Probabilistic Methods in
Combinatorics
Lecture 12

Linyuan Lu

University of South Carolina




- Poisson Paradigm -
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Pf(/\ig[Bi).
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- Poisson Paradigm

Let {B;}icr be a set of bad events. We will estimate
Pf(/\ig[Bi).

s |If B;’s are "mostly independent”, then one may expect

(NierB;) = | | Pr(B

el

m Let X, be the random indicator of the event B; and
X =) ../ X;. If Pr(B;)'s are small and “mostly
mdependent then one may expect X follows
"Poisson-like distribution”. In particular,
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- Setting

m (/: a finite universal set.
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m B;: theevent A, C R for? € I.

s X;: the indicator random variable for B;.
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m (/: a finite universal set.

s R: arandom subset of U given by Pr(r € R) = p,.
m  {A;}ier: a family of subsets of U.

s i~jif AANAF#0D.

m B;: theevent A, C R for? € I.

s X;: the indicator random variable for B;.

n X = Zie[ Xiy p= E(X) — Zie[ PI(BZ')-
= A=), Pr(B;ABj); sum over all ordered pairs i ~ j.

M = Hie] Pr(Bi)-
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- Janson inequality -

The Janson inequality: Assume all Pr(B;) < €. Then

M < Pr(NierB;) < Meﬁ,
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- Janson inequality -

The Janson inequality: Assume all Pr(B;) < €. Then

M < Pr(NierB;) < Mt‘iﬁ,

and, further,

The Extended Janson inequality: If further A > p, then

2

Pf(/\ie[éi) S 6% .
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- Proof -

Proof given by Boppana and Spencer: We will use the
following correlation inequality.

n ForallJC[,igJ,

PI(BZ ‘ /\jEJBj) < PI(BZ)
m ForJCI, 1,k&J,

PI‘(BZ ‘ Bk /N\ /\jEJBj) S PI‘(BZ | Bk)
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- Proof -

Proof given by Boppana and Spencer: We will use the
following correlation inequality.

n ForallJC[,igJ,

PI(BZ ‘ /\jEJBj) < PI(BZ)
m ForJCI, 1,k&J,

PI‘(BZ ‘ Bk /N\ /\jEJBj) S PI‘(BZ | Bk)

Order the index set [ = {1,2,...,m}.

m

PI’(/\ZE[BZ') — HPI (Bz ‘ /\1§j<iBj) > HPI’(BZ)

1=1 1=1
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- Continue '

For a given ¢ renumber, for convenience, so that ¢ ~ 4 for
1 <7 <dand not for d + 1 <j <i. Let A_: B;,
B=Bi{AN---ANBg,and C = Bg1 N--- N\ B;_1,

PY(BZ ‘ /\1§j<iBj) = DI’(A ‘ B A C)
Pr(ANB|C)
Pr(A | C)Pr(B | AAO).

VAN

Note Pr(A | C') = Pr(A) and

d d
Pr(B | ANC) > 1= Pr(B; | BiAC) > 1-» Pr(B; | B).

7=1 7=1
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- Continue -

For a given ¢ renumber, for convenience, so that ¢ ~ j for
1<]<dandnotford+1<]<z Let A = B,
B = Bl JANKIEIIVAN Bd and C' = Bd+1 JANRIICIVAN Bz 1,

Pr(B; | Ai<j<iB;)

Pr(A| BAC)
< Pr(AANB|C)
= Pr(A|C)Pr(B|AANC).
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Continue -

Pr(B;) + Z Pr(B; A B;)

j=1

Pr(B;) (1 | 11€ZPr(Bj/\Bz'))

j=1

AN

Pr(B; | M<j<iB;)

I

Pr(Bi)ei =1 Pr(BiAB:)

AN
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Continue -

Pr(B;) + Z Pr(B; A B;)

j=1

< Pr(B) (1 | 1i€ > Pr(B; A B¢)>

j=1

Pr(B; | M<j<iB;)

AN

_ 1 d

< PI'(BZ)(iE =1 PI‘(B]'/\B%-).
Plug it into Pr(A;e;B;) = [[12, Pr (Bi | /\1§j<7f3j); we get
the first inequality. The second inequality use the following
estimation.

d
Pr(Bi | /\1§j<7ij) < Pr(Bi) + ZPI(Bj A B;)

J=1
d
< o Pr(Bi)+2 -, Pr(B;AB;)
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- Proof of second Theorem '

From the Jansen inequality, we have

—n(Pr(AierB)) > Y Pr(B)) - % S Pr(B; A B)).

iel 1~]
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- Proof of second Theorem '

From the Jansen inequality, we have

—n(Pr(AierB) > 3 Pr(By) - % S Pr(B; A B)).

icl i~
For any set S C I, the same inequality applied to {B;}.cs:

—In(Pr(AiesBi) > S Pr(B;) - % S° Pi(BAB)).

1€S 1,J€S5,1~]

Now take S be a random subset of I given by
Pr(i € S) = p, and take the expectation.

_ d
E |—In(Pr(NiesBi))| > pu — p2§.
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- Continue

Now choose p = u/A.

E [~ In(Pr(AjesB;))] > QM—A.
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- Continue

Now choose p = u/A.
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Then there is a specific S C I for which
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w’
A

Pr(/\iESBi) S e 2
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- Brun’s sieve -

s X, the indicator random variable for B;, for i € 1.
m X = Zyil Xz
s m=m(n), B;=B;(n), and X = X (n).
m Let
ST =N "Pr(Bj, A--- A B;),

where the sum is over all sets

{il,...,ir} C {1,2,m}
m |let

XD =X(X-1)(X—r+1).
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- Brun’s sieve -

s X, the indicator random variable for B;, for i € 1.
m X = Zyil Xz
s m=m(n), B;=B;(n), and X = X (n).
m Let
ST =N "Pr(Bj, A--- A B;),

where the sum is over all sets

{il,...,ir} C {1,2,m}
m |let

X =X(X-1)---(X=r+1).
By inclusion-exclusion principle,

Pr(X =0)=Pr(BiA---ABp)=>» (-1)5")

r>0
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- Brun’s sieve -

Theorem: Suppose there is a constant i so that for every

fixed r,
E<X> -5

(A

Then
Pr(X =0) - e ¥,

and for every t
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- Proof '

Proof: We only prove the case t = 0. Fix ¢ > 0. Choose s

so that
E v €
( 1) ] e < 5

Select ng so that for n > ny,

(2s+1)

o) _ M
| 7“!|_25

for 0 <r < 2s.
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- Continue

For such n,
28
PriX =0 < » (-1)"s")
r=0
28 /f c
< L i
— Tz_%( ) rl +2

A
Q)
=
_I_
M
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- Continue

For such n,
28
PriX =0 < » (-1)"s")
r=0
28 ,u'r ¢
< )R -
N Tz_%( ) rl +2
< e F+e

Similarly, taking the sum to 2s + 1, we can find ny so that
for n > ny,

PrlX =0] > e " —e
—m As € was arbitrary Pr(X =0) — e™".
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An application -

Let G = G(n,p), and EPIT represent the statement that

every vertex lies in a triangle.
Theorem (a special case of Spencer’s Theorem): Let

c > 0 be fixed and let p = p(n), u = pu(n) satisfy

()7

fs

Then
lim Pr(G(n,p) satisfies EPIT) = e °.

n—oo
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- Proof '

First fix x € V/(G). For each unordered y, z # x let B,,. be
the event that {x,y, 2z} is a triangle of G. Let C, be the
event /\y,szyz and X, the corresponding indicator random
variable. Apply Janson's Inequality to bound

E(X,) = Pr(Ay..Buyy.).
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- continue -

Let X = > X,, which is the number of vertices x no lying

a triangle.
E(X)=) E(X,) —c

We need to show that the Poisson Paradigm applies to X.
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- continue -

Let X = > X,, which is the number of vertices x no lying
a triangle.

E(X)=) E(X,) —c

We need to show that the Poisson Paradigm applies to X.
Fix r and consider

X
E _ qlr) — Pr(C,. A--- N
<T> S E r(Cy A= ANCy),

where the sum is over all sets {x1,...,z,.}. Note

Oxl ANRERA OZCT — Algigfr,y,szciyz-
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- Continue -

We apply Janson’s Inequality again.

S Pr(B,,.) = (T(“;)_mn)):mm(n1+o<1>).

As before A is p° times the number of pairs z;yz ~ x;yz;

A = O(n’p®) = o(1).
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- Continue -

We apply Janson’s Inequality again.

S Pr(B,,.) = (T(“;)_mn)):mm(n1+o<1>).

As before A is p° times the number of pairs z;yz ~ x;yz;

A = O(n’p®) = o(1).

Pr(Cp, A---NC, ) ~e "

E<X> ~ (n) e "H ~ C—r
r r rl

Applying Brun's Sieve method, we have Pr(X =0) — e™“.
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- Generalization '

A sufficient condition for Janson's Inequality:

s [: a dependency digraph; if for each 7 € I the event B;
is mutually independent of {B;: i o4 j}.

. A= Ziwj Pr(B; A\ Bj).

n ForallJC[,iéJ,

PY(BZ ‘ /\jEJBj) S PY(BZ)

m ForJCI, 1,k&J,
PI‘(BZ ‘ Bk /N\ /\jEJBj) S PI‘(BZ | Bk)

L hen Janson's inequality holds.
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- Suen’s theorem -

An binary relation ~ on I is superdenpendency digraph if
the following holds:

Suppose that J;, J5s C I are disjoint subsets so that there is
no edge between J; and J,. Let B! be any Boolean
combination of the events {B,};c;, and B* be any Boolean

combination of the events {B,};cs,. Then B! and B are
independent.

19 / 19



Suen’s theorem '

An binary relation ~ on I is superdenpendency digraph if
the following holds:

Suppose that J;, J5s C I are disjoint subsets so that there is
no edge between J; and J,. Let B! be any Boolean

com
com
Inde

vination of the events {B;},c;, and B* be any Boolean
bination of the events {B;},cs,. Then B! and B?* are

hendent.

Theorem [Suen]: Under the above conditions,

Pr(AierB;) — M| < M (e2ii ¥0:3) 1),

where

Yij = (Pr(BiAB;)+Pr(By)Pr(B))) [ 11wi or 1 (1=Pr(By)) .

19 / 19



	Poisson Paradigm
	Setting
	Janson inequality
	Proof
	Continue
	Continue
	Proof of second Theorem
	Continue
	Brun's sieve
	Brun's sieve
	Proof
	Continue
	An application
	Proof
	continue
	Continue
	Generalization
	Suen's theorem

