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Erdős-Rényi model

2 / 22
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G(n, p): Erdős-Rényi random graphs

- n nodes
- For each pair of vertices, create an edge independently

with probability p.

An example G(3, 1
2):
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Paul Erdős and A. Rényi, On the evolution of random graphs
Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.
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p

0 the empty graph.
disjoint union of trees.

c
n cycles of any size.
1
n the double jumps.
c′

n one giant component, others are trees.
log n

n G(n, p) is connected.

Ω( log n
n )

connected and almost regular.
Ω(nǫ−1) finite diameter.
Θ(1) dense graphs, diameter is 2.
1 the complete graph.
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Range I p = o(1/n)
The random graph Gn,p is the disjoint union of trees. In
fact, trees on k vertices, for k = 3, 4, . . . only appear
when p is of the order n−k/(k−1).
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Range I p = o(1/n)
The random graph Gn,p is the disjoint union of trees. In
fact, trees on k vertices, for k = 3, 4, . . . only appear
when p is of the order n−k/(k−1).

Furthermore, for p = cn−k/(k−1) and c > 0, let τk(G)
denote the number of connected components of G
formed by trees on k vertices and λ = ck−1kk−2/k!.
Then,

Pr(τk(Gn,p) = j) →
λje−λ

j!

for j = 0, 1, . . . as n → ∞.
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Range II p ∼ c/n for 0 < c < 1

■ In this range of p, Gn,p contains cycles of any given
size with probability tending to a positive limit.
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vertices are in components which are trees.
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Range II p ∼ c/n for 0 < c < 1

■ In this range of p, Gn,p contains cycles of any given
size with probability tending to a positive limit.

■ All connected components of Gn,p are either trees or
unicyclic components. Almost all (i.e., n − o(n))
vertices are in components which are trees.

■ The largest connected component of Gn,p is a tree
and has about 1

α(log n − 5
2 log log n) vertices, where

α = c − 1 − log c.
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Range III p ∼ 1/n + µ/n, the double jump

■ If µ < 0, the largest component has size
(µ − log(1 + µ))−1 log n + O(log log n).
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Range III p ∼ 1/n + µ/n, the double jump

■ If µ < 0, the largest component has size
(µ − log(1 + µ))−1 log n + O(log log n).

■ If µ = 0, the largest component has size of order
n2/3.

■ If µ > 0, there is a unique giant component of size
αn where µ = −α−1 log(1 − α) − 1.

■ Bollobás showed that a component of size at least
n2/3 in Gn,p is almost always unique if p exceeds
1/n + 4(log n)1/2n−4/3.
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Range IV p ∼ c/n for c > 1

■ Except for one “giant” component, all the other
components are relatively small, and most of them
are trees.
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■ The total number of vertices in components which
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Range IV p ∼ c/n for c > 1

■ Except for one “giant” component, all the other
components are relatively small, and most of them
are trees.

■ The total number of vertices in components which
are trees is approximately n − f(c)n + o(n).

■ The largest connected component of Gn,p has
approximately f(c)n vertices, where

f(c) = 1 −
1

c

∞
∑

k=1

kk−1

k!
(ce−c)k.
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Range V p = c log n/n with c ≥ 1

■ The graph Gn,p almost surely becomes connected.
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Range V p = c log n/n with c ≥ 1

■ The graph Gn,p almost surely becomes connected.

■ If

p =
log n

kn
+

(k − 1) log log n

kn
+

y

n
+ o(

1

n
),

then there are only trees of size at most k except for
the giant component. The distribution of the
number of trees of k vertices again has a Poisson
distribution with mean value e−ky

k·k! .
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Range VI p ∼ ω(n) log n/n where ω(n) → ∞.
In this range, Gn,p is not only almost surely connected,
but the degrees of almost all vertices are asymptotically
equal.
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Galton-Watson branching process: Let Z be a
distribution over the non-negative integers. Starting with a
single node, it gives Z children nodes. Each of children
nodes have Z children independently. The process continues,
each new offspring having an independent number A of
children.
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Galton-Watson branching process: Let Z be a
distribution over the non-negative integers. Starting with a
single node, it gives Z children nodes. Each of children
nodes have Z children independently. The process continues,
each new offspring having an independent number A of
children.

■ Z1, Z2, . . . , Zt, . . . : a countable sequence of independent
identically distributed variables, each have distribution Z.

■ Yt: the number of living children at time t.

Y0 = 1

Yt = Yt−1 + Zt − 1.



Galton-Watson process
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Let T be the total number of nodes in Galton-Watson
process. There are two essentially different cases.

■ Yt > 0 for all t ≥ 0. In this case the Calton-Watson
process goes on forever and T = ∞.
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Let T be the total number of nodes in Galton-Watson
process. There are two essentially different cases.

■ Yt > 0 for all t ≥ 0. In this case the Calton-Watson
process goes on forever and T = ∞.

■ Yt = 0 for some t ≥ 0. In this case, T is the least integer
for which YT = 0. The Galton-Watson process stops
with T nodes.



Poisson branching process
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Let Z be the Poisson distribution with the expectation c.
Write T = T po

c .
Theorem: If c ≤ 1, then T is finite with probability one. If
c > 1, then T is infinite with probability y = y(c), where y is
the unique positive real satisfying

e−cy = 1 − y.
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Let Z be the Poisson distribution with the expectation c.
Write T = T po

c .
Theorem: If c ≤ 1, then T is finite with probability one. If
c > 1, then T is infinite with probability y = y(c), where y is
the unique positive real satisfying

e−cy = 1 − y.

Proof: Suppose c < 1.

Pr(T > t) ≤ Pr(
t

∑

i=1

Zi ≥ t) < e−kt,

for some constant k. limt→∞ Pr(T > t) = 0.
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Suppose c ≥ 1. Let z = 1 − y = Pr(T < ∞). Then

z =
∞

∑

i=0

Pr(Z1 = i)zi =
∞

∑

i=0

e−c c
i

zi
i! = ec(z−1).
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Hence 1− y = e−cy. When c = 1, this equation has a unique
solution y = 0. When c > 1, there are two solutions 1 and
y(c).
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Suppose c ≥ 1. Let z = 1 − y = Pr(T < ∞). Then

z =
∞

∑

i=0

Pr(Z1 = i)zi =
∞

∑

i=0

e−c c
i

zi
i! = ec(z−1).

Hence 1− y = e−cy. When c = 1, this equation has a unique
solution y = 0. When c > 1, there are two solutions 1 and
y(c). By Chernoff’s equality, for any t

Pr(
t

∑

i=1

Zi ≤ t) < e−
(c−1)2t

2c .

There is a t0 so that
∑

t≥t0
e−

(c−1)2t

2c < 1. Thus,
y > Pr(T = ∞ | T ≥ t0)Pr(T ≥ t0) > 0. �
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Let C(v) denote the component of G(n, p), containing a
vertex v. Explore C(v) using Breadth First Search (BFS). In
this procedure all vertices will be live, dead, or neutral. The
live vertices will be contained in a queue Q.
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Let C(v) denote the component of G(n, p), containing a
vertex v. Explore C(v) using Breadth First Search (BFS). In
this procedure all vertices will be live, dead, or neutral. The
live vertices will be contained in a queue Q.

Algorithm for computing C(v):
Push v into Q. Mark all vertices but v neutral.
while( Q is not empty){

Pop Q and get w, mark w dead
foreach(w′ neutral){

if (ww′ is an edge of G(n, p)){
mark w′ live and push it into Q

}
}

} Return the set of all dead vertices.



Analysis
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In the graph branching process, let Yt be the size of the
queue at time t and Nt be the set of neutral vertices. Let Nt

be the set of neutral vertices.

Zt ∼ B(Nt−1, p).

Nt ∼ B(n − 1, (1 − p)t).

If T = t it is necessary that Nt = n − t. We have

Pr(|C(v)| = t) ≤ Pr(B(n − 1, (1 − p)t) = n − t).

Or, equivalently,

Pr(|C(v)| = t) ≤ Pr(B(n − 1, 1 − (1 − p)t) = t − 1).
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Theorem: For any positive real c and any fixed integer k

lim
n→∞

Pr(|C(v)| = k in G(n,
c

n
)) = Pr(T po

c = k).
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Theorem: For any positive real c and any fixed integer k

lim
n→∞

Pr(|C(v)| = k in G(n,
c

n
)) = Pr(T po

c = k).

Proof: Let Γ be the set of k-tuples ~z = (z1, z2, . . . , zk) of
nonnegative integers such that the recursion y0 = 1,
yt = yt−1 + zt − 1 has yt > 0 for t < k and yk = 0.

Pr(T gr = k) =
∑

Pr(Zgr
i = zi, 1 ≤ i ≤ k)

Pr(T po = k) =
∑

Pr(Zpo
i = zi, 1 ≤ i ≤ k).

Here both sums are over ~z ∈ Γ.



Continue
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Since Zi−1 = n − O(1) and B(Zi, p) approaches the Poisson
distribution, we have

lim
n→∞

Pr(B(N gr
i−1, p) = zi) = Pr(Zpo

i = zi).
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Since Zi−1 = n − O(1) and B(Zi, p) approaches the Poisson
distribution, we have

lim
n→∞

Pr(B(N gr
i−1, p) = zi) = Pr(Zpo

i = zi).

Pr(T gr = k) = Pr(Zgr
i = zi, 1 ≤ i ≤ k)

=
k

∏

i=1

Pr(B(N gr
i−1, p) = zi)

→

k
∏

i=1

Pr(B(Zpo
i = zi)

= Pr(T po = k). �
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Theorem: For any positive real c and any integer k,

Pr(T po
c = k) = e−ck (ck)k−1

k!
.
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Theorem: For any positive real c and any integer k,

Pr(T po
c = k) = e−ck (ck)k−1

k!
.

Proof: We have Pr(T po
c = k) = limn→∞ Pr(|C(v)| = k) in

G(n, p) with p = c/n.

Pr(C(v) = k) ≈

(

n

k − 1

)

kk−2pk−1(1 − p)k(n−k)

→
e−ck(ck)k−1

k!
. �



p = c
n, 0 ≤ c ≤ 1
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With Poisson approximation,

Pr(|C(v)| ≥ u) ≤ (1+o(1))Pr(T po
c ≥ u) ≈

∞
∑

k=u

e−ck (ck)k−1

k!
.
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With Poisson approximation,

Pr(|C(v)| ≥ u) ≤ (1+o(1))Pr(T po
c ≥ u) ≈

∞
∑

k=u

e−ck (ck)k−1

k!
.

Setting u = (c − 1 − ln c)−1 ln n + C ln ln n, we have
Pr(|C(v)| ≥ u) ≤ o( 1

n lnn.
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With Poisson approximation,

Pr(|C(v)| ≥ u) ≤ (1+o(1))Pr(T po
c ≥ u) ≈

∞
∑

k=u

e−ck (ck)k−1

k!
.

Setting u = (c − 1 − ln c)−1 ln n + C ln ln n, we have
Pr(|C(v)| ≥ u) ≤ o( 1

n lnn.

Thus, the size of largest component in G(n, p) is at most
(c − 1 − ln c)−1 ln n + O(ln ln n).
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With Poisson approximation,

Pr(|C(v)| ≥ u) ≤ (1+o(1))Pr(T po
c ≥ u) ≈

∞
∑

k=u

e−ck (ck)k−1

k!
.

Setting u = (c − 1 − ln c)−1 ln n + C ln ln n, we have
Pr(|C(v)| ≥ u) ≤ o( 1

n lnn.

Thus, the size of largest component in G(n, p) is at most
(c − 1 − ln c)−1 ln n + O(ln ln n).

Most of them are trees. Then number of trees of size k is

(1 + o(1))e−ck (ck)k−1

k!
n.
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Let p = (1 − ǫ)/n with ǫ = λn−1/3.
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(c − 1 − ln c)−1 = (ǫ − ln(1 + ǫ))−1
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2
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= 2n2/3λ−2.
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Let p = (1 − ǫ)/n with ǫ = λn−1/3.

(c − 1 − ln c)−1 = (ǫ − ln(1 + ǫ))−1

≈
2

ǫ2

= 2n2/3λ−2.

The size of the largest component approaches
Kn2/3λ−2 ln n.
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