Probabilistic Methods in Combinatorics Lecture 5

Linyuan Lu
University of South Carolina

Mathematical Sciences Center at Tsinghua University November 16, 2011 - December 30, 2011

Recoloring

Property B problem revisited:

Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Recoloring

Property B problem revisited:

Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

$$
m(r) \geq \Omega\left(\left(\frac{r}{\ln r}\right)^{1 / 2} 2^{r}\right) .
$$

Recoloring

Property B problem revisited:

Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

$$
m(r) \geq \Omega\left(\left(\frac{r}{\ln r}\right)^{1 / 2} 2^{r}\right) .
$$

Proof: For a fixed r-uniform hypergraph $H=(V, E)$ with $|E|=k 2^{r-1}$. Let $p \in[0,1]$ satisfying $k(1-p)^{r}+k^{2} p<1$.

Coloring process

Here is a two-round coloring process.
■ First round: Color each vertex independently in red or blue with equal probability. It ends with a coloring with expected k monochromatic edges. Let U be the set of vertices in some monochromatic edges.

Coloring process

Here is a two-round coloring process.
■ First round: Color each vertex independently in red or blue with equal probability. It ends with a coloring with expected k monochromatic edges. Let U be the set of vertices in some monochromatic edges.

- Second round: Consider vertices in U sequentially in the (random) order of V. A vertex $u \in U$ is still dangerous if there is some monochromatic edge in the first coloring and for which no vertex has yet changed color.
- If u is not dangerous, do nothing.
- If u is still dangerous; with probability p, flip the color of u.

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.
Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_{e}.

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.
Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_{e}.
- e was not red in the first coloring but was red in the final coloring; call this event C_{e}.

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.
Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_{e}.
- e was not red in the first coloring but was red in the final coloring; call this event C_{e}.

$$
\operatorname{Pr}\left(A_{e}\right)=2^{-r}(1-p)^{r}
$$

Claim

Claim: The algorithm fails with probability at most $k(1-p)^{r}+k^{2} p$.
Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_{e}.
- e was not red in the first coloring but was red in the final coloring; call this event C_{e}.

$$
\begin{gathered}
\operatorname{Pr}\left(A_{e}\right)=2^{-r}(1-p)^{r} \\
2 \sum_{e \in E(H)} \operatorname{Pr}\left(A_{e}\right)=k(1-p)^{r} .
\end{gathered}
$$

Estimating $\operatorname{Pr}\left(C_{e}\right)$

For two edge e, f, we say e blames f if

- $e \cap f=\{v\}$ for some v.
- In the first coloring f was blue and in the final coloring e was red.
- v was the last vertex of e that changed color from blue to red.
- When v changed its color f was still entire blue.

Estimating $\operatorname{Pr}\left(C_{e}\right)$

For two edge e, f, we say e blames f if

- $e \cap f=\{v\}$ for some v.
- In the first coloring f was blue and in the final coloring e was red.
- v was the last vertex of e that changed color from blue to red.
- When v changed its color f was still entire blue.

Call this event $B_{e f}$. Then

$$
\sum_{e} \operatorname{Pr}\left(C_{e}\right) \leq \sum_{e \neq f} \operatorname{Pr}\left(B_{e f}\right) .
$$

continue

Let e, f with $e \cap f=\{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

continue

Let e, f with $e \cap f=\{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.
■ $i=i(\sigma)$: the number of $v^{\prime} \in e$ coming before v.

- $j=j(\sigma)$: the number of $v^{\prime} \in f$ coming before v.

continue

Let e, f with $e \cap f=\{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.
■ $i=i(\sigma)$: the number of $v^{\prime} \in e$ coming before v.
■ $j=j(\sigma)$: the number of $v^{\prime} \in f$ coming before v.

$$
\operatorname{Pr}\left(B_{e f} \mid \sigma\right) \leq \frac{p}{2} 2^{-r+1}(1-p)^{j} 2^{-r+1+i}\left(\frac{1+p}{2}\right)^{i}
$$

continue

Let e, f with $e \cap f=\{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.
■ $i=i(\sigma)$: the number of $v^{\prime} \in e$ coming before v.
■ $j=j(\sigma)$: the number of $v^{\prime} \in f$ coming before v.

$$
\operatorname{Pr}\left(B_{e f} \mid \sigma\right) \leq \frac{p}{2} 2^{-r+1}(1-p)^{j} 2^{-r+1+i}\left(\frac{1+p}{2}\right)^{i} .
$$

We have

$$
\begin{aligned}
\operatorname{Pr}\left(B_{e f}\right) & \leq 2^{1-2 r} p \mathrm{E}\left[(1+p)^{i}(1-p)^{j}\right] \\
& \leq 2^{1-2 r} p .
\end{aligned}
$$

Estimating k

The failure probability is at most
$2 \sum_{e \in E(H)}\left(\operatorname{Pr}\left(A_{e}\right)+\operatorname{Pr}\left(C_{e}\right)\right) \leq k(1-p)^{r}+k^{2} p<k e^{-p r}+k^{2} p$.

Estimating k

The failure probability is at most

$$
2 \sum_{e \in E(H)}\left(\operatorname{Pr}\left(A_{e}\right)+\operatorname{Pr}\left(C_{e}\right)\right) \leq k(1-p)^{r}+k^{2} p<k e^{-p r}+k^{2} p .
$$

The function $f(p)=k e^{-p r}+k^{2} p$ reaches its minimum at $p=\frac{\ln (r / k)}{r}$. The minimum value is less than 1 if

$$
k<(1+o(1)) \sqrt{\frac{2 r}{\ln r}} .
$$

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

$$
\operatorname{Pr}\left(B_{e f}\right) \leq \sum_{l=0}^{r-1}\binom{r-1}{l} 2^{1-2 r} \int_{0}^{1} x^{l} p^{l+1}(1-x p)^{r-1} d x
$$

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

$$
\begin{aligned}
\operatorname{Pr}\left(B_{e f}\right) & \leq \sum_{l=0}^{r-1}\binom{r-1}{l} 2^{1-2 r} \int_{0}^{1} x^{l} p^{l+1}(1-x p)^{r-1} d x \\
& =2^{1-2 r} p \int_{0}^{1}(1+x p)^{r-1}(1-x p)^{r-1} d x
\end{aligned}
$$

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

$$
\begin{aligned}
\operatorname{Pr}\left(B_{e f}\right) & \leq \sum_{l=0}^{r-1}\binom{r-1}{l} 2^{1-2 r} \int_{0}^{1} x^{l} p^{l+1}(1-x p)^{r-1} d x \\
& =2^{1-2 r} p \int_{0}^{1}(1+x p)^{r-1}(1-x p)^{r-1} d x \\
& \leq 2^{1-2 r} p .
\end{aligned}
$$

Continuous time

Spencer modified the Radhakrishnan-Srinivasan's proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_{v} \in[0,1]$.
The birth time x_{v} is assigned uniformly and independently.

$$
\begin{aligned}
\operatorname{Pr}\left(B_{e f}\right) & \leq \sum_{l=0}^{r-1}\binom{r-1}{l} 2^{1-2 r} \int_{0}^{1} x^{l} p^{l+1}(1-x p)^{r-1} d x \\
& =2^{1-2 r} p \int_{0}^{1}(1+x p)^{r-1}(1-x p)^{r-1} d x \\
& \leq 2^{1-2 r} p .
\end{aligned}
$$

The rest of proof is the same.

Variance

- Variance:

$$
\operatorname{Var}(X)=\mathrm{E}(X-\mathrm{E}(X))^{2}=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}
$$

Variance

- Variance:
$\operatorname{Var}(X)=\mathrm{E}(X-\mathrm{E}(X))^{2}=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$.
Co-Variance: $\operatorname{Cov}(X, Y)=$ $\mathrm{E}((X-\mathrm{E}(X))(Y-\mathrm{E}(Y)))=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)$

Variance

- Variance:
$\operatorname{Var}(X)=\mathrm{E}(X-\mathrm{E}(X))^{2}=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$.
- Co-Variance: $\operatorname{Cov}(X, Y)=$ $\mathrm{E}((X-\mathrm{E}(X))(Y-\mathrm{E}(Y)))=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)$.
If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.

Variance

- Variance:

$$
\operatorname{Var}(X)=\mathrm{E}(X-\mathrm{E}(X))^{2}=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} .
$$

- Co-Variance: $\operatorname{Cov}(X, Y)=$ $\mathrm{E}((X-\mathrm{E}(X))(Y-\mathrm{E}(Y)))=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)$.
- If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.

If $X=\sum_{i=1}^{n} X_{i}$, then

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Variance

- Variance:

$$
\operatorname{Var}(X)=\mathrm{E}(X-\mathrm{E}(X))^{2}=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} .
$$

- Co-Variance: $\operatorname{Cov}(X, Y)=$ $\mathrm{E}((X-\mathrm{E}(X))(Y-\mathrm{E}(Y)))=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)$.
- If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.

If $X=\sum_{i=1}^{n} X_{i}$, then

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

If X_{1}, \ldots, X_{n} are mutually independent, then $\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$.

Chebyshev’s Inequality

- $\mathrm{E}(X)=\mu$,
- $\operatorname{Var}(X)=\sigma^{2}$.

Theorem [Chebyshev's Inequality]: For any positive λ,

$$
\operatorname{Pr}(|X-\mu| \geq \lambda \sigma) \leq \frac{1}{\lambda^{2}}
$$

Chebyshev’s Inequality

- $\mathrm{E}(X)=\mu$,
- $\operatorname{Var}(X)=\sigma^{2}$.

Theorem [Chebyshev's Inequality]: For any positive λ,

$$
\operatorname{Pr}(|X-\mu| \geq \lambda \sigma) \leq \frac{1}{\lambda^{2}}
$$

Proof:

$$
\begin{aligned}
\sigma^{2} & =\operatorname{Var}(X) \\
& =\mathrm{E}\left((X-\mu)^{2}\right) \\
& \geq \lambda^{2} \sigma^{2} \operatorname{Pr}(|X-\mu| \geq \lambda \sigma) .
\end{aligned}
$$

Number theory

$\nu(n)$: the number of primes p dividing n.

Number theory

$\nu(n)$: the number of primes p dividing n.
Hardy, Ramanujan [1920]: For "almost all" n, $\nu(n) \approx \ln \ln n$.

Number theory

$\nu(n)$: the number of primes p dividing n.
Hardy, Ramanujan [1920]: For "almost all" n, $\nu(n) \approx \ln \ln n$.
Theorem [Turán (1934)]: Let $\omega(n) \rightarrow \infty$ arbitrarily slowly. Then the number of x in $[n]:=\{1,2, \ldots, n\}$ such that

$$
|\nu(x)-\ln \ln x|>\omega(n) \sqrt{\ln \ln n} .
$$

is $o(n)$.

Proof

Let x be randomly chosen from $[n]$. For p prime set

$$
X_{p}= \begin{cases}1 & \text { if } p \mid x, \\ 0 & \text { otherwise }\end{cases}
$$

Set $M=n^{1 / 10}$ and $X=\sum_{p \leq M} X_{p}$. Then

$$
\nu(x)-10 \leq X(x) \leq \nu(x)
$$

Proof

Let x be randomly chosen from $[n]$. For p prime set

$$
X_{p}= \begin{cases}1 & \text { if } p \mid x \\ 0 & \text { otherwise }\end{cases}
$$

Set $M=n^{1 / 10}$ and $X=\sum_{p \leq M} X_{p}$. Then

$$
\begin{aligned}
& \nu(x)-10 \leq X(x) \leq \nu(x) . \\
& \mathrm{E}\left(X_{p}\right)=\frac{\left\lfloor\frac{n}{p}\right\rfloor}{n}=\frac{1}{p}+O\left(\frac{1}{n}\right) .
\end{aligned}
$$

Proof

Let x be randomly chosen from $[n]$. For p prime set

$$
X_{p}= \begin{cases}1 & \text { if } p \mid x \\ 0 & \text { otherwise }\end{cases}
$$

Set $M=n^{1 / 10}$ and $X=\sum_{p \leq M} X_{p}$. Then

$$
\begin{gathered}
\nu(x)-10 \leq X(x) \leq \nu(x) . \\
\mathrm{E}\left(X_{p}\right)=\frac{\left\lfloor\frac{n}{p}\right\rfloor}{n}=\frac{1}{p}+O\left(\frac{1}{n}\right) . \\
\mathrm{E}(X)=\sum_{p \leq M}\left(\frac{1}{p}+O\left(\frac{1}{n}\right)\right)=\ln \ln n+O(1) .
\end{gathered}
$$

Variance of $\mathrm{E}(X)$

$$
\operatorname{Var}\left(X_{p}\right)=\frac{1}{p}\left(1-\frac{1}{p}\right)+O\left(\frac{1}{n}\right) .
$$

Variance of $\mathrm{E}(X)$

$$
\operatorname{Var}\left(X_{p}\right)=\frac{1}{p}\left(1-\frac{1}{p}\right)+O\left(\frac{1}{n}\right) .
$$

$$
\begin{aligned}
\operatorname{Cov}\left(X_{p}, X_{q}\right) & =\mathrm{E}\left(X_{p} X_{q}\right)-\mathrm{E}\left(X_{p}\right) \mathrm{E}\left(X_{q}\right) \\
& =\frac{\lfloor n / p q\rfloor}{n}-\frac{\lfloor n / p\rfloor}{n} \frac{\lfloor n / q\rfloor}{n} \\
& \leq \frac{1}{p q}-\left(\frac{1}{p}-\frac{1}{n}\right)\left(\frac{1}{q}-\frac{1}{n}\right) \\
& \leq \frac{1}{n}\left(\frac{1}{p}+\frac{1}{q}\right) .
\end{aligned}
$$

Variance of $\mathrm{E}(X)$

$$
\begin{aligned}
& \operatorname{Var}\left(X_{p}\right)=\frac{1}{p}\left(1-\frac{1}{p}\right)+O\left(\frac{1}{n}\right) \\
& \operatorname{Cov}\left(X_{p}, X_{q}\right)=\mathrm{E}\left(X_{p} X_{q}\right)-\mathrm{E}\left(X_{p}\right) \mathrm{E}\left(X_{q}\right) \\
&=\frac{\lfloor n / p q\rfloor}{n}-\frac{\lfloor n / p\rfloor}{n} \frac{\lfloor n / q\rfloor}{n} \\
& \leq \frac{1}{p q}-\left(\frac{1}{p}-\frac{1}{n}\right)\left(\frac{1}{q}-\frac{1}{n}\right) \\
& \leq \frac{1}{n}\left(\frac{1}{p}+\frac{1}{q}\right) . \\
& \operatorname{Var}(X)=\sum_{p \leq M} \operatorname{Var}\left(X_{p}\right)+\sum_{p \neq q} \operatorname{Cov}\left(X_{p}, X_{q}\right)=\ln \ln x+O(1) .
\end{aligned}
$$

continue

By Chebyshev's inequality, we have

$$
\operatorname{Pr}(|X-\ln \ln n|>\lambda \sqrt{\ln \ln n})<\lambda^{-2}+o(1) .
$$

continue

By Chebyshev's inequality, we have

$$
\operatorname{Pr}(|X-\ln \ln n|>\lambda \sqrt{\ln \ln n})<\lambda^{-2}+o(1) .
$$

Theorem [Erdős-Kac (1940):] For any fixed λ, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n}|\{x: 1 \leq x \leq n, \nu(x) \geq \ln \ln n+\lambda \sqrt{\ln \ln n}\}| \\
& \quad=\int_{\lambda}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
\end{aligned}
$$

Basic facts

$X=\sum_{i} X_{i}$: where X_{i} are indicator random variables.

Basic facts

$X=\sum_{i} X_{i}$: where X_{i} are indicator random variables.

- If $\mathrm{E}(X)=o(1)$, then $X=0$ almost always.

Basic facts

$X=\sum_{i} X_{i}$: where X_{i} are indicator random variables.
If $\mathrm{E}(X)=o(1)$, then $X=0$ almost always.
If $\operatorname{Var}(X)=o\left(\mathrm{E}(X)^{2}\right)$, then $X \sim \mathrm{E}(X)$ almost always. In particular $X>0$ almost always.

Basic facts

- $X=\sum_{i} X_{i}$: where X_{i} are indicator random variables.

■ If $\mathrm{E}(X)=o(1)$, then $X=0$ almost always.

- If $\operatorname{Var}(X)=o\left(\mathrm{E}(X)^{2}\right)$, then $X \sim \mathrm{E}(X)$ almost always. In particular $X>0$ almost always.

■ Write $X_{i} \sim X_{j}$ if X_{i} and X_{j} are independent. Let $\Delta=\sum_{i \sim j} \operatorname{Pr}\left(A_{i} \wedge A_{j}\right)$. If $E(X) \rightarrow \infty$ and $\Delta=o\left(E(X)^{2}\right)$, then $X>0$ almost always.

Basic facts

- $X=\sum_{i} X_{i}$: where X_{i} are indicator random variables.

■ If $\mathrm{E}(X)=o(1)$, then $X=0$ almost always.

- If $\operatorname{Var}(X)=o\left(\mathrm{E}(X)^{2}\right)$, then $X \sim \mathrm{E}(X)$ almost always. In particular $X>0$ almost always.
■ Write $X_{i} \sim X_{j}$ if X_{i} and X_{j} are independent. Let $\Delta=\sum_{i \sim j} \operatorname{Pr}\left(A_{i} \wedge A_{j}\right)$. If $E(X) \rightarrow \infty$ and $\Delta=o\left(E(X)^{2}\right)$, then $X>0$ almost always.
■ Let $\Delta^{*}=\max _{i} \sum_{j \sim i} \operatorname{Pr}\left(A_{j} \mid A_{i}\right)$. If $E(X) \rightarrow \infty$ and $\Delta^{*}=o(E(X))$, then $X>0$ almost always.

Erdős-Rényi model $G(n, p)$

- n nodes

Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.

Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^{e}(1-p)\binom{n}{2}-e$.

Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^{e}(1-p)^{\binom{n}{2}-e}$.

A property of graphs is a family of graphs closed under isomorphic.

Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^{e}(1-p)\binom{n}{2}-e$.

A property of graphs is a family of graphs closed under isomorphic.

A function $r(n)$ is called a threshold function for some property P if
■ If $p \ll r(n)$, then $G(n, p)$ does not satisfy P almost always.

- If $p \gg r(n)$, then $G(n, p)$ satisfy P almost always.

Threshold of $\omega(G) \geq 4$

$\omega(G)$: the number of vertices in the maximum clique of the graph G.

Threshold of $\omega(G) \geq 4$

$\omega(G)$: the number of vertices in the maximum clique of the graph G.
Theorem: The property $\omega(G) \geq 4$ has the threshold function $n^{-2 / 3}$.

Threshold of $\omega(G) \geq 4$

$\omega(G)$: the number of vertices in the maximum clique of the graph G.
Theorem: The property $\omega(G) \geq 4$ has the threshold function $n^{-2 / 3}$.
Proof: For any $S \in\binom{[n]}{4}$, let X_{S} be the indicator variable of the event " S is a clique".

Threshold of $\omega(G) \geq 4$

$\omega(G)$: the number of vertices in the maximum clique of the graph G.
Theorem: The property $\omega(G) \geq 4$ has the threshold function $n^{-2 / 3}$.
Proof: For any $S \in\binom{[n]}{4}$, let X_{S} be the indicator variable of the event " S is a clique".

$$
\mathrm{E}(X)=\sum_{S} \mathrm{E}\left(X_{S}\right)=\binom{n}{4} p^{6} \approx \frac{n^{4} p^{6}}{24}
$$

Threshold of $\omega(G) \geq 4$

$\omega(G)$: the number of vertices in the maximum clique of the graph G.
Theorem: The property $\omega(G) \geq 4$ has the threshold function $n^{-2 / 3}$.
Proof: For any $S \in\binom{[n]}{4}$, let X_{S} be the indicator variable of the event " S is a clique".

$$
\mathrm{E}(X)=\sum_{S} \mathrm{E}\left(X_{S}\right)=\binom{n}{4} p^{6} \approx \frac{n^{4} p^{6}}{24} .
$$

If $p \ll n^{-2 / 3}$ then $\mathrm{E}(X)=o(1)$ and so $X=0$ almost surely.

Continue

If $p \gg n^{-2 / 3}$, then $\mathrm{E}(X) \rightarrow \infty$.

Continue

If $p \gg n^{-2 / 3}$, then $\mathrm{E}(X) \rightarrow \infty$.
$S \sim T$ if $|S \cap T| \geq 2$. Thus,

$$
\Delta^{*}=O\left(n^{2} p^{5}\right)+O\left(n p^{3}\right)=o\left(n^{4} p^{6}\right)=o(\mathrm{E}(X)) .
$$

Hence $X>0$ almost surely.

