

Probabilistic Methods in Combinatorics Lecture 2

Linyuan Lu University of South Carolina

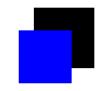
Mathematical Sciences Center at Tsinghua University November 16, 2011 – December 30, 2011

A (k, l)-system

A family of pairs of sets $\mathcal{F} = \{(A_i, B_i)\}_{i=1}^h$ is called a (k, l)-system if

for $1 \le i \le h$, $|A_i| = k$, $|B_i| = l$, $A_i \cap B_i = \emptyset$. for any $1 \le i \ne j \le h$, $|A_i \cap B_j| \ne \emptyset$.

A (k, l)-system

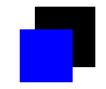


A family of pairs of sets $\mathcal{F} = \{(A_i, B_i)\}_{i=1}^h$ is called a (k, l)-system if

for $1 \le i \le h$, $|A_i| = k$, $|B_i| = l$, $A_i \cap B_i = \emptyset$. for any $1 \le i \ne j \le h$, $|A_i \cap B_j| \ne \emptyset$.

Question: What is the maximum size that a (k, l)-system can have?

A (k, l)-system



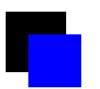
A family of pairs of sets $\mathcal{F} = \{(A_i, B_i)\}_{i=1}^h$ is called a (k, l)-system if

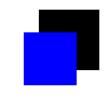
for $1 \le i \le h$, $|A_i| = k$, $|B_i| = l$, $A_i \cap B_i = \emptyset$. for any $1 \le i \ne j \le h$, $|A_i \cap B_j| \ne \emptyset$.

Question: What is the maximum size that a (k, l)-system can have?

Theorem [Bollobás 1965]: If $\mathcal{F} = \{(A_i, B_i)\}_{i=1}^h$ is a (k, l)-system, then $h \leq \binom{k+l}{k}$.

Let $V = \bigcup_{i=1}^{h} (A_i \cup B_i)$ and consider a random order π of V.





Let $V = \bigcup_{i=1}^{h} (A_i \cup B_i)$ and consider a random order π of V. For each i, let X_i be the event all elements of A_i precede all those of B_i in π .

Let $V = \bigcup_{i=1}^{h} (A_i \cup B_i)$ and consider a random order π of V. For each i, let X_i be the event all elements of A_i precede all those of B_i in π .

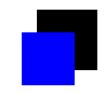
$$\Pr(X_i) = \frac{1}{\binom{k+l}{k}}.$$

Let $V = \bigcup_{i=1}^{h} (A_i \cup B_i)$ and consider a random order π of V. For each i, let X_i be the event all elements of A_i precede all those of B_i in π .

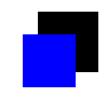
$$\Pr(X_i) = \frac{1}{\binom{k+l}{k}}.$$

Observe that all X_i 's are disjoint events. We have

$$1 \ge \Pr(\bigvee_{i=1}^{h} X_i) = \sum_{i=1}^{h} \Pr(X_i) = \frac{h}{\binom{k+l}{k}}.$$

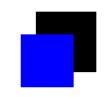


A subset A of an abelian graph G is called **sum-free** if $(A + A) \cap A = \emptyset$.



A subset A of an abelian graph G is called **sum-free** if $(A + A) \cap A = \emptyset$.

Theorem [Erdős 1965]: Every set *B* of *n* nonzero integers contains a sum-free subset *A* of size $|A| > \frac{1}{3}n$.

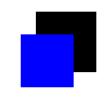


A subset A of an abelian graph G is called **sum-free** if $(A + A) \cap A = \emptyset$.

Theorem [Erdős 1965]: Every set *B* of *n* nonzero integers contains a sum-free subset *A* of size $|A| > \frac{1}{3}n$.

Proof: Let $B = \{b_1, b_2, ..., b_n\}$. Choose a prime $p > 2 \max\{|b_i|\}_{i=1}^n$.

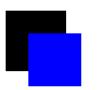


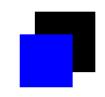


A subset A of an abelian graph G is called **sum-free** if $(A + A) \cap A = \emptyset$.

Theorem [Erdős 1965]: Every set *B* of *n* nonzero integers contains a sum-free subset *A* of size $|A| > \frac{1}{3}n$.

Proof: Let $B = \{b_1, b_2, \dots, b_n\}$. Choose a prime $p > 2 \max\{|b_i|\}_{i=1}^n$. Let $C = \{k + 1, k + 2, \dots, 2k + 1\}$. Then C is a sum-free set of \mathbb{Z}_p .





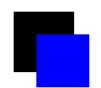
A subset A of an abelian graph G is called **sum-free** if $(A + A) \cap A = \emptyset$.

Theorem [Erdős 1965]: Every set *B* of *n* nonzero integers contains a sum-free subset *A* of size $|A| > \frac{1}{3}n$.

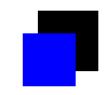
Proof: Let $B = \{b_1, b_2, \dots, b_n\}$. Choose a prime $p > 2 \max\{|b_i|\}_{i=1}^n$. Let $C = \{k + 1, k + 2, \dots, 2k + 1\}$. Then C is a sum-free set of \mathbb{Z}_p .

Randomly pick an integer x in [1, p - 1]. Define

$$A = \{b_i \colon xb_i (\text{ mod } p) \in C\}.$$

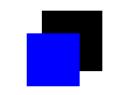


continue



Claim: A is a sum-free set. Let X_i be the indicator random variable that $b_i \in A$.

$$\Pr(X_i) = \frac{|C|}{p-1} = \frac{k+1}{3k-1} > \frac{1}{3}.$$



Claim: A is a sum-free set. Let X_i be the indicator random variable that $b_i \in A$.

$$\Pr(X_i) = \frac{|C|}{p-1} = \frac{k+1}{3k-1} > \frac{1}{3}.$$

$$E(|A|) = \sum_{i=1}^{n} Pr(X_i) > \frac{n}{3}.$$

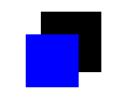
Claim: A is a sum-free set. Let X_i be the indicator random variable that $b_i \in A$.

$$\Pr(X_i) = \frac{|C|}{p-1} = \frac{k+1}{3k-1} > \frac{1}{3}.$$

$$E(|A|) = \sum_{i=1}^{n} Pr(X_i) > \frac{n}{3}.$$

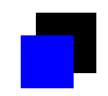
There is a subset $A \subset B$ with greater than n/3 elements. \Box

Disjoint pairs



 $\mathcal{F} \subset 2^{[n]}.$ $\mathbf{d}(\mathcal{F}) := |\{(F, F') \colon F, F' \in \mathcal{F}, F \cap F' = \emptyset\}|.$

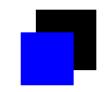
Disjoint pairs



$\mathcal{F} \subset 2^{[n]}.$ $\mathbf{d}(\mathcal{F}) := |\{(F, F') \colon F, F' \in \mathcal{F}, F \cap F' = \emptyset\}|.$

Daykin and Erdős conjectured if $|\mathcal{F}| = 2^{(1/2+\delta)n}$ then $d(\mathcal{F}) = o(|\mathcal{F}|^2)$.

Disjoint pairs

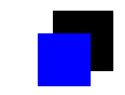


$$\mathcal{F} \subset 2^{[n]}.$$
$$\mathbf{d}(\mathcal{F}) := |\{(F, F') \colon F, F' \in \mathcal{F}, F \cap F' = \emptyset\}|.$$

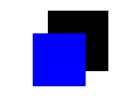
Daykin and Erdős conjectured if $|\mathcal{F}| = 2^{(1/2+\delta)n}$ then $d(\mathcal{F}) = o(|\mathcal{F}|^2)$.

Theorem [Alon-Frankl, 1985]: If $|\mathcal{F}| = 2^{(1/2+\delta)n}$, then

 $d(\mathcal{F}) < |\mathcal{F}|^{2-\delta^2/2}.$



Let $m := 2^{(1/2+\delta)n}$. Suppose $d(\mathcal{F}) < m^{2-\delta^2/2}$.



Let $m := 2^{(1/2+\delta)n}$. Suppose $d(\mathcal{F}) < m^{2-\delta^2/2}$.

Pick independently t members A_1, A_2, \ldots, A_t of \mathcal{F} with repetitions at random.

Let $m := 2^{(1/2+\delta)n}$. Suppose $d(\mathcal{F}) < m^{2-\delta^2/2}$. Pick independently t members A_1, A_2, \ldots, A_t of \mathcal{F} with repetitions at random.

$$\Pr(|\cup_{i=1}^{t} A_{i}| \leq \frac{n}{2})$$

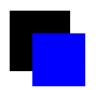
$$\leq \sum_{|S|=\frac{n}{2}} \Pr(\wedge_{i=1}^{t} (A_{i} \subset S))$$

$$\leq 2^{n} \left(\frac{2^{n/2}}{2^{(1/2+\delta)n}}\right)^{t}$$

$$= 2^{n(1-\delta t)}.$$

Let $v(B) = |\{A \in \mathcal{F} \colon B \cap A = \emptyset\}|$. Then

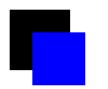
$$\sum_{B} v(B) = 2d(\mathcal{F}) \ge 2m^{2-\delta^2/2}.$$



Let $v(B) = |\{A \in \mathcal{F} \colon B \cap A = \emptyset\}|$. Then

$$\sum_{B} v(B) = 2d(\mathcal{F}) \ge 2m^{2-\delta^2/2}.$$

Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all A_i $1 \le i \le t$.



Let $v(B) = |\{A \in \mathcal{F} \colon B \cap A = \emptyset\}|$. Then

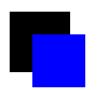
$$\sum_{B} v(B) = 2d(\mathcal{F}) \ge 2m^{2-\delta^2/2}.$$

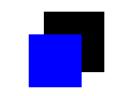
Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all A_i $1 \le i \le t$. Then

$$E(|Y|) = \sum_{B \in \mathcal{F}} \left(\frac{v(B)}{m}\right)^t$$

$$\geq \frac{1}{m^{t-1}} \left(\frac{\sum_B v(B)}{m}\right)^t$$

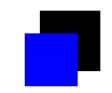
$$\geq 2m^{1-t\delta^2/2}.$$





Since $Y \leq m$, we get

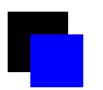
$$\Pr(Y \ge m^{1-t\delta^2/2}) \ge m^{-t\delta^2/2}.$$

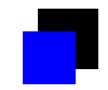


Since $Y \leq m$, we get

$$\Pr(Y \ge m^{1-t\delta^2/2}) \ge m^{-t\delta^2/2}.$$

Choose $t = \lfloor 1 + \frac{1}{\delta} \rfloor$. We have $m^{-t\delta^2/2} > 2^{n(1-\delta t)}$.





Since $Y \leq m$, we get

$$\Pr(Y \ge m^{1-t\delta^2/2}) \ge m^{-t\delta^2/2}.$$

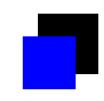
Choose $t = \lfloor 1 + \frac{1}{\delta} \rfloor$. We have $m^{-t\delta^2/2} > 2^{n(1-\delta t)}$.

Thus, with positive probability, $|\cup_{i=1}^{t} A_i| > \frac{n}{2}$ and $\cup_{i=1}^{t} A_i$ is disjoint to more than $2^{n/2}$ members of \mathcal{F} . Contradiction. \Box

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subset {\binom{[n]}{k}}$. A family \mathcal{F} of k-sets is called **intersecting** if for any $A, B \in \mathcal{F}$, $A \cap B \neq \emptyset$.

Erdős-Ko-Rado Theorem

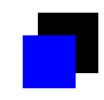


Let $\mathcal{F} \subset {\binom{[n]}{k}}$. A family \mathcal{F} of k-sets is called **intersecting** if for any $A, B \in \mathcal{F}$, $A \cap B \neq \emptyset$.

Erdős-Ko-Rado Theorem: If $n \ge 2k$ and \mathcal{F} is an intersecting family of k-sets in [n], then

$$|\mathcal{F}| \le \binom{n-1}{k-1}.$$

Erdős-Ko-Rado Theorem



Let $\mathcal{F} \subset {\binom{[n]}{k}}$. A family \mathcal{F} of k-sets is called **intersecting** if for any $A, B \in \mathcal{F}$, $A \cap B \neq \emptyset$.

Erdős-Ko-Rado Theorem: If $n \ge 2k$ and \mathcal{F} is an intersecting family of k-sets in [n], then

$$|\mathcal{F}| \le \binom{n-1}{k-1}.$$

This is tight since we can take $\mathcal{F} = \{F \in {[n] \choose k} : 1 \in F\}.$

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_n$ chosen randomly. List the elements of [n] in the order of σ on a cycle C_{σ} .

For $A \in \mathcal{F}$, X_A be the indicator variable that A forms a consecutive block on C_{σ} .

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_n$ chosen randomly. List the elements of [n] in the order of σ on a cycle C_{σ} .

For $A \in \mathcal{F}$, X_A be the indicator variable that A forms a consecutive block on C_{σ} .

• $X := \sum_{A \in \mathcal{F}} X_A$: the number of consecutive blocks in \mathcal{F} .

$$E(X) = \sum_{A \in \mathcal{F}} E(X_A) = \frac{n|\mathcal{F}|}{\binom{n}{k}}$$

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_n$ chosen randomly. List the elements of [n] in the order of σ on a cycle C_{σ} .

- For $A \in \mathcal{F}$, X_A be the indicator variable that A forms a consecutive block on C_{σ} .
- $X := \sum_{A \in \mathcal{F}} X_A$: the number of consecutive blocks in \mathcal{F} .

$$\mathbf{E}(X) = \sum_{A \in \mathcal{F}} \mathbf{E}(X_A) = \frac{n|\mathcal{F}|}{\binom{n}{k}}.$$

Since \mathcal{F} is intersecting, $X \leq k$. We have $\frac{n|\mathcal{F}|}{\binom{n}{k}} \leq k$.

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
11	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	to give a mathematical lecture

meaning
beautiful mathematical proof
children
women
men
people who stopped doing math
physically died
alcoholic drinks
music
married
divorced
to give a mathematical lecture

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	to give a mathematical lecture
torture	to give an oral exam to a student

Linearity of expectation

Let X_1, X_2, \ldots, X_n be random variables and $X = \sum_{i=1}^n c_i X_i$. Then

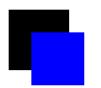
$$\mathbf{E}(X) = \sum_{i=1}^{n} c_i \mathbf{E}(X_i).$$

Linearity of expectation

Let X_1, X_2, \ldots, X_n be random variables and $X = \sum_{i=1}^n c_i X_i$. Then

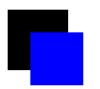
$$\mathbf{E}(X) = \sum_{i=1}^{n} c_i \mathbf{E}(X_i).$$

Philosophy: There is a point in the probability space for which $X \ge E(X)$ and a point for $X \le E(X)$.



Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

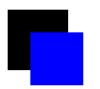


Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X = \sum_{\sigma \in S_n} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$\mathcal{E}(X_{\sigma}) = 2^{-(n-1)}.$$



Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X = \sum_{\sigma \in S_n} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$\mathcal{E}(X_{\sigma}) = 2^{-(n-1)}$$

We have

$$\mathcal{E}(X) = \sum_{\sigma \in S_n} \mathcal{E}(X_{\sigma}) = n! 2^{1-n}.$$

Done!

Let P(n) be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Let P(n) be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$\frac{1}{2} \le \lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} \le \frac{1}{2^{3/4}}.$$

He conjecture that $\lim_{n\to\infty} \left(\frac{P(n)}{n!}\right)^{1/n} = \frac{1}{2}$.

Let P(n) be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$\frac{1}{2} \le \lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} \le \frac{1}{2^{3/4}}.$$

He conjecture that $\lim_{n\to\infty} \left(\frac{P(n)}{n!}\right)^{1/n} = \frac{1}{2}$.

This conjecture was proved by Alon in 1990.

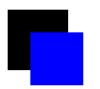
Let P(n) be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$\frac{1}{2} \le \lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} \le \frac{1}{2^{3/4}}.$$

He conjecture that $\lim_{n\to\infty} \left(\frac{P(n)}{n!}\right)^{1/n} = \frac{1}{2}$.

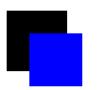
This conjecture was proved by Alon in 1990. **Theorem [Alon, 1990]:** $P(n) \leq cn^{3/2} \frac{n!}{2^{n-1}}$.



Theorem: Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last m/2 edges.

Theorem: Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last m/2 edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

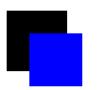


Theorem: Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last m/2 edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

Let X be the number of crossing edges (from L to R). Let X_{uv} be the indicator variable of the edge uv is crossing.

$$\mathcal{E}(X_{uv}) = \frac{1}{4}.$$



Theorem: Let G = (V, E) be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last m/2 edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

Let X be the number of crossing edges (from L to R). Let X_{uv} be the indicator variable of the edge uv is crossing.

$$E(X_{uv}) = \frac{1}{4}.$$
$$E(X) = \sum_{uv \in E} E(X_{uv}) = \frac{m}{2}.$$

Exercises

If G has 2n vertices and m edges then it contains a bipartite subgraph with at least $m\frac{n}{2n-1}$ edges; if G has 2n+1 vertices and m edges then it contains a bipartite subgraph with at least $m\frac{n+1}{2n+1}$ edges.

Exercises

- If G has 2n vertices and m edges then it contains a bipartite subgraph with at least $m\frac{n}{2n-1}$ edges; if G has 2n+1 vertices and m edges then it contains a bipartite subgraph with at least $m\frac{n+1}{2n+1}$ edges.
- There is a two-coloring of K_n with at most $\binom{n}{s} 2^{1-\binom{s}{2}}$ monochromatic K_s .

Exercises

- If G has 2n vertices and m edges then it contains a bipartite subgraph with at least $m\frac{n}{2n-1}$ edges; if G has 2n+1 vertices and m edges then it contains a bipartite subgraph with at least $m\frac{n+1}{2n+1}$ edges.
 - There is a two-coloring of K_n with at most $\binom{n}{s}2^{1-\binom{s}{2}}$ monochromatic K_s .
- There is a two-coloring of $K_{m,n}$ with at most $\binom{m}{s}\binom{n}{t}2^{1-st}$ monochromatic $K_{s,t}$.

