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A family of pairs of sets F = {(Ai, Bi)}
h
i=1 is called a

(k, l)-system if

■ for 1 ≤ i ≤ h, |Ai| = k, |Bi| = l, Ai ∩ Bi = ∅.
■ for any 1 ≤ i 6= j ≤ h, |Ai ∩ Bj| 6= ∅.

Question: What is the maximum size that a (k, l)-system
can have?

Theorem [Bollobás 1965]: If F = {(Ai, Bi)}
h
i=1 is a

(k, l)-system, then h ≤
(

k+l
k

)

.
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Let V = ∪h
i=1(Ai ∪ Bi) and consider a random order π of V .

For each i, let Xi be the event all elements of Ai precede all
those of Bi in π.

Pr(Xi) =
1

(

k+l
k

).

Observe that all Xi’s are disjoint events. We have

1 ≥ Pr(∨h
i=1Xi) =

h
∑

i=1

Pr(Xi) =
h

(

k+l
k

).
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A subset A of an abelian graph G is called sum-free if
(A + A) ∩ A = ∅.

Theorem [Erdős 1965]: Every set B of n nonzero integers
contains a sum-free subset A of size |A| > 1

3n.

Proof: Let B = {b1, b2, . . . , bn}. Choose a prime
p > 2 max{|bi|}

n
i=1.

Let C = {k + 1, k + 2, . . . , 2k + 1}. Then C is a sum-free
set of Zp.

Randomly pick an integer x in [1, p − 1]. Define

A = {bi : xbi( mod p) ∈ C}.
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Claim: A is a sum-free set.
Let Xi be the indicator random variable that bi ∈ A.

Pr(Xi) =
|C|

p − 1
=

k + 1

3k − 1
>

1

3
.
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Claim: A is a sum-free set.
Let Xi be the indicator random variable that bi ∈ A.

Pr(Xi) =
|C|

p − 1
=

k + 1

3k − 1
>

1

3
.

E(|A|) =
n

∑

i=1

Pr(Xi) >
n

3
.

There is a subset A ⊂ B with greater than n/3 elements. �
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■ F ⊂ 2[n].
■ d(F) := |{(F, F ′) : F, F ′ ∈ F , F ∩ F ′ = ∅}|.

Daykin and Erdős conjectured if |F| = 2(1/2+δ)n then
d(F) = o(|F|2).

Theorem [Alon-Frankl, 1985]: If |F| = 2(1/2+δ)n, then

d(F) < |F|2−δ2/2.
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Let m := 2(1/2+δ)n. Suppose d(F) < m2−δ2/2.

Pick independently t members A1, A2, . . . , At of F with
repetitions at random.

Pr(| ∪t
i=1 Ai| ≤

n

2
)

≤
∑

|S|=n

2

Pr(∧t
i=1(Ai ⊂ S))

≤ 2n

(

2n/2

2(1/2+δ)n

)t

= 2n(1−δt).
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Let v(B) = |{A ∈ F : B ∩ A = ∅}|. Then

∑

B

v(B) = 2d(F) ≥ 2m2−δ2/2.
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v(B) = 2d(F) ≥ 2m2−δ2/2.

Let Y be a random variable whose value is the number of
members B ∈ F that is disjoint to all Ai 1 ≤ i ≤ t.
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Let v(B) = |{A ∈ F : B ∩ A = ∅}|. Then

∑

B

v(B) = 2d(F) ≥ 2m2−δ2/2.

Let Y be a random variable whose value is the number of
members B ∈ F that is disjoint to all Ai 1 ≤ i ≤ t. Then

E(|Y |) =
∑

B∈F

(

v(B)

m

)t

≥
1

mt−1

(∑

B v(B)

m

)t

≥ 2m1−tδ2/2.
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Since Y ≤ m, we get

Pr(Y ≥ m1−tδ2/2) ≥ m−tδ2/2.
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Since Y ≤ m, we get

Pr(Y ≥ m1−tδ2/2) ≥ m−tδ2/2.

Choose t = ⌊1 + 1
δ⌋. We have m−tδ2/2 > 2n(1−δt).
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Since Y ≤ m, we get

Pr(Y ≥ m1−tδ2/2) ≥ m−tδ2/2.

Choose t = ⌊1 + 1
δ⌋. We have m−tδ2/2 > 2n(1−δt).

Thus, with positive probability, | ∪t
i=1 Ai| > n

2 and ∪t
i=1Ai is

disjoint to more than 2n/2 members of F . Contradiction. �
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Let F ⊂
(

[n]
k

)

. A family F of k-sets is called intersecting if
for any A, B ∈ F , A ∩ B 6= ∅.

Erdős-Ko-Rado Theorem: If n ≥ 2k and F is an
intersecting family of k-sets in [n], then

|F| ≤

(

n − 1

k − 1

)

.

This is tight since we can take F = {F ∈
(

[n]
k

)

: 1 ∈ F}.



Katona’s book proof

11 / 17

Katona (1974) proof: Consider a random permutation
σ ∈ Sn chosen randomly. List the elements of [n] in the
order of σ on a cycle Cσ.

■ For A ∈ F , XA be the indicator variable that A forms a
consecutive block on Cσ.



Katona’s book proof

11 / 17

Katona (1974) proof: Consider a random permutation
σ ∈ Sn chosen randomly. List the elements of [n] in the
order of σ on a cycle Cσ.

■ For A ∈ F , XA be the indicator variable that A forms a
consecutive block on Cσ.

■ X :=
∑

A∈F XA: the number of consecutive blocks in F .

E(X) =
∑

A∈F

E(XA) =
n|F|
(

n
k

) .



Katona’s book proof

11 / 17

Katona (1974) proof: Consider a random permutation
σ ∈ Sn chosen randomly. List the elements of [n] in the
order of σ on a cycle Cσ.

■ For A ∈ F , XA be the indicator variable that A forms a
consecutive block on Cσ.

■ X :=
∑

A∈F XA: the number of consecutive blocks in F .

E(X) =
∑

A∈F

E(XA) =
n|F|
(

n
k

) .

Since F is intersecting, X ≤ k. We haven|F|

(n

k)
≤ k. �
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Erdős’s vocabulary meaning

proof from The Book beautiful mathematical proof
epsilon children
bosses women
slaves men
died people who stopped doing math
left physically died

poison alcoholic drinks
noise music

captured married
liberated divorced
preach to give a mathematical lecture
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Erdős’ vocabulary
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Erdős’s vocabulary meaning

proof from The Book beautiful mathematical proof
epsilon children
bosses women
slaves men
died people who stopped doing math
left physically died

poison alcoholic drinks
noise music

captured married
liberated divorced
preach to give a mathematical lecture
torture to give an oral exam to a student



Linearity of expectation

13 / 17

Let X1, X2, . . . , Xn be random variables and
X =

∑n
i=1 ciXi. Then

E(X) =
n

∑

i=1

ciE(Xi).



Linearity of expectation

13 / 17

Let X1, X2, . . . , Xn be random variables and
X =

∑n
i=1 ciXi. Then

E(X) =
n

∑

i=1

ciE(Xi).

Philosophy: There is a point in the probability space for
which X ≥ E(X) and a point for X ≤ E(X).
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Theorem: There is a tournament T with n players and at
least n!2−(n−1) Hamiltonian paths.

Proof: Let X be the number of Hamiltonian paths in a
random tournament. Write X =

∑

σ∈Sn
Xσ. Here Xσ is the

indicator random variable for σ giving a Hamilton path.

E(Xσ) = 2−(n−1).

We have

E(X) =
∑

σ∈Sn

E(Xσ) = n!21−n.

Done! �
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Let P (n) be the maximum possible number of Hamiltonian
paths in a tournament on n vertices.

Szele [1943] proved

1

2
≤ lim

n→∞

(

P (n)

n!

)1/n

≤
1

23/4
.

He conjecture that limn→∞

(

P (n)
n!

)1/n

= 1
2 .

This conjecture was proved by Alon in 1990.

Theorem [Alon, 1990]: P (n) ≤ cn3/2 n!
2n−1 .
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Theorem: Let G = (V, E) be a graph with n vertices and
m edges. Then G contains a bipartite subgraph with at last
m/2 edges.

Proof: Consider a random partition L ∪ R of V as follows.
For each vertex v, put v into L or R with equal probability.

Let X be the number of crossing edges (from L to R). Let
Xuv be the indicator variable of the edge uv is crossing.

E(Xuv) =
1

4
.

E(X) =
∑

uv∈E

E(Xuv) =
m

2
.
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■ If G has 2n vertices and m edges then it contains a
bipartite subgraph with at least m n

2n−1 edges; if G has
2n + 1 vertices and m edges then it contains a bipartite
subgraph with at least m n+1

2n+1 edges.

■ There is a two-coloring of Kn with at most
(

n
s

)

21−(s

2
)

monochromatic Ks.

■ There is a two-coloring of Km,n with at most
(

m
s

)(

n
t

)

21−st monochromatic Ks,t.
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