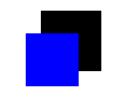


Probabilistic Methods in Combinatorics Lecture 5

Linyuan Lu University of South Carolina

Mathematical Sciences Center at Tsinghua University November 16, 2011 – December 30, 2011

Recoloring



Property B problem revisited:

Let m(r) denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Recoloring

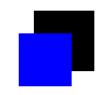
Property B problem revisited:

Let m(r) denote the minimum possible number of edges of an *r*-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

$$m(r) \ge \Omega\left(\left(\frac{r}{\ln r}\right)^{1/2} 2^r\right).$$

Recoloring



Property B problem revisited:

Let m(r) denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

$$m(r) \ge \Omega\left(\left(\frac{r}{\ln r}\right)^{1/2} 2^r\right).$$

Proof: For a fixed *r*-uniform hypergraph H = (V, E) with $|E| = k2^{r-1}$. Let $p \in [0, 1]$ satisfying $k(1-p)^r + k^2p < 1$.

Coloring process

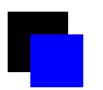
Here is a two-round coloring process.

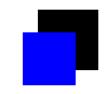
■ **First round:** Color each vertex independently in red or blue with equal probability. It ends with a coloring with expected k monochromatic edges. Let U be the set of vertices in some monochromatic edges.

Coloring process

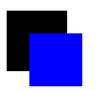
Here is a two-round coloring process.

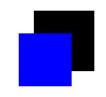
- **First round:** Color each vertex independently in red or blue with equal probability. It ends with a coloring with expected k monochromatic edges. Let U be the set of vertices in some monochromatic edges.
- Second round: Consider vertices in U sequentially in the (random) order of V. A vertex $u \in U$ is still dangerous if there is some monochromatic edge in the first coloring and for which no vertex has yet changed color.
 - If u is not dangerous, do nothing.
 - If u is still dangerous; with probability p, flip the color of u.





Claim: The algorithm fails with probability at most $k(1-p)^r + k^2p$.

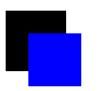


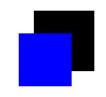


Claim: The algorithm fails with probability at most $k(1-p)^r + k^2p$.

Bad events: An edge e is red in the final coloring if

• e was red in the first coloring and remained red through the final coloring; call this event A_e .

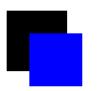


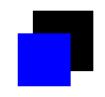


Claim: The algorithm fails with probability at most $k(1-p)^r + k^2p$.

Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_e .
 - e was not red in the first coloring but was red in the final coloring; call this event C_e .



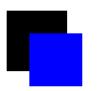


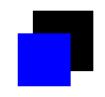
Claim: The algorithm fails with probability at most $k(1-p)^r + k^2p$.

Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_e .
 - e was not red in the first coloring but was red in the final coloring; call this event C_e .

$$\Pr(A_e) = 2^{-r}(1-p)^r.$$





Claim: The algorithm fails with probability at most $k(1-p)^r + k^2p$.

Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_e .
 - e was not red in the first coloring but was red in the final coloring; call this event C_e .

$$\Pr(A_e) = 2^{-r} (1-p)^r.$$

2 $\sum_{e \in E(H)} \Pr(A_e) = k(1-p)^r.$

Estimating $Pr(C_e)$

For two edge e, f, we say e blames f if

•
$$e \cap f = \{v\}$$
 for some v .

- In the first coloring f was blue and in the final coloring e was red.
- v was the last vertex of e that changed color from blue to red.
- When v changed its color f was still entire blue.

Estimating $Pr(C_e)$

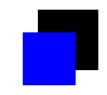
For two edge e, f, we say e blames f if

•
$$e \cap f = \{v\}$$
 for some v .

- In the first coloring f was blue and in the final coloring e was red.
- v was the last vertex of e that changed color from blue to red.
- When v changed its color f was still entire blue.

Call this event B_{ef} . Then

$$\sum_{e} \Pr(C_e) \le \sum_{e \ne f} \Pr(B_{ef}).$$



Let e, f with $e \cap f = \{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

Let e, f with $e \cap f = \{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

- $i = i(\sigma)$: the number of $v' \in e$ coming before v.
- $j = j(\sigma)$: the number of $v' \in f$ coming before v.

Let e, f with $e \cap f = \{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

 $\quad \mathbf{i} = i(\sigma) : \text{the number of } v' \in e \text{ coming before } v. \\ \quad \mathbf{j} = j(\sigma) : \text{the number of } v' \in f \text{ coming before } v. \\ \end{tabular}$

$$\Pr(B_{ef} \mid \sigma) \le \frac{p}{2} 2^{-r+1} (1-p)^j 2^{-r+1+i} \left(\frac{1+p}{2}\right)^i$$

Let e, f with $e \cap f = \{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

 $\quad \mathbf{i} = i(\sigma) : \text{the number of } v' \in e \text{ coming before } v. \\ \quad \mathbf{j} = j(\sigma) : \text{the number of } v' \in f \text{ coming before } v. \\ \end{aligned}$

$$\Pr(B_{ef} \mid \sigma) \le \frac{p}{2} 2^{-r+1} (1-p)^j 2^{-r+1+i} \left(\frac{1+p}{2}\right)^i$$

We have

$$\Pr(B_{ef}) \leq 2^{1-2r} p \mathbb{E}[(1+p)^{i}(1-p)^{j}].$$

$$\leq 2^{1-2r} p.$$

Estimating k

The failure probability is at most

 $2\sum_{e \in E(H)} (\Pr(A_e) + \Pr(C_e)) \le k(1-p)^r + k^2p < ke^{-pr} + k^2p.$

Estimating k

The failure probability is at most

- $2\sum_{e \in E(H)} (\Pr(A_e) + \Pr(C_e)) \le k(1-p)^r + k^2p < ke^{-pr} + k^2p.$
- The function $f(p) = ke^{-pr} + k^2p$ reaches its minimum at $p = \frac{\ln(r/k)}{r}$. The minimum value is less than 1 if

$$k < (1 + o(1))\sqrt{\frac{2r}{\ln r}}.$$

$$\Pr(B_{ef}) \leq \sum_{l=0}^{r-1} \binom{r-1}{l} 2^{1-2r} \int_0^1 x^l p^{l+1} (1-xp)^{r-1} dx$$

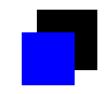
$$\Pr(B_{ef}) \leq \sum_{l=0}^{r-1} {r-1 \choose l} 2^{1-2r} \int_0^1 x^l p^{l+1} (1-xp)^{r-1} dx$$
$$= 2^{1-2r} p \int_0^1 (1+xp)^{r-1} (1-xp)^{r-1} dx$$

$$\Pr(B_{ef}) \leq \sum_{l=0}^{r-1} {r-1 \choose l} 2^{1-2r} \int_0^1 x^l p^{l+1} (1-xp)^{r-1} dx$$
$$= 2^{1-2r} p \int_0^1 (1+xp)^{r-1} (1-xp)^{r-1} dx$$
$$\leq 2^{1-2r} p.$$

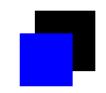
Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_v \in [0, 1]$. The birth time x_v is assigned uniformly and independently.

$$\Pr(B_{ef}) \leq \sum_{l=0}^{r-1} {r-1 \choose l} 2^{1-2r} \int_0^1 x^l p^{l+1} (1-xp)^{r-1} dx$$
$$= 2^{1-2r} p \int_0^1 (1+xp)^{r-1} (1-xp)^{r-1} dx$$
$$\leq 2^{1-2r} p.$$

The rest of proof is the same.



• Variance: $Var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2.$



- Variance: $Var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2.$
- Co-Variance: $\operatorname{Cov}(X, Y) =$ $\operatorname{E}((X - \operatorname{E}(X))(Y - \operatorname{E}(Y))) = \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y)$

- Variance: $Var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2.$
- Co-Variance: $\operatorname{Cov}(X, Y) =$ $\operatorname{E}((X - \operatorname{E}(X))(Y - \operatorname{E}(Y))) = \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y)$.
 - If X and Y are independent, then Cov(X, Y) = 0.

- Variance: $Var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2.$
- Co-Variance: $\operatorname{Cov}(X, Y) =$ $\operatorname{E}((X - \operatorname{E}(X))(Y - \operatorname{E}(Y))) = \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y)$.
- If X and Y are independent, then Cov(X, Y) = 0.

If
$$X = \sum_{i=1}^{n} X_i$$
, then
 $\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j).$

- Variance: $Var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2.$
- Co-Variance: $\operatorname{Cov}(X, Y) =$ $\operatorname{E}((X - \operatorname{E}(X))(Y - \operatorname{E}(Y))) = \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y)$.
- If X and Y are independent, then Cov(X, Y) = 0.

If
$$X = \sum_{i=1}^{n} X_i$$
, then
 $\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j).$

If X_1, \ldots, X_n are mutually independent, then $Var(X) = \sum_{i=1}^n Var(X_i).$

Chebyshev's Inequality

•
$$E(X) = \mu$$
,
• $Var(X) = \sigma^2$.

Theorem [Chebyshev's Inequality]: For any positive λ ,

$$\Pr(|X - \mu| \ge \lambda\sigma) \le \frac{1}{\lambda^2}.$$

Chebyshev's Inequality

•
$$E(X) = \mu$$
,
• $Var(X) = \sigma^2$.

Theorem [Chebyshev's Inequality]: For any positive λ ,

$$\Pr(|X - \mu| \ge \lambda \sigma) \le \frac{1}{\lambda^2}.$$

Proof:

$$\sigma^{2} = \operatorname{Var}(X)$$

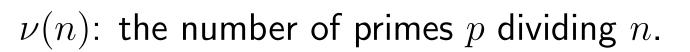
= $\operatorname{E}((X - \mu)^{2})$
 $\geq \lambda^{2} \sigma^{2} \operatorname{Pr}(|X - \mu| \geq \lambda \sigma).$

Number theory

 $\nu(n)$: the number of primes p dividing n.

Number theory

 $\nu(n)$: the number of primes p dividing n. Hardy, Ramanujan [1920]: For "almost all" n, $\nu(n) \approx \ln \ln n$.



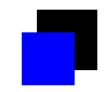
Hardy, Ramanujan [1920]: For "almost all" n, $\nu(n) \approx \ln \ln n$.

Theorem [Turán (1934)]: Let $\omega(n) \to \infty$ arbitrarily slowly. Then the number of x in $[n] := \{1, 2, ..., n\}$ such that

$$|\nu(x) - \ln \ln x| > \omega(n)\sqrt{\ln \ln n}.$$

is o(n).

Proof

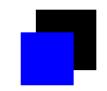


Let x be randomly chosen from [n]. For p prime set

$$X_p = \begin{cases} 1 & \text{if } p \mid x, \\ 0 & \text{otherwise.} \end{cases}$$

Set
$$M = n^{1/10}$$
 and $X = \sum_{p \le M} X_p$. Then
 $\nu(x) - 10 \le X(x) \le \nu(x)$

Proof

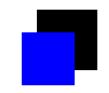


Let x be randomly chosen from [n]. For p prime set

$$X_p = \begin{cases} 1 & \text{if } p \mid x, \\ 0 & \text{otherwise.} \end{cases}$$

Set
$$M = n^{1/10}$$
 and $X = \sum_{p \le M} X_p$. Then
 $\nu(x) - 10 \le X(x) \le \nu(x)$.
 $E(X_p) = \frac{\lfloor \frac{n}{p} \rfloor}{n} = \frac{1}{p} + O(\frac{1}{n})$.

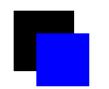
Proof

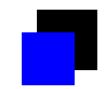


Let x be randomly chosen from [n]. For p prime set

$$X_p = \begin{cases} 1 & \text{if } p \mid x, \\ 0 & \text{otherwise.} \end{cases}$$

Set
$$M = n^{1/10}$$
 and $X = \sum_{p \le M} X_p$. Then
 $\nu(x) - 10 \le X(x) \le \nu(x)$.
 $E(X_p) = \frac{\lfloor \frac{n}{p} \rfloor}{n} = \frac{1}{p} + O(\frac{1}{n})$.
 $E(X) = \sum_{p \le M} \left(\frac{1}{p} + O(\frac{1}{n})\right) = \ln \ln n + O(1)$.





 $\operatorname{Var}(X_p) = \frac{1}{p} \left(1 - \frac{1}{p} \right) + O\left(\frac{1}{n}\right).$

$$\operatorname{Var}(X_p) = \frac{1}{p} \left(1 - \frac{1}{p} \right) + O\left(\frac{1}{n}\right).$$

$$\operatorname{Cov}(X_p, X_q) = \operatorname{E}(X_p X_q) - \operatorname{E}(X_p) \operatorname{E}(X_q)$$
$$= \frac{\lfloor n/pq \rfloor}{n} - \frac{\lfloor n/p \rfloor \lfloor n/q \rfloor}{n}$$
$$\leq \frac{1}{pq} - \left(\frac{1}{p} - \frac{1}{n}\right) \left(\frac{1}{q} - \frac{1}{n}\right)$$
$$\leq \frac{1}{n} \left(\frac{1}{p} + \frac{1}{q}\right).$$

$$\operatorname{Var}(X_p) = \frac{1}{p} \left(1 - \frac{1}{p} \right) + O\left(\frac{1}{n}\right).$$

$$\operatorname{Cov}(X_p, X_q) = \operatorname{E}(X_p X_q) - \operatorname{E}(X_p) \operatorname{E}(X_q)$$
$$= \frac{\lfloor n/pq \rfloor}{n} - \frac{\lfloor n/p \rfloor \lfloor n/q \rfloor}{n}$$
$$\leq \frac{1}{pq} - \left(\frac{1}{p} - \frac{1}{n}\right) \left(\frac{1}{q} - \frac{1}{n}\right)$$
$$\leq \frac{1}{n} \left(\frac{1}{p} + \frac{1}{q}\right).$$

 $\operatorname{Var}(X) = \sum_{p \le M} \operatorname{Var}(X_p) + \sum_{p \ne q} \operatorname{Cov}(X_p, X_q) = \ln \ln x + O(1).$

continue

By Chebyshev's inequality, we have

$$\Pr(|X - \ln \ln n| > \lambda \sqrt{\ln \ln n}) < \lambda^{-2} + o(1).$$

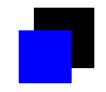
continue

By Chebyshev's inequality, we have

$$\Pr(|X - \ln \ln n| > \lambda \sqrt{\ln \ln n}) < \lambda^{-2} + o(1).$$

Theorem [Erdős-Kac (1940):] For any fixed λ , we have

$$\lim_{n \to \infty} \frac{1}{n} \left| \{ x \colon 1 \le x \le n, \nu(x) \ge \ln \ln n + \lambda \sqrt{\ln \ln n} \} \right|$$
$$= \int_{\lambda}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt.$$



• $X = \sum_i X_i$: where X_i are indicator random variables.



• $X = \sum_i X_i$: where X_i are indicator random variables. If E(X) = o(1), then X = 0 almost always.

- $X = \sum_i X_i$: where X_i are indicator random variables.
 - If E(X) = o(1), then X = 0 almost always.
 - If $Var(X) = o(E(X)^2)$, then $X \sim E(X)$ almost always. In particular X > 0 almost always.

- $X = \sum_i X_i$: where X_i are indicator random variables.
 - If E(X) = o(1), then X = 0 almost always.
 - If $Var(X) = o(E(X)^2)$, then $X \sim E(X)$ almost always. In particular X > 0 almost always.
- Write $X_i \sim X_j$ if X_i and X_j are independent. Let $\Delta = \sum_{i \sim j} \Pr(A_i \wedge A_j)$. If $E(X) \to \infty$ and $\Delta = o(E(X)^2)$, then X > 0 almost always.

- X = ∑_i X_i: where X_i are indicator random variables.
 If E(X) = o(1), then X = 0 almost always.
 - If $Var(X) = o(E(X)^2)$, then $X \sim E(X)$ almost always. In particular X > 0 almost always.
- Write $X_i \sim X_j$ if X_i and X_j are independent. Let $\Delta = \sum_{i \sim j} \Pr(A_i \wedge A_j)$. If $E(X) \to \infty$ and $\Delta = o(E(X)^2)$, then X > 0 almost always.
- Let $\Delta^* = \max_i \sum_{j \sim i} \Pr(A_j | A_i)$. If $E(X) \to \infty$ and $\Delta^* = o(E(X))$, then X > 0 almost always.

- n nodes

- n nodes
- For each pair of vertices, create an edge independently with probability p.

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.

A property of graphs is a family of graphs closed under isomorphic.

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.

A property of graphs is a family of graphs closed under isomorphic.

- A function r(n) is called a threshold function for some property ${\cal P}$ if
- If $p \ll r(n)$, then G(n, p) does not satisfy P almost always.
- If $p \gg r(n)$, then G(n,p) satisfy P almost always.

 $\omega(G)$: the number of vertices in the maximum clique of the graph G.

 $\omega(G)$: the number of vertices in the maximum clique of the graph G.

Theorem: The property $\omega(G) \ge 4$ has the threshold function $n^{-2/3}$.

 $\omega(G)$: the number of vertices in the maximum clique of the graph G.

Theorem: The property $\omega(G) \ge 4$ has the threshold function $n^{-2/3}$.

Proof: For any $S \in {\binom{[n]}{4}}$, let X_S be the indicator variable of the event "S is a clique".

 $\omega(G)$: the number of vertices in the maximum clique of the graph G.

Theorem: The property $\omega(G) \ge 4$ has the threshold function $n^{-2/3}$.

Proof: For any $S \in {\binom{[n]}{4}}$, let X_S be the indicator variable of the event "S is a clique".

$$\mathcal{E}(X) = \sum_{S} \mathcal{E}(X_S) = \binom{n}{4} p^6 \approx \frac{n^4 p^6}{24}.$$

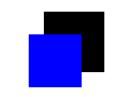
 $\omega(G)$: the number of vertices in the maximum clique of the graph G.

Theorem: The property $\omega(G) \ge 4$ has the threshold function $n^{-2/3}$.

Proof: For any $S \in {\binom{[n]}{4}}$, let X_S be the indicator variable of the event "S is a clique".

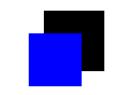
$$\mathcal{E}(X) = \sum_{S} \mathcal{E}(X_S) = \binom{n}{4} p^6 \approx \frac{n^4 p^6}{24}.$$

If $p \ll n^{-2/3}$ then E(X) = o(1) and so X = 0 almost surely.



If $p \gg n^{-2/3}$, then $E(X) \to \infty$.

Continue



If $p \gg n^{-2/3}$, then $E(X) \to \infty$. $S \sim T$ if $|S \cap T| \ge 2$. Thus,

$$\Delta^* = O(n^2 p^5) + O(np^3) = o(n^4 p^6) = o(\mathbf{E}(X)).$$

Hence X > 0 almost surely.

