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- Supercritical regimes -

Now we consider G(n, p) for p = ¢/n, with ¢ > 1 constant.
Let y := y(c) be the positive real solution of e=%¥ =1 — y.

Choose a large constant K > 0 and a small constant o > 0.
Let C'(v) be the component of G(n, p) containing v.
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Now we consider G(n, p) for p = ¢/n, with ¢ > 1 constant.
Let y := y(c) be the positive real solution of e=%¥ =1 — y.

Choose a large constant K > 0 and a small constant o > 0.
Let C'(v) be the component of G(n, p) containing v.

s C(v)is small if |C(v)| < K Inn.
s C(v)is giant if ||C'(v)| — yn| < dn.

s C'(v) is awkward otherwise.

Claim: The probability of having any awkward component is
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- No middle ground '

Proof: We will show for any awkward ¢,
Pr(|C(v)] =t) = o(n"*?). Note

Pr(|C(v)| = 1) < Pr(B(n — 1,1 — (1 — %)t) —t 1.
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Proof: We will show for any awkward ¢,
Pr(|C(v)] =t) = o(n"*?). Note

Pr(|C(v)] =) < Pr(B(n—1,1— (1 — ) =¢— 1.
n
If t = o(n), then 1 — (1 — £)" &~ £. So the mean is about ct,

which is not close to t. If ¢t = xn, then
1-(1-%))~1—e . Since 1l —e™® # z, so the mean is
not near t. In either case, we can show

Pr (B(n 11— (1— E)t) — O(e~
n
for some constant C'. Since t > Klogn and K large

enough, this probability is o(n~2%) as required.
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- Escape Probability '

Let @« = Pr(C(v) is not small ). Then
a=Pr(TP > S) ~ Pr(TF = o00) = y.

Since no middle ground, not small is the same as giant.

4/18



- Escape Probability '

Let a = Pr(C'(v) is not small ). Then
a=Pr(TP > S) ~ Pr(TF = o00) = y.

Since no middle ground, not small is the same as giant.

s Pr(C(v) is giant ) =~ y.

4/18



- Escape Probability '

Let a = Pr(C'(v) is not small ). Then
a=Pr(TP > S) ~ Pr(TF = o00) = y.

Since no middle ground, not small is the same as giant.

s Pr(C(v) is giant ) =~ y.

s Each giant component has size between (y — §)n and
(y + d)n.

4/18



- Escape Probability '

Let a = Pr(C'(v) is not small ). Then
a=Pr(TP > S) ~ Pr(TF = o00) = y.

Since no middle ground, not small is the same as giant.

s Pr(C(v) is giant ) =~ y.

s Each giant component has size between (y — §)n and
(y + d)n.

It remains to show the giant component is unique and of size
about yn.

4/18



- Sprinkling '

Set p1 = n 32 Let G; = G(n,p1), G = G(n,p), and
Gt = GUG,. Note Gt ~ G(n,p") with p*™ = p+p; — pp1.
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Gt = GUG,. Note Gt ~ G(n,p") with p*™ = p+p; — pp1.

Suppose that G has two giant components V; and V5. Then
the probability that V4 and V5 is not connected after
sprinkling is at most

(1— pl)lleVz\ = o(1).

Now G almost surely have a component of size at least
2(y — d)n > (y + 0)n. It is an awkward component for G™.
Contradiction!

Since 0 can be made arbitrarily small, the unique giant
el component has size (1 + o(1))yn.
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- Barely Supercritical Phase '

Now we consider G(n,p) with p = (1 + €)/n where
e = An~ Y3 for A\ — oo. This is similar to the supercritical
phase with extra caution.
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- Barely Supercritical Phase '

Now we consider G(n, p) with p = (1 + ¢)/n where
e = An~ Y3 for A\ — oo. This is similar to the supercritical

phase with extra caution.

x C(v)issmallif |C(v)| < Ke*Inn.
s C(v)is giant if ||C(v)| — yn| < dyn; where y ~ 2e.

s C'(v) is awkward otherwise.

The following statements hold.

A
e
=
il

Pr(3 an awkward component ) = O(n~?).

The escape probability a =~ y = 2¢.
Sprinkling works with p; = n=%/3.
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The critical window

Now consider G(n, p) with p = + + An~4/3 for a fixed M.
This critical window has been studied by Bollabas, tuczak,

Janson, Knuth, Pittel and many others. It requires
delicate calculations.
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Now consider G(n, p) with p = + + An~4/3 for a fixed M.
This critical window has been studied by Bollabas, tuczak,

Janson, Knuth, Pittel and many others. It requires
delicate calculations.

For fixed ¢ > 0, Let X be the number of tree components of
size k = cn?/3. Then

E(X) _ (Z) kk_ka_l(l o p)k(n—k)Jr(g)—(k—l).

Recall
1

In(1+2)=x— §x2 + O(x?).
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- Estimation

We estimate

L k—1 )
n n )
~ | | I1——,
<k> kPN 2mk ( n)
and

_ iy In(1=i/n)

—1 7
7\
p—t
|
S|
N~
|

o~ Licy (i/n+i* /20°+0( )
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- Continue

We also estimate

pFl = plok(1 4 A 1/3)k-

_ _ —1/3
TLl ke(k 1) In(14+An="/7)

1—k€k)\n_1/3—%c)\2+0(1)

— N
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- Putting together -

We get

E(X) ~ k™52V/2me?,
(A—c)3=N\?
i

where A =
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- Putting together

We get
E(X) ~ k™52V/2me?,

where A = (A_C%B_AB.

For any fixed a, b, A\, let X be the number of tree
components of size between an®3 and bn?/3. Then

n—oo

b
lim E(X) :/ e =52\ 2nde.
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- Other components -

Wright (1977): For a fixed [, there are asymptotically
c;kF=2+Bl2) connected graphs on k vertices with

(k — 14 [)-edges.
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Wright (1977): For a fixed [, there are asymptotically

c;kF=2+Bl2) connected graphs on k vertices with
(k — 14 [)-edges.

Let X) be the number of components on k vertices with
k — 1+ [ edges. Then a similar calculation shows

n—oo

b
lim E(X") :/ e 52/ 21 (¢;3?)de.

Let X be the total number of components of size between
an?3 and bn?3. Let g(c) = Y 2, cic®/2. Then

b
lim E(X™) :/ e 52/ 2mg(c)de.

n—oo

11 /18



- Duality '

For a fixed k, consider two random graphs G(n, p) and
G(n',p). Assume c =np > 1 and ¢ =n'p’ < 1. We say
G(n,p) and G(n',p') are dual to each other if ce™ = e
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For a fixed k, consider two random graphs G(n, p) and
G(n',p). Assume c =np > 1 and ¢ =n'p’ < 1. We say
G(n,p) and G(n',p') are dual to each other if ce™ = e

Let y =1 — ¢’ /c. Then y satisfies the equation
e~ Y =1 — y. Hence the size of the giant component in

G(n, p) is roughly yn. We have
lim Pr(C'(v) =k in G(n,p)|C(v) is small)

1 €_Ck(0k)k_l e—c’k(clk)kz—l

1 —y k! k!
= lim Pr(C(v) =k in G(n',p")).

n’'—oo
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- Range V '

Consider G(n, p) with

k—1)logl t 1
| ( ) loglogm - —+o(—),
kn n n

~ logn

kn

then there are only trees of size at most k except for the
giant component. Let X be the number of trees of £
vertices.

p
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- Range V '

Consider G(n,p) with

~ logn

kn

then there are only trees of size at most k except for the
giant component. Let X be the number of trees of £
vertices.

B(X) = <n> kh=2ph1(1 — p)Rn—h)+(5) k1

k—1)logl ¢ 1
R o),

p

k
1 —kt

~ k —knp  ©
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- Range V '

Consider G(n, p) with

~ logn

kn

then there are only trees of size at most k except for the
giant component. Let X be the number of trees of £
vertices.

B(X) = <n> kh=2ph1(1 — p)Rn—h)+(5) k1

k—1)logl t 1
 (k— Dloglogn |t 1)
kn n n

p

k
~ 1 k_—knp ~_ e_kt
~ gy ke T A

-m Further, X follows the Poisson distribution.
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- Threshold of connectivity '

For k=1 and p = 8" 4 L+ 0(+), G(n,p) consists of a

giant component with n — O(1) vertices and bounded

number of isolated vertices.
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- Threshold of connectivity '

For k=1 and p = 8" 4 L+ 0(+), G(n,p) consists of a

giant component with n — O(1) vertices and bounded

number of isolated vertices.

s [ he distribution of the number of isolated vertices again

has a Poisson distribution with mean value e~ 7.

G_t

s The probability that G(n, p) is connected tends to e~

s Ast— oo, G(n,p) is almost surely connected.

14 / 18



- Range VI '

Consider G(n, p) with p ~ w(n)logn/n where w(n) — oo.

15 / 18



- Range VI '

Consider G(n, p) with p ~ w(n)logn/n where w(n) — oo.

In this range, G, is not only almost surely connected, but
the degrees of almost all vertices are asymptotically equal.

15 / 18



- Range VI -

Consider G(n, p) with p ~ w(n)logn/n where w(n) — oo.

In this range, G, is not only almost surely connected, but
the degrees of almost all vertices are asymptotically equal.

Let X = d, be the degree of v. By Chernoff’s inequality,
With probability at least 1 — O(n™?), we have

X — E(X)| < 2y/w(n)logn.

Almost surely, for all v, d, is in the interval

d —2\/w(n)logn,d+ 2\/w(n)logn|, where d = np is the

expected degree.
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- Subgraphs -

Theorem: Let H be a strictly balanced graph with v

vertices, m edges, and a automorphisms. Let ¢ > 0 be
—v/m

arbitrary. Then with p = ¢cn ,

lim Pr(G(n,p) contains no H) = e /%,

n—oo
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- Subgraphs -

Theorem: Let H be a strictly balanced graph with v

vertices, m edges, and a automorphisms. Let ¢ > 0 be
—v/m

arbitrary. Then with p = ¢cn ,

lim Pr(G(n,p) contains no H) = e /%,

n—oo

Proof: Let A,, 1 <a < (Z)v!/a, range over the edge sets
of possible copies of H and B, be the event A, C G(n,p).
We will apply Janson's Inequality.

lim g = lim <n>v!pm/a =c"/a.

n— 00 n—oo \ U

lim M = e “"/°,

n—oo
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- Proof '

Consider A =} s Pr(B, A Bg). We split the sum
according to the number of vertices in A, N Ag. For

2 <75 <w, let f; be the maximal number of edges in

A, N Az where oo ~ 3 and o and 3 intersect in j vertices.
Since H is strictly balanced,

m
Lom

¥ (V)

There are O(n**~7) choices of a, 3 For such «, 3,

Pr(B, A Bg) = plAatdsl < p2m=1;
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Continue

A < S Om29)0(nmEm=h)y

j=2
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- Continue

A < S Om29)0(nmEm=h)y

j=2

But

QU—j—(v/m)(Qm—fj):%fj—j<O.

Each term is o(1) and hence A = o(1).
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- Continue

A < S Om29)0(nmEm=h)y

j=2

But

QU—j—(v/m)(Qm—fj):%fj—j<O.

Each term is o(1) and hence A = o(1). By Janson’s
inequality,

lim Pr(AB,) = lim M = e /2,

n—oo n—oo

The proof is finished.
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