Probabilistic Methods in Combinatorics Lecture 13

Linyuan Lu

University of South Carolina

Mathematical Sciences Center at Tsinghua University
November 16, 2011 - December 30, 2011

Erdős-Rényi model

$G(n, p)$: Erdős-Rényi random graphs

- n nodes

Erdős-Rényi model

$G(n, p)$: Erdős-Rényi random graphs

- n nodes
- For each pair of vertices, create an edge independently with probability p.

Erdős-Rényi model

$G(n, p)$: Erdős-Rényi random graphs

- n nodes
- For each pair of vertices, create an edge independently with probability p.
An example $G\left(3, \frac{1}{2}\right)$:

$1 / 8$

$1 / 8$

$1 / 8$

$1 / 8$

$1 / 8$
$1 / 8$

1/8

$1 / 8$

The birth of random graph theory

Paul Erdős and A. Rényi, On the evolution of random graphs Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.

The birth of random graph theory

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ERdös and A. RÉNYI
Institute of Mathematics
Hungarian Academy of Sciences, Hungary

1. Definition of a random graph

Let E_{n}, N denote the set of all graphs having n given labelled vertices V_{1}, V_{2}, \cdots, V_{n} and N edges. The graphs considered are supposed to be not oriented, without parallel edges and without slings (such graphs are sometimes called linear graphs). Thus a graph belonging to the set $E_{n, N}$ is obtained by choosing N out of the possible $\binom{n}{2}$ edges between the points $V_{1}, V_{2}, \cdots, V_{n}$, and therefore the number of elements of E_{n}, N is equal to $\binom{\binom{n}{2}}{N}$. A random graph $\Gamma_{n, N}$ can be defined as an element of E_{n}, N chosen at random, so that each of the elements of E_{n}, N have the same probability to be chosen, namely $1 /\left(\begin{array}{c}n \\ 2 \\ N\end{array}\right)$. There is however an other slightly

Evolution of $G(n, p)$

the empty graph. disjoint union of trees.
cycles of any size.
the double jumps.
one giant component, others are trees. $G(n, p)$ is connected.
connected and almost regular.
$\Omega\left(n^{\epsilon-1}\right)$
$\Theta(1)$
1 finite diameter. dense graphs, diameter is 2 . the complete graph.

Evolution of $G(n, p)$

Range I $\quad p=o(1 / n)$

The random graph $G_{n, p}$ is the disjoint union of trees. In fact, trees on k vertices, for $k=3,4, \ldots$ only appear when p is of the order $n^{-k /(k-1)}$.

Evolution of $G(n, p)$

Range I $p=o(1 / n)$

The random graph $G_{n, p}$ is the disjoint union of trees. In fact, trees on k vertices, for $k=3,4, \ldots$ only appear when p is of the order $n^{-k /(k-1)}$.
Furthermore, for $p=c n^{-k /(k-1)}$ and $c>0$, let $\tau_{k}(G)$ denote the number of connected components of G formed by trees on k vertices and $\lambda=c^{k-1} k^{k-2} / k$!. Then,

$$
\operatorname{Pr}\left(\tau_{k}\left(G_{n, p}\right)=j\right) \rightarrow \frac{\lambda^{j} e^{-\lambda}}{j!}
$$

for $j=0,1, \ldots$ as $n \rightarrow \infty$.

Evolution of $G(n, p)$

Range II $\quad p \sim c / n$ for $0<c<1$

- In this range of $p, G_{n, p}$ contains cycles of any given size with probability tending to a positive limit.

Evolution of $G(n, p)$

Range II $\quad p \sim c / n$ for $0<c<1$

- In this range of $p, G_{n, p}$ contains cycles of any given size with probability tending to a positive limit.
- All connected components of $G_{n, p}$ are either trees or unicyclic components. Almost all (i.e., $n-o(n)$) vertices are in components which are trees.

Evolution of $G(n, p)$

Range II $\quad p \sim c / n$ for $0<c<1$

- In this range of $p, G_{n, p}$ contains cycles of any given size with probability tending to a positive limit.
- All connected components of $G_{n, p}$ are either trees or unicyclic components. Almost all (i.e., $n-o(n)$) vertices are in components which are trees.
- The largest connected component of $G_{n, p}$ is a tree and has about $\frac{1}{\alpha}\left(\log n-\frac{5}{2} \log \log n\right)$ vertices, where $\alpha=c-1-\log c$.

Evolution of $G(n, p)$

Range III $p \sim 1 / n+\mu / n$, the double jump

- If $\mu<0$, the largest component has size $(\mu-\log (1+\mu))^{-1} \log n+O(\log \log n)$.

Evolution of $G(n, p)$

Range III $p \sim 1 / n+\mu / n$, the double jump
■ If $\mu<0$, the largest component has size $(\mu-\log (1+\mu))^{-1} \log n+O(\log \log n)$.

- If $\mu=0$, the largest component has size of order $n^{2 / 3}$ 。

Evolution of $G(n, p)$

Range III $p \sim 1 / n+\mu / n$, the double jump

- If $\mu<0$, the largest component has size $(\mu-\log (1+\mu))^{-1} \log n+O(\log \log n)$.
- If $\mu=0$, the largest component has size of order $n^{2 / 3}$.
- If $\mu>0$, there is a unique giant component of size αn where $\mu=-\alpha^{-1} \log (1-\alpha)-1$.

Evolution of $G(n, p)$

Range III $p \sim 1 / n+\mu / n$, the double jump

- If $\mu<0$, the largest component has size $(\mu-\log (1+\mu))^{-1} \log n+O(\log \log n)$.
- If $\mu=0$, the largest component has size of order $n^{2 / 3}$.
- If $\mu>0$, there is a unique giant component of size αn where $\mu=-\alpha^{-1} \log (1-\alpha)-1$.
■ Bollobás showed that a component of size at least $n^{2 / 3}$ in $G_{n, p}$ is almost always unique if p exceeds $1 / n+4(\log n)^{1 / 2} n^{-4 / 3}$.

Evolution of $G(n, p)$

Range IV $p \sim c / n$ for $c>1$

- Except for one "giant" component, all the other components are relatively small, and most of them are trees.

Evolution of $G(n, p)$

Range IV $p \sim c / n$ for $c>1$

- Except for one "giant" component, all the other components are relatively small, and most of them are trees.
- The total number of vertices in components which are trees is approximately $n-f(c) n+o(n)$.

Evolution of $G(n, p)$

Range IV $p \sim c / n$ for $c>1$

- Except for one "giant" component, all the other components are relatively small, and most of them are trees.
- The total number of vertices in components which are trees is approximately $n-f(c) n+o(n)$.
- The largest connected component of $G_{n, p}$ has approximately $f(c) n$ vertices, where

$$
f(c)=1-\frac{1}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k} .
$$

Evolution of $G(n, p)$

Range V $p=c \log n / n$ with $c \geq 1$

- The graph $G_{n, p}$ almost surely becomes connected.

Evolution of $G(n, p)$

Range V $p=c \log n / n$ with $c \geq 1$

- The graph $G_{n, p}$ almost surely becomes connected.

■ If

$$
p=\frac{\log n}{k n}+\frac{(k-1) \log \log n}{k n}+\frac{y}{n}+o\left(\frac{1}{n}\right),
$$

then there are only trees of size at most k except for the giant component. The distribution of the number of trees of k vertices again has a Poisson distribution with mean value $\frac{e^{-k y}}{k \cdot k!}$.

Evolution of $G(n, p)$

Range VI $\quad p \sim \omega(n) \log n / n$ where $\omega(n) \rightarrow \infty$.
In this range, $G_{n, p}$ is not only almost surely connected, but the degrees of almost all vertices are asymptotically equal.

Galton-Watson process

Galton-Watson branching process: Let Z be a distribution over the non-negative integers. Starting with a single node, it gives Z children nodes. Each of children nodes have Z children independently. The process continues, each new offspring having an independent number A of children.

Galton-Watson process

Galton-Watson branching process: Let Z be a distribution over the non-negative integers. Starting with a single node, it gives Z children nodes. Each of children nodes have Z children independently. The process continues, each new offspring having an independent number A of children.

- $Z_{1}, Z_{2}, \ldots, Z_{t}, \ldots$: a countable sequence of independent identically distributed variables, each have distribution Z.
- Y_{t} : the number of living children at time t.

$$
\begin{aligned}
Y_{0} & =1 \\
Y_{t} & =Y_{t-1}+Z_{t}-1
\end{aligned}
$$

Galton-Watson process

Let T be the total number of nodes in Galton-Watson process. There are two essentially different cases.

- $Y_{t}>0$ for all $t \geq 0$. In this case the Calton-Watson process goes on forever and $T=\infty$.

Galton-Watson process

Let T be the total number of nodes in Galton-Watson process. There are two essentially different cases.

- $Y_{t}>0$ for all $t \geq 0$. In this case the Calton-Watson process goes on forever and $T=\infty$.
- $Y_{t}=0$ for some $t \geq 0$. In this case, T is the least integer for which $Y_{T}=0$. The Galton-Watson process stops with T nodes.

Poisson branching process

Let Z be the Poisson distribution with the expectation c. Write $T=T_{c}^{p o}$.
Theorem: If $c \leq 1$, then T is finite with probability one. If $c>1$, then T is infinite with probability $y=y(c)$, where y is the unique positive real satisfying

$$
e^{-c y}=1-y .
$$

Poisson branching process

Let Z be the Poisson distribution with the expectation c. Write $T=T_{c}^{p o}$.
Theorem: If $c \leq 1$, then T is finite with probability one. If $c>1$, then T is infinite with probability $y=y(c)$, where y is the unique positive real satisfying

$$
e^{-c y}=1-y .
$$

Proof: Suppose $c<1$.

$$
\operatorname{Pr}(T>t) \leq \operatorname{Pr}\left(\sum_{i=1}^{t} Z_{i} \geq t\right)<e^{-k t}
$$

for some constant k. $\lim _{t \rightarrow \infty} \operatorname{Pr}(T>t)=0$.

Continue

Suppose $c \geq 1$. Let $z=1-y=\operatorname{Pr}(T<\infty)$. Then

$$
z=\sum_{i=0}^{\infty} \operatorname{Pr}\left(Z_{1}=i\right) z^{i}=\sum_{i=0}^{\infty} e^{-c} \frac{c^{i}}{z^{i}} i!=e^{c(z-1)} .
$$

Continue

Suppose $c \geq 1$. Let $z=1-y=\operatorname{Pr}(T<\infty)$. Then

$$
z=\sum_{i=0}^{\infty} \operatorname{Pr}\left(Z_{1}=i\right) z^{i}=\sum_{i=0}^{\infty} e^{-c} \frac{c^{i}}{z^{i}} i!=e^{c(z-1)} .
$$

Hence $1-y=e^{-c y}$. When $c=1$, this equation has a unique solution $y=0$. When $c>1$, there are two solutions 1 and $y(c)$.

Continue

Suppose $c \geq 1$. Let $z=1-y=\operatorname{Pr}(T<\infty)$. Then

$$
z=\sum_{i=0}^{\infty} \operatorname{Pr}\left(Z_{1}=i\right) z^{i}=\sum_{i=0}^{\infty} e^{-c} \frac{c^{i}}{z^{i}} i!=e^{c(z-1)} .
$$

Hence $1-y=e^{-c y}$. When $c=1$, this equation has a unique solution $y=0$. When $c>1$, there are two solutions 1 and $y(c)$. By Chernoff's equality, for any t

$$
\operatorname{Pr}\left(\sum_{i=1}^{t} Z_{i} \leq t\right)<e^{-\frac{(c-1)^{2} t}{2 c}} .
$$

There is a t_{0} so that $\sum_{t \geq t_{0}} e^{-\frac{(c-1)^{2} t}{2 c}}<1$. Thus,

$$
y>\operatorname{Pr}\left(T=\infty \mid T \geq t_{0}\right) \operatorname{Pr}\left(T \geq t_{0}\right)>0
$$

Graph branching process

Graph branching process

Let $C(v)$ denote the component of $G(n, p)$, containing a vertex v. Explore $C(v)$ using Breadth First Search (BFS). In this procedure all vertices will be live, dead, or neutral. The live vertices will be contained in a queue Q.

Graph branching process

Let $C(v)$ denote the component of $G(n, p)$, containing a vertex v. Explore $C(v)$ using Breadth First Search (BFS). In this procedure all vertices will be live, dead, or neutral. The live vertices will be contained in a queue Q.

Algorithm for computing $C(v)$:
Push v into Q. Mark all vertices but v neutral.
while(Q is not empty) $\{$
Pop Q and get w, mark w dead
foreach (w^{\prime} neutral) $\{$
if $\left(w w^{\prime}\right.$ is an edge of $\left.G(n, p)\right)\{$ mark w^{\prime} live and push it into Q \}
\}
Return the set of all dead vertices.

Analysis

In the graph branching process, let Y_{t} be the size of the queue at time t and N_{t} be the set of neutral vertices. Let N_{t} be the set of neutral vertices.

$$
\begin{gathered}
Z_{t} \sim B\left(N_{t-1}, p\right) . \\
N_{t} \sim B\left(n-1,(1-p)^{t}\right) .
\end{gathered}
$$

If $T=t$ it is necessary that $N_{t}=n-t$. We have

$$
\operatorname{Pr}(|C(v)|=t) \leq \operatorname{Pr}\left(B\left(n-1,(1-p)^{t}\right)=n-t\right) .
$$

Or, equivalently,

$$
\operatorname{Pr}(|C(v)|=t) \leq \operatorname{Pr}\left(B\left(n-1,1-(1-p)^{t}\right)=t-1\right)
$$

Comparison

Theorem: For any positive real c and any fixed integer k

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(|C(v)|=k \text { in } G\left(n, \frac{c}{n}\right)\right)=\operatorname{Pr}\left(T_{c}^{p o}=k\right) .
$$

Comparison

Theorem: For any positive real c and any fixed integer k

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(|C(v)|=k \text { in } G\left(n, \frac{c}{n}\right)\right)=\operatorname{Pr}\left(T_{c}^{p o}=k\right) .
$$

Proof: Let Γ be the set of k-tuples $\vec{z}=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ of nonnegative integers such that the recursion $y_{0}=1$, $y_{t}=y_{t-1}+z_{t}-1$ has $y_{t}>0$ for $t<k$ and $y_{k}=0$.

$$
\begin{aligned}
& \operatorname{Pr}\left(T^{g r}=k\right)=\sum \operatorname{Pr}\left(Z_{i}^{g r}=z_{i}, 1 \leq i \leq k\right) \\
& \operatorname{Pr}\left(T^{p o}=k\right)=\sum \operatorname{Pr}\left(Z_{i}^{p o}=z_{i}, 1 \leq i \leq k\right) .
\end{aligned}
$$

Here both sums are over $\vec{z} \in \Gamma$.

Continue

Since $Z_{i-1}=n-O(1)$ and $B\left(Z_{i}, p\right)$ approaches the Poisson distribution, we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(B\left(N_{i-1}^{g r}, p\right)=z_{i}\right)=\operatorname{Pr}\left(Z_{i}^{p o}=z_{i}\right) .
$$

Continue

Since $Z_{i-1}=n-O(1)$ and $B\left(Z_{i}, p\right)$ approaches the Poisson distribution, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{Pr}\left(B\left(N_{i-1}^{g r}, p\right)=z_{i}\right)=\operatorname{Pr}\left(Z_{i}^{p o}=z_{i}\right) . \\
& \operatorname{Pr}\left(T^{g r}=k\right)=\operatorname{Pr}\left(Z_{i}^{g r}=z_{i}, 1 \leq i \leq k\right) \\
&=\prod_{i=1}^{k} \operatorname{Pr}\left(B\left(N_{i-1}^{g r}, p\right)=z_{i}\right) \\
& \rightarrow \prod_{i=1}^{k} \operatorname{Pr}\left(B\left(Z_{i}^{p o}=z_{i}\right)\right. \\
&=\operatorname{Pr}\left(T^{p o}=k\right) .
\end{aligned}
$$

Poisson branching process

Theorem: For any positive real c and any integer k,

$$
\operatorname{Pr}\left(T_{c}^{p o}=k\right)=e^{-c k} \frac{(c k)^{k-1}}{k!} .
$$

Poisson branching process

Theorem: For any positive real c and any integer k,

$$
\operatorname{Pr}\left(T_{c}^{p o}=k\right)=e^{-c k} \frac{(c k)^{k-1}}{k!} .
$$

Proof: We have $\operatorname{Pr}\left(T_{c}^{p o}=k\right)=\lim _{n \rightarrow \infty} \operatorname{Pr}(|C(v)|=k)$ in $G(n, p)$ with $p=c / n$.

$$
\begin{aligned}
\operatorname{Pr}(C(v)=k) & \approx\binom{n}{k-1} k^{k-2} p^{k-1}(1-p)^{k(n-k)} \\
& \rightarrow \frac{e^{-c k}(c k)^{k-1}}{k!} .
\end{aligned}
$$

$$
p=\frac{c}{n}, 0 \leq c \leq 1
$$

With Poisson approximation,

$$
\operatorname{Pr}(|C(v)| \geq u) \leq(1+o(1)) \operatorname{Pr}\left(T_{c}^{p o} \geq u\right) \approx \sum_{k=u}^{\infty} e^{-c k} \frac{(c k)^{k-1}}{k!} .
$$

$$
p=\frac{c}{n}, 0 \leq c \leq 1
$$

With Poisson approximation,

$$
\operatorname{Pr}(|C(v)| \geq u) \leq(1+o(1)) \operatorname{Pr}\left(T_{c}^{p o} \geq u\right) \approx \sum_{k=u}^{\infty} e^{-c k} \frac{(c k)^{k-1}}{k!} .
$$

Setting $u=(c-1-\ln c)^{-1} \ln n+C \ln \ln n$, we have $\operatorname{Pr}(|C(v)| \geq u) \leq o\left(\frac{1}{n \ln n}\right.$.

$$
p=\frac{c}{n}, 0 \leq c \leq 1
$$

With Poisson approximation,

$$
\operatorname{Pr}(|C(v)| \geq u) \leq(1+o(1)) \operatorname{Pr}\left(T_{c}^{p o} \geq u\right) \approx \sum_{k=u}^{\infty} e^{-c k} \frac{(c k)^{k-1}}{k!} .
$$

Setting $u=(c-1-\ln c)^{-1} \ln n+C \ln \ln n$, we have $\operatorname{Pr}(|C(v)| \geq u) \leq o\left(\frac{1}{n \ln n}\right.$.
Thus, the size of largest component in $G(n, p)$ is at most $(c-1-\ln c)^{-1} \ln n+O(\ln \ln n)$.

$$
p=\frac{c}{n}, 0 \leq c \leq 1
$$

With Poisson approximation,

$$
\operatorname{Pr}(|C(v)| \geq u) \leq(1+o(1)) \operatorname{Pr}\left(T_{c}^{p o} \geq u\right) \approx \sum_{k=u}^{\infty} e^{-c k} \frac{(c k)^{k-1}}{k!} .
$$

Setting $u=(c-1-\ln c)^{-1} \ln n+C \ln \ln n$, we have $\operatorname{Pr}(|C(v)| \geq u) \leq o\left(\frac{1}{n \ln n}\right.$.
Thus, the size of largest component in $G(n, p)$ is at most $(c-1-\ln c)^{-1} \ln n+O(\ln \ln n)$.
Most of them are trees. Then number of trees of size k is

$$
(1+o(1)) e^{-c k} \frac{(c k)^{k-1}}{k!} n
$$

Barely subcritical regimes

Let $p=(1-\epsilon) / n$ with $\epsilon=\lambda n^{-1 / 3}$.

Barely subcritical regimes

Let $p=(1-\epsilon) / n$ with $\epsilon=\lambda n^{-1 / 3}$.

$$
\begin{aligned}
(c-1-\ln c)^{-1} & =(\epsilon-\ln (1+\epsilon))^{-1} \\
& \approx \frac{2}{\epsilon^{2}} \\
& =2 n^{2 / 3} \lambda^{-2} .
\end{aligned}
$$

Barely subcritical regimes

Let $p=(1-\epsilon) / n$ with $\epsilon=\lambda n^{-1 / 3}$.

$$
\begin{aligned}
(c-1-\ln c)^{-1} & =(\epsilon-\ln (1+\epsilon))^{-1} \\
& \approx \frac{2}{\epsilon^{2}} \\
& =2 n^{2 / 3} \lambda^{-2} .
\end{aligned}
$$

The size of the largest component approaches $K n^{2 / 3} \lambda^{-2} \ln n$.

