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Goal: We shall cover some selected topics in the textbook
and some supplemental material.
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Paul Erdős: 1913–1996
1525 papers
511 coauthors

Main contributions:

■ Ramsey theory
■ Probabilistic method
■ Extremal combinatorics
■ Additive number theory
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A graph G consists of two sets V and E.

- V is the set of vertices (or nodes).
- E is the set of edges, where each edge is a pair of

vertices.

Complete graphs Kn:

K 3 K 4 K 5 K 6
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Ramsey number R(k, l): the smallest integer n such that
in any two-coloring of the edges of a complete graph on n
vertices Kn by red and blue, either there is a red Kk or a
blue Kl.

Major question: How large is R(k, k)?

Proposition (by Erdős): If
(

n
2

)

21−(k

2) < 1, then
R(k, k) > n. Thus

R(k, k) >
k

e
√

2
2k/2.
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Ramsey number R(3, 3) = 6

6 / 29

■ If edges of K6 are 2-colored then there exists a
monochromatic triangle.

■ There exists a 2-coloring of edges of K5 with no
monochromatic triangle.
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Erdős’ idea
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To prove R(k, k) > n, we need construct a 2-coloring of Kn

so that it contains no red Kk or blue Kn.

Make the set of all 2-colorings of Kn into a probability
space, then show the event “ no red Kk or blue Kn” with
positive probability.
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Finite probability space (Ω, P ):

■ Ω := {s1, s2, . . . , sn}: a set of n elements.

■ P : Ω → [0, 1]: a probability measure. View P as a
vector (p1, p2, . . . , pn), where 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1.

■ An event A: a subset of Ω.

■ Probability of A: Pr(A) =
∑

si∈A pi.

■ Two events A and B are independent if

Pr(AB) = Pr(A)Pr(B).
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Color every edge of Kn independently either red or blue,
where each color is equally likely.

For any fixed set R of k vertices, let AR be the event that
all pairs with both ends in R are either all red or all blue.

Pr(AR) = 21−(k

2).

Pr(∨RAR) ≤
∑

R

Pr(AR) =

(

n

k

)

21−(k

2) < 1.

Hence Pr(∧RĀR) = 1 − Pr(∨RAR) > 0.
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Since
(

n
k

)

≤ 1
e

(

en
k

)k
for all n ≥ k ≥ 1, we have

(

n

k

)

21−(k

2) ≤ 1

e

(en

k

)k

21−(k

2)

≤ 2

e

( en

k2(k−1)/2

)k
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Since
(

n
k

)

≤ 1
e

(

en
k

)k
for all n ≥ k ≥ 1, we have

(

n

k

)

21−(k

2) ≤ 1

e

(en

k

)k

21−(k

2)

≤ 2

e

( en

k2(k−1)/2

)k

< 1

provided n ≤ k
e
√

2
2k/2.

Hence,

R(k, k) >
k

e
√

2
2k/2. �
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Erdős [1947]:

R(k, k) > (1 + o(1))
1

e
√

2
k2k/2.

Spencer [1990]:

R(k, k) > (1 + o(1))
1

e
k2k/2.

Spencer [1975] (using Lovasz Local Lemma)

R(k, k) > (1 + o(1))

√
2

e
k2k/2.
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A trivial bound:

R(k, k) ≤
(

2k − 2

k − 1

)

.

Thomason [1988]:

R(k, k) ≤ k−1/2+c/
√

log k

(

2k − 2

k − 1

)

.

Colon [2009]:

R(k, k) ≤ k−C log k

log log k

(

2k − 2

k − 1

)

.
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Erdős problems:

■ $100 for proving the limit limk→∞ R(k, k)1/k exists.

■ $250 for determining the value of limk→∞ R(k, k)1/k if it
exists.

If limk→∞ R(k, k)1/k exists, then it is between
√

2 to 4.
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■ V : a set of n players.

■ (x, y) means player x beats y.

■ Tournament on V : an orientation T = (V, E) of
complete graphs on V . For each pair of plays x and y,
either (x, y) or (y, x) is in E.

We say T has property Sk if for every set of k players there
is one beats all.
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Question (by Schütte): Is there a tournament satisfying
the property Sk?

Theorem (Erdős [1963]) If
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Question (by Schütte): Is there a tournament satisfying
the property Sk?

Theorem (Erdős [1963]) If
(

n
k

)

(1 − 2−k)n−k < 1, then
there is a tournament on n vertices that has the property Sk.

Proof: Consider a random tournament on V . For each pair
x and y, the choice of (x, y) and (y, x) is equally likely.

■ K: a fixed subset of size k of V .
■ AK: the event that there is no vertex that beats all the

members of K.

Pr(AK) = (1 − 2−k)n−k.
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Pr
(

∨K∈(V

k)
AK

)

≤
∑

K∈(V

k)

Pr(AK)

=

(

n

k

)

(1 − 2−k)n−k < 1.

Therefore, with positive probability, no event AK occurs;
that is, there is a tournament on n vertices that has the
property Sk.
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Let f(k) denote the minimum possible number of vertices of
a tournament that has the property Sk.
On one hand, since

(

n
k

)

< (en/k)k and

(1 − 2−k)n−k < 2(n−k)/2k

, we have

f(k) ≤ (1 + o(1)) ln 2 · k2 · 2k.

On the other hand, Szekeres proved

f(k) ≥ c1k2k.
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■ (Ω, P ): a probability space.

■ X : Ω → R: a random variable.

■ The expectation of X, denoted by E(X), is defined as

E(X) =
∑

v∈Ω

X(v)pv.

Linearity of expectation:

E(X + Y ) = E(X) + E(Y ).
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A dominating set of a graph G = (V, E) is a set U ⊆ V
such that vertex v ∈ V − U has at least one neighbor in U .

Theorem: Let G = (V, E) be a graph on n vertices, with
minimum degree δ > 1. Then G has a dominating set of at

most 1+ln(δ+1)
δ+1 n.
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■ p ∈ [0, 1]: a probability chosen later.

■ X: a random set, whose vertex is picked randomly and
independently with probability p.

■ Y := YX : the set of vertices in V − X that do not have
any neighbor in X.

E(|X|) =
∑

v

Pr(v ∈ X) = np.

E(|Y |) =
∑

v

Pr(v ∈ Y )

≤ n(1 − p)δ+1.
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Let U = X ∪ YX . The set U is clearly a dominating set.
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Let U = X ∪ YX . The set U is clearly a dominating set. We
have

E(|U |) = E(X) + E(Y )

≤ np + n(1 − p)δ+1

≤ n(p + e−p(δ+1)).

Choose p = ln(δ+1)
δ+1 to minimize the upper bound. There is a

dominating set of size at most

1 + ln(δ + 1)

δ + 1
n.
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H = (V, E) is an r-uniform hypergraph (r-graph, for short).

■ V : the set of vertices
■ E: the set of edges, each edge has cardinality r.

A 3-uniform loose cycle A 3-uniform tight cycle
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We say a r-uniform hypergraph H has property B if there
is a two-coloring of V such that no edge is monochromatic.

Let m(r) denote the minimum possible number of edges of
an r-uniform hypergraph that does not have property B.

Proposition [Erdős (1963)] Every r-uniform hypergraph
with less than 2r−1 edges has property B. Therefore
m(r) ≥ 2r−1.
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Let H be an r-uniform hypergraph with less than 2r−1

edges. Color V randomly by two colors. For each edge
e ∈ E, let Ae be the event that e is monochromatic.

Pr(Ae) = 21−r.

Therefore,

Pr (∨e∈EAe) ≤
∑

e∈E

Pr(Ae) < 1.

There is a two-coloring without monochromatic edges. �
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Theorem (Erdős [1964]): m(r) < (1 + o(1))e ln 2
4 r22r.

Proof: Fix V with n points. Let χ be a coloring of V with
a points in one color, b = n − a points in the other. Let
S ⊂ V be a uniformly selected r-set. Then

Pr(S is monochromatic under χ) =

(

a
r

)

+
(

b
r

)

(

n
r

) .

Assume n = 2k is even. Then
(

a
r

)

+
(

b
r

)

reaches the
minimum when a = b = k. Thus

Pr(S is monochromatic under χ) ≥ 2
(

k
r

)

(

n
r

) .
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■ Let p :=
2(k

r)
(n

r)
.

■ Pick m r-edges S1, . . . , Sm uniformly and independently
from

(

V
r

)

.

■ Let H = (V, E) where E = {S1, . . . , Sm}.

For each coloring χ, let Aχ be the event that none of Si are
monochromatic.

Pr(Aχ) ≤ (1 − p)m.

Pr(∨χAχ) ≤
∑

χ

Pr(Aχ) ≤ 2n(1 − p)m.
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Choose m = ⌈n ln 2
p ⌉. Then 2n(1 − p)m < 1. There is a

positive probability that H does not have property B. Hence,

m(r) ≤ ⌈n ln 2

p
⌉.
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Choose m = ⌈n ln 2
p ⌉. Then 2n(1 − p)m < 1. There is a

positive probability that H does not have property B. Hence,

m(r) ≤ ⌈n ln 2

p
⌉.

p =
2
(

k
r

)

(

n
r

)

= 21−r
r−1
∏

i=0

n − 2i

n − i

≈ 21−re−r2/2n.
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Choose n = r2

2 to minimize n/p. We get

m = ⌈n ln 2

p
⌉

≈ (ln 2)2r−1ner2/2n

≈ e ln 2

4
r22r.

Hence m(r) < (1 + o(1))e ln 2
4 r22r. �
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Beck [1978]:

m(r) ≥ r1/3−ǫ2r.

Radhakrishnan-Srinivasan [2000]: (best lower bound)

m(r) ≥ Ω

(

( r

ln r

)1/2

2r

)

.

Theorem (Erdős [1964]): (best upper bound)

m(r) < (1 + o(1))
e ln 2

4
r22r.

m(2) = 3, m(3) = 7, 20 ≤ m(4) ≤ 23.
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