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k-sets '

s V=ViUV, ... V. a partition of equal parts, where
Vil == Vil =n.

s A VE— {11}
s For SCV, let h(S) =) p-gh(F).

m A k-set F'is crossing if it contains precisely one point
form each V.

Theorem: Suppose h(F') = 41 for all crossing k-sets F'.
Then there is an S C V for which

h(S)| > cpn”.

= Here c; > 0, independent of n.
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- A Lemma -

Lemma: Let P, be the set of all homogeneous polynomials
f(p1,...,pr) of degree k with all coefficients have absolute

value at most one and p1ps - - - pr. having coefficient one.
Then for all f € Py there exists p1,...,pr € |0, 1] with

fp1, . pk)| = .

Here c;, > 0, independent of n.
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- A Lemma '

Lemma: Let P, be the set of all homogeneous polynomials
f(p1,...,pr) of degree k with all coefficients have absolute
value at most one and p1ps - - - pr. having coefficient one.
Then for all f € Py there exists p1,...,pr € |0, 1] with

‘f(pla .. 7pk)’ Z Cl.

Here c;, > 0, independent of n.

Proof: Let M(f) =max,,  , |f(p1,...,pr)|- Note Py is
compact and M is continuous. M reaches its minimum

value ¢ at some point f;. We have

Cr = ]&1(;fb) > ().
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- Proof of theorem -

Let S be a random set of V' by setting

Pr(x e V)=p;, xe€V,.
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- Proof of theorem -

Let S be a random set of V' by setting

Pr(x e V)=p;, xe€V,.
Let

P h(F) if FCS,
T 0 otherwise.
Say I has type (a1,...,a;) if |[FNV;]|=a;, 1 <i<k. For

these F',
E(Xrp) =h(F)pl* - py.
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continue

Z Py’ > h(F).

S a= F of type (a1,...,az)
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- continue

S a= F of type (a1,...,az)
| et f(pl, e ,pk) — %E(X) Then f € P.
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- continue

S a= F of type (a1,...,az)
| et f(pl, e ,pk) — %E(X) Then f € P.

Now select p1,...,pr € |0, 1] with |f(p1,...,pr)| >
Then E(|X]) > |E(X)] > ¢nF.
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- continue
Z 2% > h(F).

z 1aZ

| et f(pl, e ,pk) — %E(X) Then f € P.

Now select p1,...,pr € |0, 1] with |f(p1,...,pr)| >
Then E(|X]) > |E(X)] > ¢nF.

There exists a S such that |h(S)| > cin”.
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- Balancing vectors '

Theorem: Let vq,...,v,, are n unit vector in R". Then
there exist €1,...,¢, = =1 so that

Helvl'+""'+'6nvnH fg‘V/ﬁ%

and also there exist €1,...,¢, = £1 so that

|ervr 4+« - - + vy > V.
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- Proof '

Let €1, ...,¢€, be selected uniformly and independently from
{%—1,—-1}. Let_)(ZZZH€1U1—%°°°'+-€nUnH2.
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Proof

Let €1, ...,¢€, be selected uniformly and independently from
{—|—1, —1} Let X = H€1U1 + T envnH2.

B(X)

E(Z EZ'GjUZ' . Uj)

2,)=1

Z E(éiéj)?}i . ?)j

2,)=1

n
05 V; = V;

1,7=1

n
> lvill*=n.
i=1
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- An extension -

Theorem: Let vq,...,v, € R", all ||v;]| < 1. Let

p1, P2, ..., Pn € |0, 1] be arbitrary and set

W = p1vy + povs + - - - + ppv,. Then there exist
€1,...,6, € {0,1} so that setting v = €1v1 + - - - + €,v,,

/7

|w — vl > 5
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- An extension -

Theorem: Let vq,...,v, € R", all ||v;]| < 1. Let
p1, P2, ..., Pn € |0, 1] be arbitrary and set
W = p1vy + povs + - - - + ppv,. Then there exist

€1,...,6, € {0,1} so that setting v = €1v1 + - - - + €,v,,
V1
|w — vl > 5

Hint: Pick ¢; independently with
Pr(e;=1)=p;, Pr(e,=0)=1—p;.

The proof is similar.
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- Unbalancing lights '

Theorem: Let a;; = &1 for 1 <i,j5 < n. Then there exist
z;,y; = =1, 1 <1i,7 < n so that

L 2
D Ty > ( a7 0(1)) n’?.

1,)=1
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- Unbalancing lights '

Theorem: Let a;; = &1 for 1 <i,j5 < n. Then there exist
z;,y; = =1, 1 <1i,7 < n so that

L 2
D Ty > ( a7 0(1)) n’?.

1,)=1

Proof: Choose y; =1 or —1 randomly and independently.
Let Rz = Z?:l QiY;. Let X; be the sign of Rz Then

n n

Z Qi LiY; — Z ’RZ’

ij=1 i=1
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- continue '

Each R; has the distribution S,, = Z;-ll X;, where X;'s are
independent uniform {—1,1} random variables.
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- Brégman's Theorem -

s A= (a;;): an n x n matrix with all a;; € {0,1}.
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Brégman’'s Theorem '

s A= (a;;): an n x n matrix with all a;; € {0,1}.

= S5 the set of permutations o € 5, with a; ,(;) = 1 for all
2.

s per(A) = |S|: the permanent of A.

m 7;. the 2-th row sum.

Brégman’s Theorem (1973): per(A) < [, ;. (r:)"/".
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- Proof [Schrijver 1978] -

Pick ¢ € § and 7 € .5, independently and uniformly.
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- Proof [Schrijver 1978] -

Pick ¢ € § and 7 € .5, independently and uniformly.

s Let AV := A: and A is the submatrix obtained by
deleting row 7(¢ — 1) and column o(7(z — 1)) for
2 <1 <n.

= R, the 7(i)'s row sum of Al
n L= L(Ov 7_) F= H?:l RT(’L)
m G(L) — @E(IHL) — 62?:1 E(RT(z‘)).
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Proof [Schrijver 1978] -

Pick ¢ € § and 7 € .5, independently and uniformly.

Let AV := A: and AW is the submatrix obtained by
deleting row 7(¢ — 1) and column o(7(z — 1)) for
2 <1 <n.

R, ;): the 7(i)'s row sum of Al
L = L(o,7) = [[iey Rrii)
G(L) := cEnl) — o> E(Ry )

Claim: per(A)) < G(L).
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continue

For any fixed 7. Assume 7(1) = 1. By re-ordering, assume
the first row has ones in the first r := r; columns. For
1 <j <rlett; be the permanent of A with the first row

and j-th column removed (i.e., o(1) = j). Let

Cti4 -+t per(A)
B r oy

t
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continue

For any fixed 7. Assume 7(1) = 1. By re-ordering, assume
the first row has ones in the first r := r; columns. For
1 <j <rlett; be the permanent of A with the first row

and j-th column removed (i.e., o(1) = j). Let

Cti4 -+t per(A)
B r oy

t

By induction,
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continue
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continue

Now we calculate GG|L| conditional on a fixed o. By

reordering, assume o(7) = ¢ for all 7. Note

G(R;) = (r;)Y™.
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continue

Now we calculate GG|L| conditional on a fixed o. By

reordering, assume o(7) = ¢ for all 7. Note

G(R;) = (ri! )1/70Z

) =TT

1=1
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