Probabilistic Methods in Combinatorics Lecture 2

Linyuan Lu
University of South Carolina

Mathematical Sciences Center at Tsinghua University November 16, 2011 - December 30, 2011

A (k, l)-system

A family of pairs of sets $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{h}$ is called a (k, l)-system if

- for $1 \leq i \leq h,\left|A_{i}\right|=k,\left|B_{i}\right|=l, A_{i} \cap B_{i}=\emptyset$.
- for any $1 \leq i \neq j \leq h,\left|A_{i} \cap B_{j}\right| \neq \emptyset$.

A (k, l)-system

A family of pairs of sets $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{h}$ is called a (k, l)-system if
■ for $1 \leq i \leq h,\left|A_{i}\right|=k,\left|B_{i}\right|=l, A_{i} \cap B_{i}=\emptyset$.

- for any $1 \leq i \neq j \leq h,\left|A_{i} \cap B_{j}\right| \neq \emptyset$.

Question: What is the maximum size that a (k, l)-system can have?

A (k, l)-system

A family of pairs of sets $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{h}$ is called a (k, l)-system if
■ for $1 \leq i \leq h,\left|A_{i}\right|=k,\left|B_{i}\right|=l, A_{i} \cap B_{i}=\emptyset$.

- for any $1 \leq i \neq j \leq h,\left|A_{i} \cap B_{j}\right| \neq \emptyset$.

Question: What is the maximum size that a (k, l)-system can have?
Theorem [Bollobás 1965]: If $\mathcal{F}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{h}$ is a (k, l)-system, then $h \leq\binom{ k+l}{k}$.

Proof

Let $V=\cup_{i=1}^{h}\left(A_{i} \cup B_{i}\right)$ and consider a random order π of V.

Proof

Let $V=\cup_{i=1}^{h}\left(A_{i} \cup B_{i}\right)$ and consider a random order π of V.
For each i, let X_{i} be the event all elements of A_{i} precede all those of B_{i} in π.

Proof

Let $V=\cup_{i=1}^{h}\left(A_{i} \cup B_{i}\right)$ and consider a random order π of V.
For each i, let X_{i} be the event all elements of A_{i} precede all those of B_{i} in π.

$$
\operatorname{Pr}\left(X_{i}\right)=\frac{1}{\binom{k+l}{k}}
$$

Proof

Let $V=\cup_{i=1}^{h}\left(A_{i} \cup B_{i}\right)$ and consider a random order π of V.
For each i, let X_{i} be the event all elements of A_{i} precede all those of B_{i} in π.

$$
\operatorname{Pr}\left(X_{i}\right)=\frac{1}{\binom{k+l}{k}}
$$

Observe that all X_{i} 's are disjoint events. We have

$$
1 \geq \operatorname{Pr}\left(\vee_{i=1}^{h} X_{i}\right)=\sum_{i=1}^{h} \operatorname{Pr}\left(X_{i}\right)=\frac{h}{\binom{k+l}{k}} .
$$

Sum-free sets

A subset A of an abelian graph G is called sum-free if $(A+A) \cap A=\emptyset$.

Sum-free sets

A subset A of an abelian graph G is called sum-free if $(A+A) \cap A=\emptyset$.
Theorem [Erdős 1965]: Every set B of n nonzero integers contains a sum-free subset A of size $|A|>\frac{1}{3} n$.

Sum-free sets

A subset A of an abelian graph G is called sum-free if $(A+A) \cap A=\emptyset$.
Theorem [Erdős 1965]: Every set B of n nonzero integers contains a sum-free subset A of size $|A|>\frac{1}{3} n$.
Proof: Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Choose a prime $p>2 \max \left\{\left|b_{i}\right|\right\}_{i=1}^{n}$.

Sum-free sets

A subset A of an abelian graph G is called sum-free if $(A+A) \cap A=\emptyset$.
Theorem [Erdős 1965]: Every set B of n nonzero integers contains a sum-free subset A of size $|A|>\frac{1}{3} n$.
Proof: Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Choose a prime $p>2 \max \left\{\left|b_{i}\right|\right\}_{i=1}^{n}$.
Let $C=\{k+1, k+2, \ldots, 2 k+1\}$. Then C is a sum-free set of \mathbb{Z}_{p}.

Sum-free sets

A subset A of an abelian graph G is called sum-free if $(A+A) \cap A=\emptyset$.
Theorem [Erdős 1965]: Every set B of n nonzero integers contains a sum-free subset A of size $|A|>\frac{1}{3} n$.
Proof: Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Choose a prime $p>2 \max \left\{\left|b_{i}\right|\right\}_{i=1}^{n}$.
Let $C=\{k+1, k+2, \ldots, 2 k+1\}$. Then C is a sum-free set of \mathbb{Z}_{p}.
Randomly pick an integer x in $[1, p-1]$. Define

$$
A=\left\{b_{i}: x b_{i}(\bmod p) \in C\right\}
$$

continue

Claim: A is a sum-free set.
Let X_{i} be the indicator random variable that $b_{i} \in A$.

$$
\operatorname{Pr}\left(X_{i}\right)=\frac{|C|}{p-1}=\frac{k+1}{3 k-1}>\frac{1}{3} .
$$

continue

Claim: A is a sum-free set.
Let X_{i} be the indicator random variable that $b_{i} \in A$.

$$
\begin{gathered}
\operatorname{Pr}\left(X_{i}\right)=\frac{|C|}{p-1}=\frac{k+1}{3 k-1}>\frac{1}{3} . \\
\mathrm{E}(|A|)=\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i}\right)>\frac{n}{3}
\end{gathered}
$$

continue

Claim: A is a sum-free set.
Let X_{i} be the indicator random variable that $b_{i} \in A$.

$$
\begin{gathered}
\operatorname{Pr}\left(X_{i}\right)=\frac{|C|}{p-1}=\frac{k+1}{3 k-1}>\frac{1}{3} . \\
\mathrm{E}(|A|)=\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i}\right)>\frac{n}{3}
\end{gathered}
$$

There is a subset $A \subset B$ with greater than $n / 3$ elements.

Disjoint pairs

$$
\begin{aligned}
& \text { - } \mathcal{F} \subset 2^{[n]} . \\
& \text { - } d(\mathcal{F}):=\left|\left\{\left(F, F^{\prime}\right): F, F^{\prime} \in \mathcal{F}, F \cap F^{\prime}=\emptyset\right\}\right| .
\end{aligned}
$$

Disjoint pairs

- $\mathcal{F} \subset 2^{[n]}$.
- $d(\mathcal{F}):=\left|\left\{\left(F, F^{\prime}\right): F, F^{\prime} \in \mathcal{F}, F \cap F^{\prime}=\emptyset\right\}\right|$.

Daykin and Erdős conjectured if $|\mathcal{F}|=2^{(1 / 2+\delta) n}$ then $d(\mathcal{F})=o\left(|\mathcal{F}|^{2}\right)$.

Disjoint pairs

- $\mathcal{F} \subset 2^{[n]}$.
- $d(\mathcal{F}):=\left|\left\{\left(F, F^{\prime}\right): F, F^{\prime} \in \mathcal{F}, F \cap F^{\prime}=\emptyset\right\}\right|$.

Daykin and Erdős conjectured if $|\mathcal{F}|=2^{(1 / 2+\delta) n}$ then $d(\mathcal{F})=o\left(|\mathcal{F}|^{2}\right)$.

Theorem [Alon-Frankl, 1985]: If $|\mathcal{F}|=2^{(1 / 2+\delta) n}$, then

$$
d(\mathcal{F})<|\mathcal{F}|^{2-\delta^{2} / 2}
$$

Proof

Let $m:=2^{(1 / 2+\delta) n}$. Suppose $d(\mathcal{F})<m^{2-\delta^{2} / 2}$.

Proof

Let $m:=2^{(1 / 2+\delta) n}$. Suppose $d(\mathcal{F})<m^{2-\delta^{2} / 2}$.
Pick independently t members $A_{1}, A_{2}, \ldots, A_{t}$ of \mathcal{F} with repetitions at random.

Proof

$$
\text { Let } m:=2^{(1 / 2+\delta) n} \text {. Suppose } d(\mathcal{F})<m^{2-\delta^{2} / 2} \text {. }
$$

Pick independently t members $A_{1}, A_{2}, \ldots, A_{t}$ of \mathcal{F} with repetitions at random.

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\cup_{i=1}^{t} A_{i}\right| \leq \frac{n}{2}\right) \\
\leq & \sum_{|S|=\frac{n}{2}} \operatorname{Pr}\left(\wedge_{i=1}^{t}\left(A_{i} \subset S\right)\right) \\
\leq & 2^{n}\left(\frac{2^{n / 2}}{2^{(1 / 2+\delta) n}}\right)^{t} \\
= & 2^{n(1-\delta t)} .
\end{aligned}
$$

continue

$$
\text { Let } v(B)=|\{A \in \mathcal{F}: B \cap A=\emptyset\}| \text {. Then }
$$

$$
\sum_{B} v(B)=2 d(\mathcal{F}) \geq 2 m^{2-\delta^{2} / 2} .
$$

continue

Let $v(B)=|\{A \in \mathcal{F}: B \cap A=\emptyset\}|$. Then

$$
\sum_{B} v(B)=2 d(\mathcal{F}) \geq 2 m^{2-\delta^{2} / 2}
$$

Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all $A_{i} 1 \leq i \leq t$.

continue

Let $v(B)=|\{A \in \mathcal{F}: B \cap A=\emptyset\}|$. Then

$$
\sum_{B} v(B)=2 d(\mathcal{F}) \geq 2 m^{2-\delta^{2} / 2}
$$

Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all $A_{i} 1 \leq i \leq t$. Then

$$
\begin{aligned}
E(|Y|) & =\sum_{B \in \mathcal{F}}\left(\frac{v(B)}{m}\right)^{t} \\
& \geq \frac{1}{m^{t-1}}\left(\frac{\sum_{B} v(B)}{m}\right)^{t} \\
& \geq 2 m^{1-t \delta^{2} / 2}
\end{aligned}
$$

continue

Since $Y \leq m$, we get

$$
\operatorname{Pr}\left(Y \geq m^{1-t \delta^{2} / 2}\right) \geq m^{-t \delta^{2} / 2}
$$

continue

Since $Y \leq m$, we get

$$
\operatorname{Pr}\left(Y \geq m^{1-t \delta^{2} / 2}\right) \geq m^{-t \delta^{2} / 2}
$$

Choose $t=\left\lfloor 1+\frac{1}{\delta}\right\rfloor$. We have $m^{-t \delta^{2} / 2}>2^{n(1-\delta t)}$.

continue

Since $Y \leq m$, we get

$$
\operatorname{Pr}\left(Y \geq m^{1-t \delta^{2} / 2}\right) \geq m^{-t \delta^{2} / 2}
$$

Choose $t=\left\lfloor 1+\frac{1}{\delta}\right\rfloor$. We have $m^{-t \delta^{2} / 2}>2^{n(1-\delta t)}$.
Thus, with positive probability, $\left|\cup_{i=1}^{t} A_{i}\right|>\frac{n}{2}$ and $\cup_{i=1}^{t} A_{i}$ is disjoint to more than $2^{n / 2}$ members of \mathcal{F}. Contradiction. \square

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subset\binom{[n]}{k}$. A family \mathcal{F} of k-sets is called intersecting if for any $A, B \in \mathcal{F}, A \cap B \neq \emptyset$.

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subset\binom{[n]}{k}$. A family \mathcal{F} of k-sets is called intersecting if for any $A, B \in \mathcal{F}, A \cap B \neq \emptyset$.
Erdös-Ko-Rado Theorem: If $n \geq 2 k$ and \mathcal{F} is an intersecting family of k-sets in [n], then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subset\binom{[n]}{k}$. A family \mathcal{F} of k-sets is called intersecting if for any $A, B \in \mathcal{F}, A \cap B \neq \emptyset$.
Erdös-Ko-Rado Theorem: If $n \geq 2 k$ and \mathcal{F} is an intersecting family of k-sets in $[n]$, then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

This is tight since we can take $\mathcal{F}=\left\{F \in\binom{[n]}{k}: 1 \in F\right\}$.

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_{n}$ chosen randomly. List the elements of $[n]$ in the order of σ on a cycle C_{σ}.

- For $A \in \mathcal{F}, X_{A}$ be the indicator variable that A forms a consecutive block on C_{σ}.

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_{n}$ chosen randomly. List the elements of $[n]$ in the order of σ on a cycle C_{σ}.

- For $A \in \mathcal{F}, X_{A}$ be the indicator variable that A forms a consecutive block on C_{σ}.
- $X:=\sum_{A \in \mathcal{F}} X_{A}$: the number of consecutive blocks in \mathcal{F}.

$$
\mathrm{E}(X)=\sum_{A \in \mathcal{F}} \mathrm{E}\left(X_{A}\right)=\frac{n|\mathcal{F}|}{\binom{n}{k}} .
$$

Katona's book proof

Katona (1974) proof: Consider a random permutation $\sigma \in S_{n}$ chosen randomly. List the elements of $[n]$ in the order of σ on a cycle C_{σ}.

- For $A \in \mathcal{F}, X_{A}$ be the indicator variable that A forms a consecutive block on C_{σ}.
- $X:=\sum_{A \in \mathcal{F}} X_{A}$: the number of consecutive blocks in \mathcal{F}.

$$
\mathrm{E}(X)=\sum_{A \in \mathcal{F}} \mathrm{E}\left(X_{A}\right)=\frac{n|\mathcal{F}|}{\binom{n}{k}} .
$$

Since \mathcal{F} is intersecting, $X \leq k$. We have $\frac{n|\mathcal{F}|}{\binom{n}{k}} \leq k$.

Erdős' vocabulary

Erdős's vocabulary meaning
proof from The Book \quad beautiful mathematical proof

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	

Erdős' vocabulary

Erdős's vocabulary meaning
proof from The Book \quad beautiful mathematical proof epsilon
children

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	

Erdős' vocabulary

Erdös's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced

Erdős' vocabulary

Erdős's vocabulary	meaning
proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	

Erdős' vocabulary

Erdős's vocabulary meaning

proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	to give a mathematical lecture

Erdős' vocabulary

Erdős's vocabulary meaning

proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	to give a mathematical lecture
torture	

Erdős' vocabulary

Erdős's vocabulary meaning

proof from The Book	beautiful mathematical proof
epsilon	children
bosses	women
slaves	men
died	people who stopped doing math
left	physically died
poison	alcoholic drinks
noise	music
captured	married
liberated	divorced
preach	to give a mathematical lecture
torture	to give an oral exam to a student

Linearity of expectation

Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and $X=\sum_{i=1}^{n} c_{i} X_{i}$. Then

$$
\mathrm{E}(X)=\sum_{i=1}^{n} c_{i} \mathrm{E}\left(X_{i}\right)
$$

Linearity of expectation

Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and $X=\sum_{i=1}^{n} c_{i} X_{i}$. Then

$$
\mathrm{E}(X)=\sum_{i=1}^{n} c_{i} \mathrm{E}\left(X_{i}\right)
$$

Philosophy: There is a point in the probability space for which $X \geq \mathrm{E}(X)$ and a point for $X \leq \mathrm{E}(X)$.

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.
Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X=\sum_{\sigma \in S_{n}} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$
\mathrm{E}\left(X_{\sigma}\right)=2^{-(n-1)} .
$$

Hamilton paths

Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.
Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X=\sum_{\sigma \in S_{n}} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$
\mathrm{E}\left(X_{\sigma}\right)=2^{-(n-1)} .
$$

We have

$$
\mathrm{E}(X)=\sum_{\sigma \in S_{n}} \mathrm{E}\left(X_{\sigma}\right)=n!2^{1-n}
$$

Done!

Related problem

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Related problem

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.
Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.

Related problem

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.
Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.
This conjecture was proved by Alon in 1990.

Related problem

Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.
Szele [1943] proved

$$
\frac{1}{2} \leq \lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n} \leq \frac{1}{2^{3 / 4}}
$$

He conjecture that $\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{1 / n}=\frac{1}{2}$.
This conjecture was proved by Alon in 1990.
Theorem [Alon, 1990]: $P(n) \leq c n^{3 / 2} \frac{n!}{2^{n-1}}$.

Splitting Graphs

Theorem: Let $G=(V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last $m / 2$ edges.

Splitting Graphs

Theorem: Let $G=(V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last $m / 2$ edges.
Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

Splitting Graphs

Theorem: Let $G=(V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last $m / 2$ edges.
Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.
Let X be the number of crossing edges (from L to R). Let $X_{u v}$ be the indicator variable of the edge $u v$ is crossing.

$$
\mathrm{E}\left(X_{u v}\right)=\frac{1}{4} .
$$

Splitting Graphs

Theorem: Let $G=(V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last $m / 2$ edges.
Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability. Let X be the number of crossing edges (from L to R). Let $X_{u v}$ be the indicator variable of the edge $u v$ is crossing.

$$
\begin{gathered}
\mathrm{E}\left(X_{u v}\right)=\frac{1}{4} . \\
\mathrm{E}(X)=\sum_{u v \in E} \mathrm{E}\left(X_{u v}\right)=\frac{m}{2} .
\end{gathered}
$$

Exercises

- If G has $2 n$ vertices and m edges then it contains a bipartite subgraph with at least $m \frac{n}{2 n-1}$ edges; if G has $2 n+1$ vertices and m edges then it contains a bipartite subgraph with at least $m \frac{n+1}{2 n+1}$ edges.

Exercises

- If G has $2 n$ vertices and m edges then it contains a bipartite subgraph with at least $m \frac{n}{2 n-1}$ edges; if G has $2 n+1$ vertices and m edges then it contains a bipartite subgraph with at least $m \frac{n+1}{2 n+1}$ edges.
- There is a two-coloring of K_{n} with at most $\binom{n}{s} 2^{1-\binom{s}{2}}$ monochromatic K_{s}.

Exercises

- If G has $2 n$ vertices and m edges then it contains a bipartite subgraph with at least $m \frac{n}{2 n-1}$ edges; if G has $2 n+1$ vertices and m edges then it contains a bipartite subgraph with at least $m \frac{n+1}{2 n+1}$ edges.
- There is a two-coloring of K_{n} with at most $\binom{n}{s} 2^{1-\binom{s}{2}}$ monochromatic K_{s}.
- There is a two-coloring of $K_{m, n}$ with at most $\binom{m}{s}\binom{n}{t} 2^{1-s t}$ monochromatic $K_{s, t}$.

