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Property B problem revisited:
Let m(r) denote the minimum possible number of edges of
an r-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

m(r) ≥ Ω

(

( r

ln r

)1/2

2r

)

.

Proof: For a fixed r-uniform hypergraph H = (V, E) with
|E| = k2r−1. Let p ∈ [0, 1] satisfying k(1 − p)r + k2p < 1.
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Here is a two-round coloring process.

■ First round: Color each vertex independently in red or
blue with equal probability. It ends with a coloring with
expected k monochromatic edges. Let U be the set of
vertices in some monochromatic edges.

■ Second round: Consider vertices in U sequentially in
the (random) order of V . A vertex u ∈ U is still
dangerous if there is some monochromatic edge in the
first coloring and for which no vertex has yet changed
color.

◆ If u is not dangerous, do nothing.
◆ If u is still dangerous; with probability p, flip the

color of u.
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Claim: The algorithm fails with probability at most
k(1 − p)r + k2p.

Bad events: An edge e is red in the final coloring if

■ e was red in the first coloring and remained red through
the final coloring; call this event Ae.

■ e was not red in the first coloring but was red in the final
coloring; call this event Ce.

Pr(Ae) = 2−r(1 − p)r.

2
∑

e∈E(H)

Pr(Ae) = k(1 − p)r.
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For two edge e, f , we say e blames f if

■ e ∩ f = {v} for some v.
■ In the first coloring f was blue and in the final coloring e

was red.
■ v was the last vertex of e that changed color from blue

to red.
■ When v changed its color f was still entire blue.
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For two edge e, f , we say e blames f if

■ e ∩ f = {v} for some v.
■ In the first coloring f was blue and in the final coloring e

was red.
■ v was the last vertex of e that changed color from blue

to red.
■ When v changed its color f was still entire blue.

Call this event Bef . Then

∑

e

Pr(Ce) ≤
∑

e6=f

Pr(Bef).
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V induced a random ordering σ on e ∪ f .
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Let e, f with e ∩ f = {v} be fixed. The random ordering of
V induced a random ordering σ on e ∪ f .

■ i = i(σ) : the number of v′ ∈ e coming before v.
■ j = j(σ) : the number of v′ ∈ f coming before v.

Pr(Bef | σ) ≤ p
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Let e, f with e ∩ f = {v} be fixed. The random ordering of
V induced a random ordering σ on e ∪ f .

■ i = i(σ) : the number of v′ ∈ e coming before v.
■ j = j(σ) : the number of v′ ∈ f coming before v.

Pr(Bef | σ) ≤ p

2
2−r+1(1 − p)j2−r+1+i

(

1 + p

2

)i

.

We have

Pr(Bef) ≤ 21−2rpE[(1 + p)i(1 − p)j].

≤ 21−2rp.
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The failure probability is at most

2
∑

e∈E(H)

(Pr(Ae) + Pr(Ce)) ≤ k(1− p)r + k2p < ke−pr + k2p.

The function f(p) = ke−pr + k2p reaches its minimum at

p = ln(r/k)
r . The minimum value is less than 1 if

k < (1 + o(1))

√

2r

ln r
.

�
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Spencer modified the Radhakrishnan-Srinivasan’s proof
slightly. To assign a random ordering of the vertex in V , it is
sufficient to assign each vertex v a birth time xv ∈ [0, 1].
The birth time xv is assigned uniformly and independently.
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Spencer modified the Radhakrishnan-Srinivasan’s proof
slightly. To assign a random ordering of the vertex in V , it is
sufficient to assign each vertex v a birth time xv ∈ [0, 1].
The birth time xv is assigned uniformly and independently.

Pr(Bef) ≤
r−1
∑

l=0

(

r − 1

l

)

21−2r

∫ 1

0

xlpl+1(1 − xp)r−1dx

= 21−2rp

∫ 1

0

(1 + xp)r−1(1 − xp)r−1dx

≤ 21−2rp.

The rest of proof is the same.
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■ Variance:
Var(X) = E(X − E(X))2 = E(X2) − (E(X))2.

■ Co-Variance: Cov(X, Y ) =
E((X − E(X))(Y − E(Y ))) = E(XY ) − E(X)E(Y ) .

■ If X and Y are independent, then Cov(X, Y ) = 0.

If X =
∑n

i=1 Xi, then

Var(X) =
n

∑

i=1

Var(Xi) +
∑

i6=j

Cov(Xi, Xj).

If X1, . . . , Xn are mutually independent, then
Var(X) =

∑n
i=1 Var(Xi).



Chebyshev’s Inequality

10 / 18

■ E(X) = µ,
■ Var(X) = σ2.

Theorem [Chebyshev’s Inequality]: For any positive λ,

Pr(|X − µ| ≥ λσ) ≤ 1

λ2
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■ E(X) = µ,
■ Var(X) = σ2.

Theorem [Chebyshev’s Inequality]: For any positive λ,

Pr(|X − µ| ≥ λσ) ≤ 1

λ2
.

Proof:

σ2 = Var(X)

= E((X − µ)2)

≥ λ2σ2Pr(|X − µ| ≥ λσ).
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ν(n): the number of primes p dividing n.

Hardy, Ramanujan [1920]: For “almost all” n,
ν(n) ≈ ln ln n.

Theorem [Turán (1934)]: Let ω(n) → ∞ arbitrarily
slowly. Then the number of x in [n] := {1, 2, . . . , n} such
that

|ν(x) − ln ln x| > ω(n)
√

ln ln n.

is o(n).
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Let x be randomly chosen from [n]. For p prime set

Xp =

{

1 if p | x,
0 otherwise.

Set M = n1/10 and X =
∑

p≤M Xp. Then

ν(x) − 10 ≤ X(x) ≤ ν(x).
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Let x be randomly chosen from [n]. For p prime set

Xp =

{

1 if p | x,
0 otherwise.

Set M = n1/10 and X =
∑

p≤M Xp. Then

ν(x) − 10 ≤ X(x) ≤ ν(x).

E(Xp) =
⌊n

p⌋
n

=
1

p
+ O(

1

n
).

E(X) =
∑

p≤M

(

1

p
+ O(

1

n
)

)

= ln ln n + O(1).
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Var(Xp) =
1

p

(

1 − 1

p

)

+ O

(

1

n

)

.

Cov(Xp, Xq) = E(XpXq) − E(Xp)E(Xq)

=
⌊n/pq⌋

n
− ⌊n/p⌋

n

⌊n/q⌋
n

≤ 1

pq
−

(

1

p
− 1

n

)(

1

q
− 1

n

)

≤ 1

n

(

1

p
+

1

q

)

.
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Var(Xp) =
1

p

(

1 − 1

p

)

+ O

(

1

n

)

.

Cov(Xp, Xq) = E(XpXq) − E(Xp)E(Xq)

=
⌊n/pq⌋

n
− ⌊n/p⌋

n

⌊n/q⌋
n

≤ 1

pq
−

(

1

p
− 1

n

)(

1

q
− 1

n

)

≤ 1

n

(

1

p
+

1

q

)

.

Var(X) =
∑

p≤M

Var(Xp)+
∑

p 6=q

Cov(Xp, Xq) = ln ln x+O(1).
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By Chebyshev’s inequality, we have

Pr(|X − ln ln n| > λ
√

ln ln n) < λ−2 + o(1).

�
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By Chebyshev’s inequality, we have

Pr(|X − ln ln n| > λ
√

ln ln n) < λ−2 + o(1).

�

Theorem [Erdős-Kac (1940):] For any fixed λ, we have

lim
n→∞

1

n

∣

∣

∣
{x : 1 ≤ x ≤ n, ν(x) ≥ ln ln n + λ

√
ln ln n}

∣

∣

∣

=

∫ ∞

λ

1√
2π

e−t2/2dt.
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■ X =
∑

i Xi: where Xi are indicator random variables.

■ If E(X) = o(1), then X = 0 almost always.

■ If Var(X) = o(E(X)2), then X ∼ E(X) almost always.
In particular X > 0 almost always.

■ Write Xi ∼ Xj if Xi and Xj are independent. Let
∆ =

∑

i∼j Pr(Ai ∧ Aj). If E(X) → ∞ and

∆ = o(E(X)2), then X > 0 almost always.

■ Let ∆∗ = maxi

∑

j∼i Pr(Aj|Ai). If E(X) → ∞ and
∆∗ = o(E(X)), then X > 0 almost always.
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Erdős-Rényi model G(n, p)

16 / 18

- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n

2
)−e.

A property of graphs is a family of graphs closed under
isomorphic.
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n

2
)−e.

A property of graphs is a family of graphs closed under
isomorphic.

A function r(n) is called a threshold function for some
property P if

■ If p ≪ r(n), then G(n, p) does not satisfy P almost
always.

■ If p ≫ r(n), then G(n, p) satisfy P almost always.
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ω(G): the number of vertices in the maximum clique of the
graph G.

Theorem: The property ω(G) ≥ 4 has the threshold
function n−2/3.

Proof: For any S ∈
(

[n]
4

)

, let XS be the indicator variable of
the event “S is a clique”.

E(X) =
∑

S

E(XS) =

(

n

4

)

p6 ≈ n4p6

24
.

If p ≪ n−2/3 then E(X) = o(1) and so X = 0 almost surely.
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If p ≫ n−2/3, then E(X) → ∞.
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If p ≫ n−2/3, then E(X) → ∞.

S ∼ T if |S ∩ T | ≥ 2. Thus,

∆∗ = O(n2p5) + O(np3) = o(n4p6) = o(E(X)).

Hence X > 0 almost surely. �


	Recoloring
	Coloring process
	Claim
	Estimating Pr(Ce)
	continue
	Estimating k
	Continuous time
	Variance
	Chebyshev's Inequality
	Number theory
	Proof
	Variance of E(X)
	continue
	Basic facts
	Erdos-Rényi model G(n,p)
	Threshold of (G)4
	Continue

