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Let P (n) be the maximum possible number of Hamiltonian
paths in a tournament on n vertices.

Szele [1943] proved

1

2
≤ lim

n→∞

(

P (n)

n!

)1/n

≤ 1

23/4
.

He conjecture that limn→∞
(

P (n)
n!

)1/n

= 1
2 .

This conjecture was proved by Alon in 1990.

Theorem [Alon, 1990]: P (n) ≤ cn3/2 n!
2n−1 .
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■ C(T ): the number of directed Hamiltonian cycles of T .

■ F (T ): the number of spanning graph (of T ), whose
indegree and outdegree are both 1 at each vertex.

■ AT = (aij): the adjacency matrix of T , where aij = 1 if
i → j and 0 otherwise.

F (T ) = per(AT ) ≤
n

∏

i=1

(ri!)
1/ri.

Here ri is i-th row sum of AT ;
∑n

i=1 ri =
(

n
2

)

.
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Lemma: For every two integers a, b satisfying
b ≥ a + 2 > a ≥ 1, we have

(a!)1/a(b!)1/b < ((a + 1)!)1/(a+1)((b − 1)!)1/(b−1).

Proof: Let f(x) = (x!)1/x

((x+1)!)1/(1+x) . We need to show

f(a) < f(b − 1). It suffices to show f(x − 1) < f(x).

((x − 1)!)1/(x−1)((x + 1)!)1/(1+x) < (x!)2/x.

Simplifying it, we get
(

xx

x!

)2
>

(

1 + 1
x

)x(x−1)
.

It can be proved using x! > (x+1
2 )x for x ≥ 2. �
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Observe that
∑n

i=1(ri!)
1/ri achieves the maximum when all

ri’s are almost equal. We get

F (T ) ≤ (1 + o(1))

√
π√
2e

n3/2 (n − 1)!

2n
.

Construct a new tournament T ′ for T by adding a new vertex
v, where the edges from v to T are oriented randomly and
independently. Every Hamiltonian path in T can be extended
to a Hamiltonian cycle in T ′ with probability 1

4 . We have

P (T ) ≤ 1

4
C(T ′) = O

(

n3/2 n!

2n−1

)

. �
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α(G): the maximal size of an independent set of a graph G.

Theorem [Caro (1979), Wei(1981)] α(G) ≥ ∑

v∈V
1

dv+1 .

Proof: Pick a random permutation σ on V . Define

I = {v ∈ V : vw ∈ E ⇒ σ(v) < σ(w)}.

Then I is an independent set.
Let Xv be the indicator random variable for v ∈ I.

E(Xv) = Pr(v ∈ I) =
1

dv + 1
.

α(G) ≥ E(|I|) =
∑

v

1

dv + 1
.
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Turán number t(n, H): the maximum integer m such that
there is a graph on n vertices containing no subgraph H.

Turán Theorem: For n = km + r (0 ≤ r < k),

t(n, Kk+1) = m2

(

k

2

)

+ rm(k − 1) +

(

r

2

)

.

The equality holds if and only if G is the complete k-partite
graph with equitable partitions, denoted by Gn,k.
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For any k ≤ n, let q, r satisfy n = kq + r, 0 ≤ r < k. Let
e = r

(

q+1
e

)

+ (m − r)
(

q
2

)

.

Dual version of Turán Theorem: If G has n vertices and
e edges. Then α(G) ≥ k and the equality holds if and only if
G = Ḡn,k.

Proof: By Caro-Wei’s theorem, α(G) ≥
∑

v
1

dv+1 .

The minimum of
∑

v
1

dv+1 is reached as the dv as close
together as possible. Since each clique contributes one, we
have

∑

v

1

dv + 1
≥ k.

When the equality holds, I is a constant. G can not contain
an induced P2. Therefore G = Ḡn,k.
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■ Mantel (1907): t(n, K3) = ⌊n
2⌋⌈n

2⌉.
■ Turán (1941):

t(n, Kk) = |E(Gn,k−1)| = (1 − 1
k−1 + o(1))

(

n
2

)

.

■ Erdős-Simonovits-Stone (1966): If χ(H) > 2, then
t(n, H) = (1 − 1

χ(H)−1 + o(1))
(

n
2

)

.

■ Kővári-Sós-Turán (1954): For 2 ≤ r ≤ s,
t(n, Kr,s) < cs1/rn2−1/r + O(n).

■ Erdős-Bondy-Simonovits (1963,1974):
t(n, C2k) ≤ ckn1+1/k.
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■ Conjecture: for r ≥ 4, t(Kr,r) > cn2−1/r.

■ Conjecture ($100): If H is a bipartite graph such that
every induced subgraph has a vertex of degree ≤ r, then
t(n, H) = O(n2−1/r).

■ Conjecture: t(n, C2k) ≥ cn1+1/k for k = 4 and k ≥ 6.

■ Conjecture ($250 for proof and $100 for disproof:)
Suppose H is a bipartite graph. Prove or disprove that
t(n, H) = O(n3/2) if and only if H does not contain a
subgraph each vertex of which has degree > 2.



Alteration method

11 / 16

Suppose that the “random” structure does not have
all desired properties but many have a few
“blemishes”. With a small alteration we remove the
blemishes, giving the desired structures.
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Theorem: R(r, r) > (1 + o(1))1
er2

r/2.

Proof: Color the edges of Kn in two colors with equal
probability randomly and independently. Let X be the
number of monochromatic Kr. Then

E(X) =

(

n

r

)

21−(r
2).

If X < n
2 , then we can delete at most n

2 to destroy all
monochromatic Kr. Thus, R(r, r) > n

2 .

This gives R(r, r) > (1 + o(1))1
er2

r/2. �
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■ S: a set of n points in the unit square [0, 1]2.
■ T (S): the minimum area of a triangle whose vertices are

three distinct points of S.

Koml’os, Pintz, Szemer’edi (1982): There exists a set
S of n points in the unit square such that T (S) = Ω( log n

n2 ).

Here we prove a weak result: ∃S such that T (S) ≥ 1
100n2 .

Proof: Select 2n random points uniformly and
independently from [0, 1]2.

■ P, Q, R: three random points.
■ µ := ∆PQR: the area of PQR.
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Pr(x ≤ |PQ| ≤ x + ∆x) ≤ π(x + ∆x)2 − πx2 ≈ 2πx∆x.

If µ ≤ ǫ, then R is in the region of a rectangle of width 4ǫ
x

and length at most
√

2.

Pr(µ ≤ ǫ) ≤
∫

√
2

0

(2πx)(
4
√

2ǫ

x
)dx = 16πǫ.

Let X be the number of triangles with areas < 1
100n2 .

E(X) ≤
(

2n

3

)

16π

100n2
< n.

Delete one vertex from each small triangle and leave at least
n vertices. Now no triangle has area less that 1

100n2 . �
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Theorem: For any 0 < p < 1, we have

R(k, t) > n −
(

n

k

)

p(k
2) −

(

n

t

)

(1 − p)(
t
2).

Proof: Color each edge independently in red or blue; the
probability of being red is p while the probability of being
blue is 1 − p. Let X be the number of red Kk and Y be the
number of blue Kt.

E(X) =

(

n

k

)

p(k
2)

E(Y ) =

(

n

t

)

(1 − p)(
t
2).
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For k = 3, this alteration method gives R(3, t) ≥
(

t
ln t

)3/2
.

The Lovasz Local Lemma gives R(3, t) ≥
(

t
ln t

)2
.

Best lower bound: Kim (1995) and best upper bound:
Shearer (1983).

ct2

ln t
≤ R(3, t) ≤ (1 + o(1))

t2

ln t
.

Before Shearer’s result, Ajtai-Komlós and Szemerédi
(1980) proved R(3, t) ≤ c′t2

ln t .
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