) < v(x).
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- Proof

Let  be randomly chosen from |n|. For p prime set

1 ifp|a,
Ap = { 0 otherwise.

Set M =n'/"and X =3 _, X, Then
v(r) —10 < X(x) < v(x).

o) = 20— Lo

m p n

E(X)=)" (— + O(%)) =1Inlnn+ O(1).
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- Variance of E(X) '
Var(X,) — }1? (1 _ %) L0 (%) |

Cov(X,, Xy) = E(XpX,) — E(X;,)E(X,)
(n/pg] _ [n/p][n/q]

(f | n
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Variance of E(X) '

Var(X,) — }1? (1 _ %) L0 (%) |

Cov(X,, X,)

E(X,X,) — E(X,)E(X,)
n/pq] |n/p][n/q]




- continue

By Chebyshev's inequality, we have

Pr(|X —Inlnn| > AVInlnn) < A2 + o(1).
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- continue '

By Chebyshev's inequality, we have

Pr(|X —Inlnn| > AVInlnn) < A2 + o(1).

Theorem [Erdds-Kac (1940):] For any fixed A\, we have

1
lim — |{x 1 <z<n,v(z)>Inlnn+ Ainlnn}

n—oo N,

— e dt.
,/A \ 2T
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- Basic facts '

s X =) . X;: where X; are indicator random variables.
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Basic facts '

X = > . X;: where X; are indicator random variables.
f E(X)=o0(1), then X =0 almost always.

n particular X > 0 almost always.

Write X; ~ X; if X; and X are independent. Let
A = Zz’wj PI’(AZ A A]) |f E(X) — 00 and

A = o(FE(X)?), then X > 0 almost always.

Let A" =max; ), , Pr(A;[A;). If E(X) — oo and
A* = 0o(F(X)), then X > 0 almost always.

f Var(X) = o(E(X)?), then X ~ E(X) almost always.

15 / 18



- Erd6s-Rényi model G(n, p) -

- n nodes
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- Erd6s-Rényi model G(n, p) -

- n nodes

- For each pair of vertices, create an edge independently
with probability p.

- The graph with e edges has the probability p®(1 — p) (5)-e

A property of graphs is a family of graphs closed under
iIsomorphic.

A function 7(n) is called a threshold function for some
property P if

s If p < r(n), then G(n,p) does not satisfy P almost
always.

s If p> r(n), then G(n,p) satisfy P almost always.

16 / 18



- Threshold of w(G) > 4 -

w(G): the number of vertices in the maximum clique of the
graph G.
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- Threshold of w(G) > 4 -

w(G): the number of vertices in the maximum clique of the
graph G.

Theorem: The property w(G) > 4 has the threshold
function n=%/3.

Proof: For any S € ([Z]), let X¢ be the indicator variable of
the event “S is a clique”.

4,6

B(X) = D B(Xs) = (Z)pG S

If p < n™2/3 then E(X) = 0(1) and so X = 0 almost surely.
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- Continue

If p > n=2/3, then E(X) — oo.
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- Continue

If p > n=2/3 then E(X) — oo.
S~Tif|[SNT| > 2. Thus,

A* = O(n’p’) + O(np’) = o(n"p") = o(E(X)).

Hence X > 0 almost surely.

18 / 18
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