Let $\{B_i\}_{i \in I}$ be a set of bad events. We will estimate $\Pr(\bigwedge_{i \in I} \bar{B}_i)$.

Let \(\{B_i\}_{i \in I} \) be a set of bad events. We will estimate
\(\Pr(\bigwedge_{i \in I} \bar{B}_i) \).

If \(B_i \)'s are “mostly independent”, then one may expect

\[
\Pr(\bigwedge_{i \in I} \bar{B}_i) \approx \prod_{i \in I} \Pr(\bar{B}_i).
\]
Let \(\{B_i\}_{i \in I} \) be a set of bad events. We will estimate \(\Pr(\bigwedge_{i \in I} \bar{B}_i) \).

- If \(B_i \)'s are “mostly independent”, then one may expect

\[
\Pr(\bigwedge_{i \in I} \bar{B}_i) \approx \prod_{i \in I} \Pr(\bar{B}_i).
\]

- Let \(X_i \) be the random indicator of the event \(B_i \) and \(X = \sum_{i \in I} X_i \). If \(\Pr(B_i) \)'s are small and “mostly independent”, then one may expect \(X \) follows “Poisson-like distribution”. In particular,

\[
\Pr(X = 0) \approx e^{-\mathbb{E}(X)}.
\]
Setting

- U: a finite universal set.
Setting

- U: a finite universal set.
- R: a random subset of U given by $\Pr(r \in R) = p_r$.
Setting

- U: a finite universal set.
- R: a random subset of U given by $\Pr(r \in R) = p_r$.
- $\{A_i\}_{i \in I}$: a family of subsets of U.
Setting

- U: a finite universal set.
- R: a random subset of U given by $\Pr(r \in R) = p_r$.
- $\{A_i\}_{i \in I}$: a family of subsets of U.
- $i \sim j$ if $A_i \cap A_j \neq \emptyset$.
Setting

- U: a finite universal set.
- R: a random subset of U given by $\Pr(r \in R) = p_r$.
- $\{A_i\}_{i \in I}$: a family of subsets of U.
- $i \sim j$ if $A_i \cap A_j \neq \emptyset$.
- B_i: the event $A_i \subset R$ for $i \in I$.
Setting

- U: a finite universal set.
- R: a random subset of U given by $\Pr(r \in R) = p_r$.
- $\{A_i\}_{i \in I}$: a family of subsets of U.
- $i \sim j$ if $A_i \cap A_j \neq \emptyset$.
- B_i: the event $A_i \subset R$ for $i \in I$.
- X_i: the indicator random variable for B_i.
Setting

- \(U \): a finite universal set.
- \(R \): a random subset of \(U \) given by \(\Pr(r \in R) = p_r \).
- \(\{A_i\}_{i \in I} \): a family of subsets of \(U \).
- \(i \sim j \) if \(A_i \cap A_j \neq \emptyset \).
- \(B_i \): the event \(A_i \subset R \) for \(i \in I \).
- \(X_i \): the indicator random variable for \(B_i \).
- \(X := \sum_{i \in I} X_i; \mu = E(X) = \sum_{i \in I} \Pr(B_i) \).
Setting

- U: a finite universal set.
- R: a random subset of U given by $\Pr(r \in R) = p_r$.
- $\{A_i\}_{i \in I}$: a family of subsets of U.
- $i \sim j$ if $A_i \cap A_j \neq \emptyset$.
- B_i: the event $A_i \subset R$ for $i \in I$.
- X_i: the indicator random variable for B_i.
- $X := \sum_{i \in I} X_i$; $\mu = \mathbb{E}(X) = \sum_{i \in I} \Pr(B_i)$.
- $\Delta = \sum_{i \sim j} \Pr(B_i \land B_j)$; sum over all ordered pairs $i \sim j$.
Setting

- **U**: a finite universal set.
- **R**: a random subset of **U** given by \(\Pr(r \in R) = p_r \).
- \(\{A_i\}_{i \in I} \): a family of subsets of **U**.
- \(i \sim j \) if \(A_i \cap A_j \neq \emptyset \).
- **B_i**: the event \(A_i \subset R \) for \(i \in I \).
- **X_i**: the indicator random variable for **B_i**.
- \(X := \sum_{i \in I} X_i; \mu = E(X) = \sum_{i \in I} \Pr(B_i) \).
- \(\Delta = \sum_{i \sim j} \Pr(B_i \land B_j) \); sum over all ordered pairs \(i \sim j \).
- \(M = \prod_{i \in I} \Pr(\overline{B_i}) \).
The Janson inequality: Assume all $\Pr(B_i) \leq \epsilon$. Then

$$M \leq \Pr(\bigwedge_{i \in I} \bar{B}_i) \leq M e^{\frac{\Delta}{2(1-\epsilon)}},$$

and, further,

$$\Pr(\bigwedge_{i \in I} \bar{B}_i) \leq e^{-\mu + \frac{\Delta}{2}}.$$
Janson inequality

The **Janson inequality**: Assume all $\Pr(B_i) \leq \epsilon$. Then

$$M \leq \Pr(\bigwedge_{i \in I} \bar{B}_i) \leq Me^{\frac{\Delta}{2(1-\epsilon)}},$$

and, further,

$$\Pr(\bigwedge_{i \in I} \bar{B}_i) \leq e^{-\mu + \frac{\Delta}{2}}.$$

The Extended Janson inequality: If further $\Delta \geq \mu$, then

$$\Pr(\bigwedge_{i \in I} \bar{B}_i) \leq e^{\frac{-\mu^2}{2\Delta}}.$$
Proof given by Boppana and Spencer: We will use the following correlation inequality.

- For all $J \subset I$, $i \notin J$,

 $$\Pr(B_i \mid \bigwedge_{j \in J} \bar{B}_j) \leq \Pr(B_i).$$

- For $J \subset I$, $i, k \notin J$,

 $$\Pr(B_i \mid B_k \wedge \bigwedge_{j \in J} \bar{B}_j) \leq \Pr(B_i \mid B_k).$$
Proof given by Boppana and Spencer: We will use the following correlation inequality.

- For all $J \subset I$, $i \notin J$,
 \[
 \Pr(B_i \mid \bigwedge_{j \in J} \bar{B}_j) \leq \Pr(B_i).
 \]

- For $J \subset I$, $i, k \notin J$,
 \[
 \Pr(B_i \mid B_k \land \bigwedge_{j \in J} \bar{B}_j) \leq \Pr(B_i \mid B_k).
 \]

Order the index set $I = \{1, 2, \ldots, m\}$.

\[
\Pr(\bigwedge_{i \in I} \bar{B}_i) = \prod_{i=1}^{m} \Pr(\bar{B}_i \mid \bigwedge_{1 \leq j < i} \bar{B}_j) \geq \prod_{i=1}^{m} \Pr(\bar{B}_i).
\]
For a given i renumber, for convenience, so that $i \sim j$ for $1 \leq j \leq d$ and not for $d + 1 \leq j < i$. Let $A = B_i$, $B = \bar{B}_1 \land \cdots \land \bar{B}_d$, and $C = \bar{B}_{d+1} \land \cdots \land \bar{B}_{i-1}$,

$$
\Pr(B_i \mid \land_{1 \leq j < i} \bar{B}_j) = \Pr(A \mid B \land C) \\
\leq \Pr(A \land B \mid C) \\
= \Pr(A \mid C)\Pr(B \mid A \land C).
$$

Note $\Pr(A \mid C) = \Pr(A)$ and

$$
\Pr(B \mid A \land C) \geq 1 - \sum_{j=1}^{d} \Pr(B_j \mid B_i \land C) \geq 1 - \sum_{j=1}^{d} \Pr(B_j \mid B_i).
$$
For a given \(i \) renumber, for convenience, so that \(i \sim j \) for \(1 \leq j \leq d \) and not for \(d + 1 \leq j < i \). Let \(A = B_i \), \(B = \overline{B}_1 \land \cdots \land \overline{B}_d \), and \(C = \overline{B}_{d+1} \land \cdots \land \overline{B}_{i-1} \),

\[
\Pr(B_i \mid \land_{1 \leq j < i} \overline{B}_j) = \Pr(A \mid B \land C) \\
\leq \Pr(A \land B \mid C) \\
= \Pr(A \mid C) \Pr(B \mid A \land C).
\]

Note \(\Pr(A \mid C) = \Pr(A) \) and

\[
\Pr(B \mid A \land C) \geq 1 - \sum_{j=1}^{d} \Pr(B_j \mid B_i \land C) \geq 1 - \sum_{j=1}^{d} \Pr(B_j \mid B_i).
\]

\[
\Pr(B_i \mid \land_{1 \leq j < i} \overline{B}_j) \geq \Pr(B_i) - \sum_{j=1}^{d} \Pr(B_j \land B_i).
\]
\[
\Pr(\overline{B}_i \mid \wedge_{1 \leq j < i} \overline{B}_j) \leq \Pr(\overline{B}_i) + \sum_{j=1}^{d} \Pr(B_j \wedge B_i)
\]

\[
\leq \Pr(\overline{B}_i) \left(1 + \frac{1}{1 - \epsilon} \sum_{j=1}^{d} \Pr(B_j \wedge B_i) \right)
\]

\[
\leq \Pr(\overline{B}_i) e^{\frac{1}{1 - \epsilon} \sum_{j=1}^{d} \Pr(B_j \wedge B_i)}.
\]
\[
\Pr(\bar{B}_i \mid \land_{1 \leq j < i} \bar{B}_j) \leq \Pr(\bar{B}_i) + \sum_{j=1}^{d} \Pr(B_j \land B_i)
\]
\[
\leq \Pr(\bar{B}_i) \left(1 + \frac{1}{1 - \epsilon} \sum_{j=1}^{d} \Pr(B_j \land B_i)\right)
\]
\[
\leq \Pr(\bar{B}_i) e^{\frac{1}{1-\epsilon} \sum_{j=1}^{d} \Pr(B_j \land B_i)}.
\]
Plug it into \(\Pr(\land_{i \in I} \bar{B}_i) = \prod_{i=1}^{m} \Pr(\bar{B}_i \mid \land_{1 \leq j < i} \bar{B}_j)\); we get the first inequality. The second inequality use the following estimation.
\[
\Pr(\bar{B}_i \mid \land_{1 \leq j < i} \bar{B}_j) \leq \Pr(\bar{B}_i) + \sum_{j=1}^{d} \Pr(B_j \land B_i)
\]
\[
\leq e^{-\Pr(B_i)} + \sum_{j=1}^{d} \Pr(B_j \land B_i).
\]
Proof of second Theorem

From the Jansen inequality, we have

\[- \ln(\Pr(\bigwedge_{i \in I} \bar{B}_i)) \geq \sum_{i \in I} \Pr(B_i) - \frac{1}{2} \sum_{i \sim j} \Pr(B_i \land B_j).\]
Proof of second Theorem

From the Jansen inequality, we have

$$- \ln(\Pr(\land_{i \in I} \bar{B}_i)) \geq \sum_{i \in I} \Pr(B_i) - \frac{1}{2} \sum_{i \sim j} \Pr(B_i \land B_j).$$

For any set \(S \subset I \), the same inequality applied to \(\{B_i\}_{i \in S} \):

$$- \ln(\Pr(\land_{i \in S} \bar{B}_i)) \geq \sum_{i \in S} \Pr(B_i) - \frac{1}{2} \sum_{i,j \in S, i \sim j} \Pr(B_i \land B_j).$$
Proof of second Theorem

From the Jansen inequality, we have

\[- \ln(\Pr(\bigwedge_{i \in I} \bar{B}_i)) \geq \sum_{i \in I} \Pr(B_i) - \frac{1}{2} \sum_{i \sim j} \Pr(B_i \land B_j).\]

For any set $S \subset I$, the same inequality applied to $\{B_i\}_{i \in S}$:

\[- \ln(\Pr(\bigwedge_{i \in S} \bar{B}_i)) \geq \sum_{i \in S} \Pr(B_i) - \frac{1}{2} \sum_{i,j \in S, i \sim j} \Pr(B_i \land B_j).\]

Now take S be a random subset of I given by $\Pr(i \in S) = p$, and take the expectation.

\[E \left[- \ln(\Pr(\bigwedge_{i \in S} \bar{B}_i))\right] \geq p\mu - p^2 \frac{\delta}{2}.\]
Now choose $p = \mu / \Delta$.

\[E \left[-\ln(\Pr(\bigwedge_{i \in S} \bar{B}_i))\right] \geq \frac{\mu^2}{2\Delta}. \]
Now choose \(p = \mu / \Delta \).

\[
E \left[- \ln(\Pr(\bigwedge_{i \in S} \bar{B}_i)) \right] \geq \frac{\mu^2}{2\Delta}.
\]

Then there is a specific \(S \subset I \) for which

\[
- \ln(\Pr(\bigwedge_{i \in S} \bar{B}_i)) \geq \frac{\mu^2}{2\Delta}.
\]
Now choose \(p = \mu / \Delta \).

\[
E \left[- \ln(\Pr(\bigwedge_{i \in S} \overline{B_i})) \right] \geq \frac{\mu^2}{2\Delta}.
\]

Then there is a specific \(S \subset I \) for which

\[
- \ln(\Pr(\bigwedge_{i \in S} \overline{B_i})) \geq \frac{\mu^2}{2\Delta}.
\]

\[
\Pr(\bigwedge_{i \in S} \overline{B_i}) \leq e^{-\frac{\mu^2}{2\Delta}}.
\]
Now choose $p = \mu / \Delta$.

$$E \left[-\ln(\Pr(\bigwedge_{i \in S} \bar{B}_i)) \right] \geq \frac{\mu^2}{2\Delta}.$$

Then there is a specific $S \subset I$ for which

$$-\ln(\Pr(\bigwedge_{i \in S} \bar{B}_i)) \geq \frac{\mu^2}{2\Delta}.$$

$$\Pr(\bigcap_{i \in S} \bar{B}_i) \leq e^{-\frac{\mu^2}{2\Delta}}.$$

$$\Pr(\bigcap_{i \in I} \bar{B}_i) \leq \Pr(\bigcap_{i \in S} \bar{B}_i) \leq e^{-\frac{\mu^2}{2\Delta}}.$$
Brun’s sieve

- X_i: the indicator random variable for B_i, for $i \in I$.
- $X := \sum_{i=1}^{m} X_i$.
- $m = m(n)$, $B_i = B_i(n)$, and $X = X(n)$.
- Let
 \[S^{(r)} = \sum \Pr(B_{i_1} \land \cdots \land B_{i_r}), \]
 where the sum is over all sets
 \[\{i_1, \ldots, i_r\} \subset \{1, 2 \ldots, m\}. \]
- Let
 \[X^{(r)} = X(X - 1) \cdots (X - r + 1). \]
Brun’s sieve

- X_i: the indicator random variable for B_i, for $i \in I$.
- $X := \sum_{i=1}^{m} X_i$.
- $m = m(n)$, $B_i = B_i(n)$, and $X = X(n)$.
- Let
 \[S^{(r)} = \sum \Pr(B_{i_1} \land \cdots \land B_{i_r}), \]
 where the sum is over all sets $\{i_1, \ldots, i_r\} \subset \{1, 2 \ldots, m\}$.
- Let
 \[X^{(r)} = X(X - 1) \cdots (X - r + 1). \]

By inclusion-exclusion principle,
\[\Pr(X = 0) = \Pr(\bar{B}_1 \land \cdots \land \bar{B}_m) = \sum_{r \geq 0} (-1)^r S^{(r)}. \]
Brun’s sieve

Theorem: Suppose there is a constant \(\mu \) so that for every fixed \(r \),

\[
E\left(\frac{X}{r}\right) = S(r) \rightarrow \frac{\mu^r}{r!}.
\]

Then

\[
Pr(X = 0) \rightarrow e^{-\mu},
\]

and for every \(t \)

\[
Pr(X = t) \rightarrow \frac{\mu^t}{t!}e^{-\mu}.
\]
Proof: We only prove the case $t = 0$. Fix $\epsilon > 0$. Choose s so that

$$\left| \sum_{r=0}^{2s} (-1)^r \frac{\mu^r}{r!} - e^{-\mu} \right| \leq \frac{\epsilon}{2}.$$

Select n_0 so that for $n \geq n_0$,

$$|S^{(r)} - \frac{\mu^r}{r!}| \leq \frac{\epsilon}{2s(2s + 1)}$$

for $0 \leq r \leq 2s$.
For such \(n \),

\[
\Pr[X = 0] \leq \sum_{r=0}^{2s} (-1)^r S^{(r)}
\]

\[
\leq \sum_{r=0}^{2s} (-1)^r \frac{\mu^r}{r!} + \frac{\epsilon}{2}
\]

\[
\leq e^{-\mu} + \epsilon.
\]
For such \(n \),

\[
\Pr[X = 0] \leq \sum_{r=0}^{2s} (-1)^r S^{(r)}
\]

\[
\leq \sum_{r=0}^{2s} (-1)^r \frac{\mu^r}{r!} + \frac{\epsilon}{2}
\]

\[
\leq e^{-\mu} + \epsilon.
\]

Similarly, taking the sum to \(2s + 1 \), we can find \(n_0 \) so that for \(n \geq n_0 \),

\[
\Pr[X = 0] \geq e^{-\mu} - \epsilon.
\]

As \(\epsilon \) was arbitrary \(\Pr(X = 0) \rightarrow e^{-\mu} \).
An application

Let $G = G(n, p)$, and EPIT represent the statement that every vertex lies in a triangle.

Theorem (a special case of Spencer’s Theorem): Let $c > 0$ be fixed and let $p = p(n), \mu = \mu(n)$ satisfy

$$
\binom{n-1}{2} p^3 = \mu,
$$

$$
e^{-\mu} = \frac{c}{n}.
$$

Then

$$
\lim_{n \to \infty} Pr(G(n, p) \text{ satisfies } EPIT) = e^{-c}.
$$
First fix $x \in V(G)$. For each unordered $y, z \neq x$ let B_{xyz} be the event that $\{x, y, z\}$ is a triangle of G. Let C_x be the event $\wedge_{y,z} \overline{B}_{xyz}$ and X_x the corresponding indicator random variable. Apply Janson’s Inequality to bound $E(X_x) = \Pr(\wedge_{y,z} \overline{B}_{xyz})$.
Proof

First fix \(x \in V(G) \). For each unordered \(y, z \neq x \) let \(B_{xyz} \) be the event that \(\{x, y, z\} \) is a triangle of \(G \). Let \(C_x \) be the event \(\land_{y,z} \overline{B}_{xyz} \) and \(X_x \) the corresponding indicator random variable. Apply Janson’s Inequality to bound
\[
\mathbb{E}(X_x) = \text{Pr}(\land_{y,z} \overline{B}_{xyz}).
\]

\[
\Delta = \sum_{y,z,z'} \text{Pr}(B_{xyz} \land B_{xyz'}) = O(n^3 p^5) = o(1)
\]

since \(p = n^{-2/3+o(1)} \).
Proof

First fix \(x \in V(G) \). For each unordered \(y, z \neq x \) let \(B_{xyz} \) be the event that \(\{x, y, z\} \) is a triangle of \(G \). Let \(C_x \) be the event \(\bigwedge y,z \overline{B}_{xyz} \) and \(X_x \) the corresponding indicator random variable. Apply Janson’s Inequality to bound

\[
E(X_x) = \Pr(\bigwedge y,z \overline{B}_{xyz}).
\]

\[
\Delta = \sum_{y,z,z'} \Pr(B_{xyz} \land B_{xyz'}) = O(n^3 p^5) = o(1)
\]

since \(p = n^{-2/3+o(1)} \). Thus

\[
E(X_x) \approx e^{-\mu} = \frac{c}{n}.
\]
Let \(X = \sum_{x} X_{x} \), which is the number of vertices \(x \) no lying a triangle.

\[
E(X) = \sum_{x} E(X_{x}) \rightarrow c.
\]

We need to show that the Poisson Paradigm applies to \(X \).
Let \(X = \sum_x X_x \), which is the number of vertices \(x \) no lying a triangle.

\[
E(X) = \sum_x E(X_x) \rightarrow c.
\]

We need to show that the Poisson Paradigm applies to \(X \). Fix \(r \) and consider

\[
E\left(\begin{pmatrix} X \\ r \end{pmatrix}\right) = S^{(r)} = \sum \Pr(C_{x_1} \land \cdots \land C_{x_r}),
\]

where the sum is over all sets \(\{x_1, \ldots, x_r\} \).
Let $X = \sum_x X_x$, which is the number of vertices x no lying a triangle.

$$E(X) = \sum_x E(X_x) \rightarrow c.$$

We need to show that the Poisson Paradigm applies to X. Fix r and consider

$$E\left(\binom{X}{r} \right) = S^{(r)} = \sum \Pr(C_{x_1} \land \cdots \land C_{x_r}),$$

where the sum is over all sets $\{x_1, \ldots, x_r\}$. Note

$$C_{x_1} \land \cdots \land C_{x_r} = \land_{1 \leq i \leq r, y, z} B^\infty_{x_i y z}.$$
We apply Janson’s Inequality again.

$$\sum \Pr(B_{x_iyz}) = p^3 \left(r \left(\frac{n-1}{2} \right) - O(n) \right) = r \mu + O(n^{-1+o(1)}).$$

As before Δ is p^5 times the number of pairs $x_iyz \sim x_jyz$; $\Delta = O(n^3 p^5) = o(1)$.
We apply Janson’s Inequality again.

\[
\sum \Pr(B_{x_iyz}) = p^3 \left(r \left(\frac{n-1}{2} \right) - O(n) \right) = r\mu + O(n^{-1+o(1)}).
\]

As before \(\Delta \) is \(p^5 \) times the number of pairs \(x_iyz \sim x_jyz \);
\(\Delta = O(n^3p^5) = o(1) \).

\[
\Pr(C_{x_1} \land \cdots \land C_{x_r}) \sim e^{-r\mu}
\]

\[
E\left(\binom{X}{r} \right) \approx \binom{n}{r} e^{-r\mu} \approx \frac{c^r}{r!}.
\]
We apply Janson’s Inequality again.

\[\sum \Pr(B_{xyz}) = p^3 \left(r \left(\frac{n - 1}{2} \right) - O(n) \right) = r \mu + O(n^{-1+o(1)}). \]

As before \(\Delta \) is \(p^5 \) times the number of pairs \(x_iyz \sim x_jyz \);
\(\Delta = O(n^3 p^5) = o(1) \).

\[\Pr(C_{x_1} \land \cdots \land C_{x_r}) \sim e^{-r \mu} \]
\[E \left(\begin{pmatrix} X \\ r \end{pmatrix} \right) \approx \binom{n}{r} e^{-r \mu} \approx \frac{c^r}{r!}. \]

Applying Brun’s Sieve method, we have \(\Pr(X = 0) \rightarrow e^{-c} \).
Generalization

A sufficient condition for Janson’s Inequality:

- I: a dependency digraph; if for each $i \in I$ the event B_i is mutually independent of $\{B_j : i \not\sim j\}$.
- $\Delta \equiv \sum_{i \sim j} \Pr(B_i \land B_j)$.
- For all $J \subset I$, $i \notin J$,
 \[
 \Pr(B_i \mid \land_{j \in J} \bar{B}_j) \leq \Pr(B_i).
 \]
- For $J \subset I$, $i, k \notin J$,
 \[
 \Pr(B_i \mid B_k \land \land_{j \in J} \bar{B}_j) \leq \Pr(B_i \mid B_k).
 \]

Then Janson’s inequality holds.
An binary relation \sim on I is superdependency digraph if the following holds:

Suppose that $J_1, J_2 \subset I$ are disjoint subsets so that there is no edge between J_1 and J_2. Let B^1 be any Boolean combination of the events $\{B_j\}_{j \in J_1}$ and B^2 be any Boolean combination of the events $\{B_j\}_{j \in J_2}$. Then B^1 and B^2 are independent.
Suen’s theorem

An binary relation \sim on I is superdependency digraph if the following holds:
Suppose that $J_1, J_2 \subset I$ are disjoint subsets so that there is no edge between J_1 and J_2. Let B^1 be any Boolean combination of the events $\{B_j\}_{j \in J_1}$ and B^2 be any Boolean combination of the events $\{B_j\}_{j \in J_2}$. Then B^1 and B^2 are independent.

Theorem [Suen]: Under the above conditions,

$$\left| \Pr(\bigwedge_{i \in I} \bar{B}_i) - M \right| \leq M \left(e^{\sum_{i \sim j} y(i,j)} - 1 \right),$$

where

$$y_{i,j} = (\Pr(B_i \wedge B_j) + \Pr(B_i)\Pr(B_j)) \prod_{l \sim i \text{ or } l \sim j}(1 - \Pr(B_l))^{-1}. $$