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Let C(v) be the component of G(n, p) containing v.
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Now we consider G(n, p) for p = c/n, with c > 1 constant.

Let y := y(c) be the positive real solution of e−cy = 1 − y.

Choose a large constant K > 0 and a small constant δ > 0.

Let C(v) be the component of G(n, p) containing v.

■ C(v) is small if |C(v)| < K ln n.

■ C(v) is giant if ||C(v)| − yn| < δn.

■ C(v) is awkward otherwise.

Claim: The probability of having any awkward component is

o(n−20).
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Proof: We will show for any awkward t,
Pr(|C(v)| = t) = o(n−22). Note

Pr(|C(v)| = t) ≤ Pr(B(n − 1, 1 − (1 − c

n
)t) = t − 1.
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n)t) ≈ 1− e−cx. Since 1− e−cx 6= x, so the mean is

not near t.
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Proof: We will show for any awkward t,
Pr(|C(v)| = t) = o(n−22). Note

Pr(|C(v)| = t) ≤ Pr(B(n − 1, 1 − (1 − c

n
)t) = t − 1.

If t = o(n), then 1− (1− c
n)t ≈ ct

n . So the mean is about ct,
which is not close to t. If t = xn, then

1− (1− c
n)t) ≈ 1− e−cx. Since 1− e−cx 6= x, so the mean is

not near t. In either case, we can show

Pr
(

B(n − 1, 1 − (1 − c

n
)t
)

= O(e−Ct)

for some constant C. Since t ≥ K log n and K large

enough, this probability is o(n−22) as required.
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α = Pr(T po
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c = ∞) = y.

Since no middle ground, not small is the same as giant.
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Let α = Pr(C(v) is not small ). Then

α = Pr(T po
c ≥ S) ≈ Pr(T po

c = ∞) = y.

Since no middle ground, not small is the same as giant.

■ Pr(C(v) is giant ) ≈ y.

■ Each giant component has size between (y − δ)n and

(y + δ)n.

It remains to show the giant component is unique and of size

about yn.
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Set p1 = n−3/2. Let G1 = G(n, p1), G = G(n, p), and

G+ = G∪G1. Note G+ ∼ G(n, p+) with p+ = p + p1 − pp1.

Suppose that G has two giant components V1 and V2. Then

the probability that V1 and V2 is not connected after

sprinkling is at most

(1 − p1)
|V1||V2| = o(1).

Now G+ almost surely have a component of size at least

2(y − δ)n > (y + δ)n. It is an awkward component for G+.

Contradiction!

Since δ can be made arbitrarily small, the unique giant

component has size (1 + o(1))yn.
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Now we consider G(n, p) with p = (1 + ǫ)/n where

ǫ = λn−1/3 for λ → ∞. This is similar to the supercritical

phase with extra caution.

■ C(v) is small if |C(v)| < Kǫ2 ln n.

■ C(v) is giant if ||C(v)| − yn| < δyn; where y ≈ 2ǫ.

■ C(v) is awkward otherwise.

The following statements hold.

■ Pr(∃ an awkward component ) = O(n−20).
■ The escape probability α ≈ y ≈ 2ǫ.
■ Sprinkling works with p1 = n−4/3.
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Now consider G(n, p) with p = 1
n + λn−4/3 for a fixed λ.

This critical window has been studied by Bollabás,  Luczak,
Janson, Knuth, Pittel and many others. It requires

delicate calculations.
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Now consider G(n, p) with p = 1
n + λn−4/3 for a fixed λ.

This critical window has been studied by Bollabás,  Luczak,
Janson, Knuth, Pittel and many others. It requires

delicate calculations.

For fixed c > 0, Let X be the number of tree components of

size k = cn2/3. Then

E(X) =

(

n

k

)

kk−2pk−1(1 − p)k(n−k)+(k
2)−(k−1).

Recall

ln(1 + x) = x − 1

2
x2 + O(x3).
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We estimate

(

n

k

)

≈ nk

kk
√

2πk

k−1
∏

i=1

(

1 − i

n

)

,

and

k−1
∏

i=1

(

1 − i

n

)

= e
∑k−1

i=1
ln(1−i/n)

= e−
∑k−1

i=1
(i/n+i2/2n2+O(i3/n3))

= e−
k2

2n− k3

6n2
+o(1)

= e−
k2

2n− c3

6
+o(1).
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We also estimate

pk−1 = n1−k(1 + λn−1/3)k−1

= n1−ke(k−1) ln(1+λn−1/3)

= n1−kekλn−1/3−1

2
cλ2+o(1),
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We also estimate

pk−1 = n1−k(1 + λn−1/3)k−1

= n1−ke(k−1) ln(1+λn−1/3)

= n1−kekλn−1/3−1

2
cλ2+o(1),

and

(1 − p)k(n−k)+(k
2)−(k−1) = e(kn−k2/2+O(k)) ln(1−p)

= e−(kn−k2/2+O(k))(p+p2/2+O(p3))

= e
−k+k2

2n− λk

n1/3
+λc2

2
+o(1)

.
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We also estimate

pk−1 = n1−k(1 + λn−1/3)k−1

= n1−ke(k−1) ln(1+λn−1/3)

= n1−kekλn−1/3−1

2
cλ2+o(1),

and

(1 − p)k(n−k)+(k
2)−(k−1) = e(kn−k2/2+O(k)) ln(1−p)

= e−(kn−k2/2+O(k))(p+p2/2+O(p3))

= e
−k+k2

2n− λk

n1/3
+λc2

2
+o(1)

.
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We get

E(X) ≈ k−5/2
√

2πeA,

where A = (λ−c)3−λ3

6 .
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We get

E(X) ≈ k−5/2
√

2πeA,

where A = (λ−c)3−λ3

6 .

For any fixed a, b, λ, let X be the number of tree

components of size between an2/3 and bn2/3. Then

lim
n→∞

E(X) =

∫ b

a

eA(c)c−5/2
√

2πdc.
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clk
k−2+(3l/2) connected graphs on k vertices with

(k − 1 + l)-edges.
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Wright (1977): For a fixed l, there are asymptotically

clk
k−2+(3l/2) connected graphs on k vertices with

(k − 1 + l)-edges.

Let X(l) be the number of components on k vertices with

k − 1 + l edges. Then a similar calculation shows

lim
n→∞

E(X(l)) =

∫ b

a

eA(c)c−5/2
√

2π(clc
3l/2)dc.

Let X∗ be the total number of components of size between

an2/3 and bn2/3. Let g(c) =
∑∞

l=0 clc
3l/2. Then

lim
n→∞

E(X∗) =

∫ b

a

eA(c)c−5/2
√

2πg(c)dc.
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For a fixed k, consider two random graphs G(n, p) and

G(n′, p′). Assume c = np > 1 and c′ = n′p′ < 1. We say

G(n, p) and G(n′, p′) are dual to each other if ce−c = c′e−c′.
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For a fixed k, consider two random graphs G(n, p) and

G(n′, p′). Assume c = np > 1 and c′ = n′p′ < 1. We say

G(n, p) and G(n′, p′) are dual to each other if ce−c = c′e−c′.

Let y = 1 − c′/c. Then y satisfies the equation

e−cy = 1 − y. Hence the size of the giant component in

G(n, p) is roughly yn. We have

lim
n→∞

Pr(C(v) = k in G(n, p)|C(v) is small)

=
1

1 − y

e−ck(ck)k−1

k!
=

e−c′k(c′k)k−1

k!

= lim
n′→∞

Pr(C(v) = k in G(n′, p′)).
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Consider G(n, p) with

p =
log n

kn
+

(k − 1) log log n

kn
+

t

n
+ o(

1

n
),

then there are only trees of size at most k except for the

giant component. Let X be the number of trees of k
vertices.
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Consider G(n, p) with

p =
log n

kn
+

(k − 1) log log n

kn
+

t

n
+ o(

1

n
),

then there are only trees of size at most k except for the

giant component. Let X be the number of trees of k
vertices.

E(X) =

(

n

k

)

kk−2pk−1(1 − p)k(n−k)+(k
2)−k+1

≈ 1

k2p · k!
(knp)ke−knp ≈ e−kt

k · k!
.

Further, X follows the Poisson distribution.
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For k = 1 and p = log n
n + t

n + o( 1
n), G(n, p) consists of a

giant component with n − O(1) vertices and bounded

number of isolated vertices.

■ The distribution of the number of isolated vertices again

has a Poisson distribution with mean value e−t.

■ The probability that G(n, p) is connected tends to e−e−t

.

■ As t → ∞, G(n, p) is almost surely connected.
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Consider G(n, p) with p ∼ ω(n) log n/n where ω(n) → ∞.

In this range, Gn,p is not only almost surely connected, but

the degrees of almost all vertices are asymptotically equal.

Let X = dv be the degree of v. By Chernoff’s inequality,

With probability at least 1 − O(n−2), we have

|X − E(X)| < 2
√

ω(n) log n.

Almost surely, for all v, dv is in the interval

[d − 2
√

ω(n) log n, d + 2
√

ω(n) log n], where d = np is the

expected degree.
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Theorem: Let H be a strictly balanced graph with v
vertices, m edges, and a automorphisms. Let c > 0 be

arbitrary. Then with p = cn−v/m,

lim
n→∞

Pr(G(n, p) contains no H) = e−cm/a.
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Theorem: Let H be a strictly balanced graph with v
vertices, m edges, and a automorphisms. Let c > 0 be

arbitrary. Then with p = cn−v/m,

lim
n→∞

Pr(G(n, p) contains no H) = e−cm/a.

Proof: Let Aα, 1 ≤ α ≤
(

n
v

)

v!/a, range over the edge sets

of possible copies of H and Bα be the event Aα ⊂ G(n, p).
We will apply Janson’s Inequality.

lim
n→∞

µ = lim
n→∞

(

n

v

)

v!pm/a = cm/a.

lim
n→∞

M = e−cm/a.



Proof

17 / 18

Consider ∆ =
∑

α∼β Pr(Bα ∧ Bβ). We split the sum

according to the number of vertices in Aα ∩ Aβ. For

2 ≤ j ≤ v, let fj be the maximal number of edges in

Aα ∩ Aβ where α ∼ β and α and β intersect in j vertices.

Since H is strictly balanced,

fj

j
<

m

v
.

There are O(n2v−j) choices of α, β For such α, β,

Pr(Bα ∧ Bβ) = p|Aα∪Aβ| ≤ p2m−fj .
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∆ ≤
v

∑

j=2

O(n2v−j)O(n(v/m)(2m−fj)).

But

2v − j − (v/m)(2m − fj) =
vfj

e
− j < 0.

Each term is o(1) and hence ∆ = o(1). By Janson’s

inequality,

lim
n→∞

Pr(∧B̄α) = lim
n→∞

M = e−cm/a.

The proof is finished. �
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