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- Hamiltonian Paths -

Let P(n) be the maximum possible number of Hamiltonian
paths in a tournament on n vertices.
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- Hamiltonian Paths -

Let P(n) be the maximum possible number of Hamiltonian
paths in a tournament on n vertices.

Szele [1943] proved

P(n) 1

1/n
He conjecture that lim,,_. (T) = 3.

This conjecture was proved by Alon in 1990.
Theorem [Alon, 1990]: P(n) < cn®/?.%;.
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- Alon’s proof '

s C(T): the number of directed Hamiltonian cycles of T
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- Alon’s proof -

s C(T): the number of directed Hamiltonian cycles of T

s F(T): the number of spanning graph (of T'), whose
indegree and outdegree are both 1 at each vertex.

s  Ar = (a;;): the adjacency matrix of 1", where a;; = 1 if
1 — 7 and O otherwise.

F(T) = per(Ar) < [ [(ri)"/".

1=1

Here 7; is i-th row sum of Ap; > 7 r; = (Z)
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- A convex inequality '

Lemma: For every two integers a, b satisfying
b>a+2>a>1, we have

(a) ()" < ((a + NI ((b - 1))V,
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- A convex inequality

Lemma: For every two integers a, b satisfying
b>a+2>a>1, we have

(a) ()" < ((a + NI ((b - 1))V,

Proof: Let f(x) = ((xﬁ)!?;/;l —. We need to show

f(a) < f(b—1). It suffices to show f(z — 1) < f(x).

((z — DNYED (2 4 DHVEFD) < (g2,

Simplifying it, we get (%)2 > (1 41
+1

X

It can be proved using x! > (5~)* for v > 2.
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- Proof of theorem '

Observe that Y7 (r;!)!/" achieves the maximum when all
r;'s are almost equal. We get

F(T) < (1+ 0(1))%%3/2 (n ;nl)!.
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- Proof of theorem -

Observe that Y7 (r;!)!/" achieves the maximum when all
r;'s are almost equal. We get

VT 3/2(”‘ 1)!
Vae n

Construct a new tournament 1" for T’ by adding a new vertex
v, where the edges from v to 1" are oriented randomly and
independently. Every Hamiltonian path in 7" can be extended
to a Hamiltonian cycle in T” with probability i. We have

F(T) < (1+4o0(1)) ==

P(T) < iC(T’) — 0 <n3/22:!1> .
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- Independence number '

a(G): the maximal size of an independent set of a graph G.
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a(G): the maximal size of an independent set of a graph G.
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Proof: Pick a random permutation o on V. Define
I={veV:ivwe FE=o0) <o(w)}
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- Independence number '

a(G): the maximal size of an independent set of a graph G.
Theorem [Caro (1979), Wei(1981)] «(G) > >, oy 7.
Proof: Pick a random permutation ¢ on V. Define

I={veV:ivwe FE=o0) <o(w)}

Then I is an independent set.
Let X, be the indicator random variable for v € 1.
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- Turan Theorem '

Turdn number ¢(n, H): the maximum integer m such that
there Is a graph on n vertices containing no subgraph H.
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- Turan Theorem '

Turdn number ¢(n, H): the maximum integer m such that
there Is a graph on n vertices containing no subgraph H.

Turan Theorem: For n =km+r (0 <r < k),

t(n, Kpy1) = m? (;) +rm(k —1) + (;)

The equality holds if and only if G is the complete k-partite
graph with equitable partitions, denoted by G, 1.
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- Dual version -

Forany k < n, let g,r satistyn =kqg+r, 0 <r < k. Let
e:T(qH) +(m—fr)(g).

€
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e edges. Then a(G) > k and the equality holds if and only if
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Forany k < n, let g,r satistyn =kqg+r, 0 <r < k. Let
e=r("" + (m—r)().

Dual version of Turan Theorem: If G has n vertices and
e edges. Then a(G) > k and the equality holds if and only if
G =G

. 1
Proof: By Caro-Wei's theorem, a(G) > >, -
The minimum of ) s reached as the d, as close
together as possible.
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- Dual version -

Forany k < n, let g,r satistyn =kqg+r, 0 <r < k. Let
e=r("" + (m—r)().
Dual version of Turan Theorem: If G has n vertices and

e edges. Then a(G) > k and the equality holds if and only if
G =Gy

Proof: By Caro-Wei's theorem a(G) >, dvl+1
The minimum of > d—+1 s reached as the d, as close
together as possible. Since each cliqgue contributes one, we

have 1

Zvarle.

v
When the equality holds, I is a constant. G can not contain
rman induced P». Therefore G = Gnk

8 /16



r History

=  Mantel (1907): t(n, K3) = |5]|5].
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History b

=  Mantel (1907): t(n, K3) = |5]|5].
s Turdn (1941):
t(n, Ki) = |E(Gpp-1)] = (1 — 75 +0(1))(5).
s Erdds-Simonovits-Stone (1966): If x(H) > 2, then
t(n,H) = (1— X(I})_l -o(1))(5)-
s KoOvari-Sés-Turdn (1954): For 2 < r < s,
t(n, K, ) < cst/™n?=Y" 4 O(n).

s Erdds-Bondy-Simonovits (1963,1974):
t(n, Cop) < ckn!t/F,
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- Open conjectures '

= Conjecture: forr > 4, t(K,,) > en?2 4T,
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Open conjectures -

Conjecture: for r > 4, t(K,.,) > en®>~1/".

Conjecture ($100): If H is a bipartite graph such that
every induced subgraph has a vertex of degree < r, then

t(n, H) = O(n*>=1/").
Conjecture: t(n,Cy;) > cn'*V/* for k =4 and k > 6.

Conjecture ($250 for proof and $100 for disproof:)

Suppose H is a bipartite graph. Prove or disprove that
t(n, H) = O(n%?) if and only if H does not contain a
subgraph each vertex of which has degree > 2.
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- Alteration method '

Suppose that the “random” structure does not have
all desired properties but many have a few
“blemishes”. With a small alteration we remove the
blemishes, giving the desired structures.
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- Ramsey number R(r,r) '

Theorem: R(r,r) > (14 o(1))1r2/2.
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- Ramsey number R(r,r) '

Theorem: R(r,r) > (14 o(1))1r2/2.

Proof: Color the edges of K, in two colors with equal

probability randomly and independently. Let X be the
number of monochromatic K,. Then

E(X) = (”) 21-(2).

r
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- Ramsey number R(r,r) '

Theorem: R(r,r) > (14 o(1))1r2/2.

Proof: Color the edges of K, in two colors with equal
probability randomly and independently. Let X be the
number of monochromatic KX,.. Then

E(X) = (“) 21-(2).

r

It X < 5, then we can delete at most 5 to destroy all
monochromatic K. Thus, R(r,7) > %.

This gives R(r,7) > (1 +o(1))2r27/2.
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- Combinatorial geometry '

= S: aset of n points in the unit square [0, 1]°.
s T'(S): the minimum area of a triangle whose vertices are
three distinct points of S.

Koml’'os, Pintz, Szemer’edi (1982): There exists a set
S of n points in the unit square such that T'(S) = Q(lcfQ”).
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- Combinatorial geometry '

= S: aset of n points in the unit square [0, 1]°.
s T'(S): the minimum area of a triangle whose vertices are
three distinct points of S.

Koml’'os, Pintz, Szemer’edi (1982): There exists a set
S of n points in the unit square such that T'(S) = Q(lcfQ”).

Here we prove a weak result: 35 such that T'(S) > .

Proof: Select 2n random points uniformly and
independently from [0, 1],

m P, (), R: three random points.
m = APQR: the area of PQR.

13 / 16



- Proof -

Pr(z < |PQ| <z + Az) < n(x + Az)? — m2? = 2nzAz.

If 1w < €, then R is in the region of a rectangle of width %
and length at most v/2.
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- Proof '

Pr(z < |PQ| <z + Az) < n(x + Az)? — m2? = 2nzAz.

If 1w < €, then R is in the region of a rectangle of width %
and length at most v/2.

4\/§e

X

V2
Pr(i < ) < / (2z)

Let X be the number of triangles with areas <

)dx = 167e.

1
100n2-

2n> 167
< n.

E(X) <
( )_(3 100n?
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- Proof '

Pr(z < |PQ| <z + Az) < n(x + Az)? — m2? = 2nzAz.

If 1w < €, then R is in the region of a rectangle of width %
and length at most v/2.

4\/§€

V2
Pr(p <e) < / (2mx)( )dx = 16me.
0 X
Let X be the number of triangles with areas < 10(1)n2.
2n\ 16w
E(X) < .
(X) < (3)100772 ="

Delete one vertex from each small triangle and leave at least

n vertices. Now no triangle has area less that 100#712.
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- Ramsey number R(k,t) -

Theorem: For any 0 < p < 1, we have

R(k,t) >n — <Z>p(’§) _ <n> (1—p)).
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- Ramsey number R(k,1) -

Theorem: For any 0 < p < 1, we have

R(k,t) > n — (Z) pl2) — (”) (1—p)a).

t

Proof: Color each edge independently in red or blue; the
probability of being red is p while the probability of being

blue is 1 — p. Let X be the number of red K and Y be the
number of blue K.
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- Ramsey number R(3,t) -

For k = 3, this alteration method gives R(3,t) > (ﬁ)gm.
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For k = 3, this alteration method gives R(3,t) > (ﬁ)gm.

The Lovasz Local Lemma gives R(3,t) > (ﬁ)2

Best lower bound: Kim (1995) and best upper bound:
Shearer (1983).

C—tQ < R(3,t) < (1+ 0(1))i
Int — T Int
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- Ramsey number R(3,t) -

For k = 3, this alteration method gives R(3,t) > (ﬁ)gm.

The Lovasz Local Lemma gives R(3,t) > (ﬁ)2

Best lower bound: Kim (1995) and best upper bound:
Shearer (1983).

C—tQ < R(3,t) < (1+ 0(1))i
Int — T Int

Before Shearer’s result, Ajtai-Komlés and Szemerédi
2

(1980) proved R(3,t) < (f;ltt

16 / 16
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