Probabilistic Methods in Combinatorics

 Lecture 4

 Lecture 4}

Linyuan Lu

University of South Carolina

Mathematical Sciences Center at Tsinghua University
November 16, 2011 - December 30, 2011

Hamiltonian Paths

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Hamiltonian Paths

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.
Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.

Hamiltonian Paths

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.
This conjecture was proved by Alon in 1990.

Hamiltonian Paths

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.
This conjecture was proved by Alon in 1990.
Theorem [Alon, 1990]: $P(n) \leq c n^{3 / 2} \frac{n!}{2^{n-1}}$.

Alon's proof

- $C(T)$: the number of directed Hamiltonian cycles of T.

Alon's proof

- $C(T)$: the number of directed Hamiltonian cycles of T.
- $F(T)$: the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.

Alon's proof

■ $C(T)$: the number of directed Hamiltonian cycles of T.

- $F(T)$: the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.
$A_{T}=\left(a_{i j}\right)$: the adjacency matrix of T, where $a_{i j}=1$ if $i \rightarrow j$ and 0 otherwise.

Alon's proof

■ $C(T)$: the number of directed Hamiltonian cycles of T.

- $F(T)$: the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.
- $A_{T}=\left(a_{i j}\right)$: the adjacency matrix of T, where $a_{i j}=1$ if $i \rightarrow j$ and 0 otherwise.

$$
F(T)=\operatorname{per}\left(A_{T}\right) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}
$$

Here r_{i} is i-th row sum of $A_{T} ; \sum_{i=1}^{n} r_{i}=\binom{n}{2}$.

A convex inequality

Lemma: For every two integers a, b satisfying $b \geq a+2>a \geq 1$, we have

$$
(a!)^{1 / a}(b!)^{1 / b}<((a+1)!)^{1 /(a+1)}((b-1)!)^{1 /(b-1)} .
$$

A convex inequality

Lemma: For every two integers a, b satisfying $b \geq a+2>a \geq 1$, we have

$$
(a!)^{1 / a}(b!)^{1 / b}<((a+1)!)^{1 /(a+1)}((b-1)!)^{1 /(b-1)} .
$$

Proof: Let $f(x)=\frac{(x!)^{1 / x}}{((x+1)!)^{1 /(1+x)}}$. We need to show $f(a)<f(b-1)$. It suffices to show $f(x-1)<f(x)$.

$$
((x-1)!)^{1 /(x-1)}((x+1)!)^{1 /(1+x)}<(x!)^{2 / x} .
$$

A convex inequality

Lemma: For every two integers a, b satisfying $b \geq a+2>a \geq 1$, we have

$$
(a!)^{1 / a}(b!)^{1 / b}<((a+1)!)^{1 /(a+1)}((b-1)!)^{1 /(b-1)} .
$$

Proof: Let $f(x)=\frac{(x!)^{1 / x}}{((x+1)!)^{1 /(1+x)}}$. We need to show $f(a)<f(b-1)$. It suffices to show $f(x-1)<f(x)$.

$$
((x-1)!)^{1 /(x-1)}((x+1)!)^{1 /(1+x)}<(x!)^{2 / x} .
$$

Simplifying it, we get $\left(\frac{x^{x}}{x!}\right)^{2}>\left(1+\frac{1}{x}\right)^{x(x-1)}$.

A convex inequality

Lemma: For every two integers a, b satisfying $b \geq a+2>a \geq 1$, we have

$$
(a!)^{1 / a}(b!)^{1 / b}<((a+1)!)^{1 /(a+1)}((b-1)!)^{1 /(b-1)} .
$$

Proof: Let $f(x)=\frac{(x!)^{1 / x}}{((x+1)!)^{1 /(1+x)}}$. We need to show $f(a)<f(b-1)$. It suffices to show $f(x-1)<f(x)$.

$$
((x-1)!)^{1 /(x-1)}((x+1)!)^{1 /(1+x)}<(x!)^{2 / x} .
$$

Simplifying it, we get $\left(\frac{x^{x}}{x!}\right)^{2}>\left(1+\frac{1}{x}\right)^{x(x-1)}$. It can be proved using $x!>\left(\frac{x+1}{2}\right)^{x}$ for $x \geq 2$.

Proof of theorem

Observe that $\sum_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}$ achieves the maximum when all r_{i} 's are almost equal. We get

$$
F(T) \leq(1+o(1)) \frac{\sqrt{\pi}}{\sqrt{2} e} n^{3 / 2} \frac{(n-1)!}{2^{n}} .
$$

Proof of theorem

Observe that $\sum_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}$ achieves the maximum when all r_{i} 's are almost equal. We get

$$
F(T) \leq(1+o(1)) \frac{\sqrt{\pi}}{\sqrt{2} e} n^{3 / 2} \frac{(n-1)!}{2^{n}} .
$$

Construct a new tournament T^{\prime} for T by adding a new vertex v, where the edges from v to T are oriented randomly and independently. Every Hamiltonian path in T can be extended to a Hamiltonian cycle in T^{\prime} with probability $\frac{1}{4}$. We have

$$
P(T) \leq \frac{1}{4} C\left(T^{\prime}\right)=O\left(n^{3 / 2} \frac{n!}{2^{n-1}}\right)
$$

Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.

Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.
Theorem [Caro (1979), Wei(1981)] $\alpha(G) \geq \sum_{v \in V} \frac{1}{d_{v}+1}$.

Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.
Theorem [Caro (1979), Wei(1981)] $\alpha(G) \geq \sum_{v \in V} \frac{1}{d_{v}+1}$.
Proof: Pick a random permutation σ on V. Define

$$
I=\{v \in V: v w \in E \Rightarrow \sigma(v)<\sigma(w)\} .
$$

Then I is an independent set.

Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.
Theorem [Caro (1979), Wei(1981)] $\alpha(G) \geq \sum_{v \in V} \frac{1}{d_{v}+1}$.
Proof: Pick a random permutation σ on V. Define

$$
I=\{v \in V: v w \in E \Rightarrow \sigma(v)<\sigma(w)\} .
$$

Then I is an independent set.
Let X_{v} be the indicator random variable for $v \in I$.

$$
\begin{aligned}
& \mathrm{E}\left(X_{v}\right)=\operatorname{Pr}(v \in I)=\frac{1}{d_{v}+1} . \\
& \alpha(G) \geq \mathrm{E}(|I|)=\sum_{v} \frac{1}{d_{v}+1} .
\end{aligned}
$$

Turán Theorem

Turán number $t(n, H)$: the maximum integer m such that there is a graph on n vertices containing no subgraph H.

Turán Theorem

Turán number $t(n, H)$: the maximum integer m such that there is a graph on n vertices containing no subgraph H.
Turán Theorem: For $n=k m+r(0 \leq r<k)$,

$$
t\left(n, K_{k+1}\right)=m^{2}\binom{k}{2}+r m(k-1)+\binom{r}{2} .
$$

The equality holds if and only if G is the complete k-partite graph with equitable partitions, denoted by $G_{n, k}$.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{e}+(m-r)\binom{q}{2}$.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{e}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{e}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.
Proof: By Caro-Wei's theorem, $\alpha(G) \geq \sum_{v} \frac{1}{d_{v}+1}$.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{e}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.
Proof: By Caro-Wei's theorem, $\alpha(G) \geq \sum_{v} \frac{1}{d_{v}+1}$.
The minimum of $\sum_{v} \frac{1}{d_{v}+1}$ is reached as the d_{v} as close together as possible.

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{e}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.
Proof: By Caro-Wei's theorem, $\alpha(G) \geq \sum_{v} \frac{1}{d_{v}+1}$.
The minimum of $\sum_{v} \frac{1}{d_{v}+1}$ is reached as the d_{v} as close together as possible. Since each clique contributes one, we have

$$
\sum_{v} \frac{1}{d_{v}+1} \geq k
$$

Dual version

For any $k \leq n$, let q, r satisfy $n=k q+r, 0 \leq r<k$. Let $e=r\binom{q+1}{e}+(m-r)\binom{q}{2}$.
Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G=\bar{G}_{n, k}$.
Proof: By Caro-Wei's theorem, $\alpha(G) \geq \sum_{v} \frac{1}{d_{v}+1}$.
The minimum of $\sum_{v} \frac{1}{d_{v}+1}$ is reached as the d_{v} as close together as possible. Since each clique contributes one, we have

$$
\sum_{v} \frac{1}{d_{v}+1} \geq k
$$

When the equality holds, I is a constant. G can not contain an induced P_{2}. Therefore $G=\bar{G}_{n, k}$.

History

Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.

History

Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.
Turán (1941):
$t\left(n, K_{k}\right)=\left|E\left(G_{n, k-1}\right)\right|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2}$.

History

Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.
Turán (1941):
$t\left(n, K_{k}\right)=\left|E\left(G_{n, k-1}\right)\right|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2}$.
Erdös-Simonovits-Stone (1966): If $\chi(H)>2$, then $t(n, H)=\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2}$.

History

- Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.

■ Turán (1941):

$$
t\left(n, K_{k}\right)=\left|E\left(G_{n, k-1}\right)\right|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2} .
$$

■ Erdös-Simonovits-Stone (1966): If $\chi(H)>2$, then $t(n, H)=\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2}$.
■ Kövári-Sós-Turán (1954): For $2 \leq r \leq s$,

$$
t\left(n, K_{r, s}\right)<c s^{1 / r} n^{2-1 / r}+O(n) .
$$

History

- Mantel (1907): $t\left(n, K_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$.

■ Turán (1941):
$t\left(n, K_{k}\right)=\left|E\left(G_{n, k-1}\right)\right|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{n}{2}$.
■ Erdös-Simonovits-Stone (1966): If $\chi(H)>2$, then $t(n, H)=\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2}$.
■ Kövári-Sós-Turán (1954): For $2 \leq r \leq s$, $t\left(n, K_{r, s}\right)<c s^{1 / r} n^{2-1 / r}+O(n)$.
■ Erdős-Bondy-Simonovits $(1963,1974)$: $t\left(n, C_{2 k}\right) \leq c k n^{1+1 / k}$.

Open conjectures

Conjecture: for $r \geq 4, t\left(K_{r, r}\right)>c n^{2-1 / r}$.

Open conjectures

Conjecture: for $r \geq 4, t\left(K_{r, r}\right)>c n^{2-1 / r}$.
Conjecture (\$100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H)=O\left(n^{2-1 / r}\right)$.

Open conjectures

■ Conjecture: for $r \geq 4, t\left(K_{r, r}\right)>c n^{2-1 / r}$.

- Conjecture (\$100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H)=O\left(n^{2-1 / r}\right)$.
Conjecture: $t\left(n, C_{2 k}\right) \geq c n^{1+1 / k}$ for $k=4$ and $k \geq 6$.

Open conjectures

■ Conjecture: for $r \geq 4, t\left(K_{r, r}\right)>c n^{2-1 / r}$.
■ Conjecture (\$100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H)=O\left(n^{2-1 / r}\right)$.

- Conjecture: $t\left(n, C_{2 k}\right) \geq c n^{1+1 / k}$ for $k=4$ and $k \geq 6$.
- Conjecture ($\mathbf{\$ 2 5 0}$ for proof and $\$ \mathbf{1 0 0}$ for disproof:) Suppose H is a bipartite graph. Prove or disprove that $t(n, H)=O\left(n^{3 / 2}\right)$ if and only if H does not contain a subgraph each vertex of which has degree >2.

Alteration method

Suppose that the "random" structure does not have all desired properties but many have a few "blemishes". With a small alteration we remove the blemishes, giving the desired structures.

Ramsey number $R(r, r)$

Theorem: $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$.

Ramsey number $R(r, r)$

Theorem: $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$.
Proof: Color the edges of K_{n} in two colors with equal probability randomly and independently. Let X be the number of monochromatic K_{r}. Then

$$
\mathrm{E}(X)=\binom{n}{r} 2^{1-\binom{r}{2}}
$$

Ramsey number $R(r, r)$

Theorem: $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$.
Proof: Color the edges of K_{n} in two colors with equal probability randomly and independently. Let X be the number of monochromatic K_{r}. Then

$$
\mathrm{E}(X)=\binom{n}{r} 2^{1-\binom{r}{2}}
$$

If $X<\frac{n}{2}$, then we can delete at most $\frac{n}{2}$ to destroy all monochromatic K_{r}. Thus, $R(r, r)>\frac{n}{2}$.

Ramsey number $R(r, r)$

Theorem: $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$.
Proof: Color the edges of K_{n} in two colors with equal probability randomly and independently. Let X be the number of monochromatic K_{r}. Then

$$
\mathrm{E}(X)=\binom{n}{r} 2^{1-\binom{r}{2}}
$$

If $X<\frac{n}{2}$, then we can delete at most $\frac{n}{2}$ to destroy all monochromatic K_{r}. Thus, $R(r, r)>\frac{n}{2}$.
This gives $R(r, r)>(1+o(1)) \frac{1}{e} r 2^{r / 2}$. \square

Combinatorial geometry

- S : a set of n points in the unit square $[0,1]^{2}$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Koml'os, Pintz, Szemer'edi (1982): There exists a set S of n points in the unit square such that $T(S)=\Omega\left(\frac{\log n}{n^{2}}\right)$.

Combinatorial geometry

- S : a set of n points in the unit square $[0,1]^{2}$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Koml'os, Pintz, Szemer'edi (1982): There exists a set S of n points in the unit square such that $T(S)=\Omega\left(\frac{\log n}{n^{2}}\right)$. Here we prove a weak result: $\exists S$ such that $T(S) \geq \frac{1}{100 n^{2}}$.

Combinatorial geometry

- S : a set of n points in the unit square $[0,1]^{2}$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Koml'os, Pintz, Szemer'edi (1982): There exists a set S of n points in the unit square such that $T(S)=\Omega\left(\frac{\log n}{n^{2}}\right)$. Here we prove a weak result: $\exists S$ such that $T(S) \geq \frac{1}{100 n^{2}}$.
Proof: Select $2 n$ random points uniformly and independently from $[0,1]^{2}$.

- P, Q, R : three random points.
- $\mu:=\triangle P Q R$: the area of $P Q R$.

Proof

$$
\operatorname{Pr}(x \leq|P Q| \leq x+\Delta x) \leq \pi(x+\Delta x)^{2}-\pi x^{2} \approx 2 \pi x \Delta x
$$

If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4 \epsilon}{x}$ and length at most $\sqrt{2}$.

Proof

$$
\operatorname{Pr}(x \leq|P Q| \leq x+\Delta x) \leq \pi(x+\Delta x)^{2}-\pi x^{2} \approx 2 \pi x \Delta x
$$

If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4 \epsilon}{x}$ and length at most $\sqrt{2}$.

$$
\operatorname{Pr}(\mu \leq \epsilon) \leq \int_{0}^{\sqrt{2}}(2 \pi x)\left(\frac{4 \sqrt{2} \epsilon}{x}\right) d x=16 \pi \epsilon
$$

Proof

$$
\operatorname{Pr}(x \leq|P Q| \leq x+\Delta x) \leq \pi(x+\Delta x)^{2}-\pi x^{2} \approx 2 \pi x \Delta x
$$

If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4 \epsilon}{x}$ and length at most $\sqrt{2}$.

$$
\operatorname{Pr}(\mu \leq \epsilon) \leq \int_{0}^{\sqrt{2}}(2 \pi x)\left(\frac{4 \sqrt{2} \epsilon}{x}\right) d x=16 \pi \epsilon
$$

Let X be the number of triangles with areas $<\frac{1}{100 n^{2}}$.

$$
\mathrm{E}(X) \leq\binom{ 2 n}{3} \frac{16 \pi}{100 n^{2}}<n
$$

Proof

$$
\operatorname{Pr}(x \leq|P Q| \leq x+\Delta x) \leq \pi(x+\Delta x)^{2}-\pi x^{2} \approx 2 \pi x \Delta x .
$$

If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4 \epsilon}{x}$ and length at most $\sqrt{2}$.

$$
\operatorname{Pr}(\mu \leq \epsilon) \leq \int_{0}^{\sqrt{2}}(2 \pi x)\left(\frac{4 \sqrt{2} \epsilon}{x}\right) d x=16 \pi \epsilon
$$

Let X be the number of triangles with areas $<\frac{1}{100 n^{2}}$.

$$
\mathrm{E}(X) \leq\binom{ 2 n}{3} \frac{16 \pi}{100 n^{2}}<n
$$

Delete one vertex from each small triangle and leave at least n vertices. Now no triangle has area less that $\frac{1}{100 n^{2}}$.

Ramsey number $R(k, t)$

Theorem: For any $0<p<1$, we have

$$
R(k, t)>n-\binom{n}{k} p^{\binom{k}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}} .
$$

Ramsey number $R(k, t)$

Theorem: For any $0<p<1$, we have

$$
R(k, t)>n-\binom{n}{k} p^{\binom{k}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}} .
$$

Proof: Color each edge independently in red or blue; the probability of being red is p while the probability of being blue is $1-p$. Let X be the number of red K_{k} and Y be the number of blue K_{t}.

$$
\begin{aligned}
& \mathrm{E}(X)=\binom{n}{k} p^{\binom{k}{2}} \\
& \mathrm{E}(Y)=\binom{n}{t}(1-p)^{\left(\begin{array}{c}
\left(\begin{array}{c}
t
\end{array}\right)
\end{array}\right.}
\end{aligned}
$$

Ramsey number $R(3, t)$

For $k=3$, this alteration method gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{3 / 2}$.

Ramsey number $R(3, t)$

For $k=3$, this alteration method gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{3 / 2}$.
The Lovasz Local Lemma gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{2}$.

Ramsey number $R(3, t)$

For $k=3$, this alteration method gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{3 / 2}$.
The Lovasz Local Lemma gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{2}$.
Best lower bound: Kim (1995) and best upper bound: Shearer (1983).

$$
\frac{c t^{2}}{\ln t} \leq R(3, t) \leq(1+o(1)) \frac{t^{2}}{\ln t}
$$

Ramsey number $R(3, t)$

For $k=3$, this alteration method gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{3 / 2}$.
The Lovasz Local Lemma gives $R(3, t) \geq\left(\frac{t}{\ln t}\right)^{2}$.
Best lower bound: Kim (1995) and best upper bound: Shearer (1983).

$$
\frac{c t^{2}}{\ln t} \leq R(3, t) \leq(1+o(1)) \frac{t^{2}}{\ln t}
$$

Before Shearer's result, Ajtai-Komlós and Szemerédi (1980) proved $R(3, t) \leq \frac{c^{\prime} t^{2}}{\ln t}$.

