

Probabilistic Methods in Combinatorics Lecture 1

Linyuan Lu University of South Carolina

Mathematical Sciences Center at Tsinghua University November 16, 2011 – December 30, 2011

Textbook: The probabilistic method (3rd edition) by Noga Alon and Joel H. Spencer, publisher: Wiley, 2008.

Textbook: The probabilistic method (3rd edition) by Noga Alon and Joel H. Spencer, publisher: Wiley, 2008.

Goal: We shall cover some selected topics in the textbook and some supplemental material.

Textbook: The probabilistic method (3rd edition) by Noga Alon and Joel H. Spencer, publisher: Wiley, 2008.

Goal: We shall cover some selected topics in the textbook and some supplemental material.

Lecture time: (November 16-December 30) Wednesday, Friday, 1:00pm-2:45pm

Textbook: The probabilistic method (3rd edition) by Noga Alon and Joel H. Spencer, publisher: Wiley, 2008.

Goal: We shall cover some selected topics in the textbook and some supplemental material.

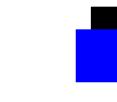
Lecture time: (November 16-December 30) Wednesday, Friday, 1:00pm-2:45pm

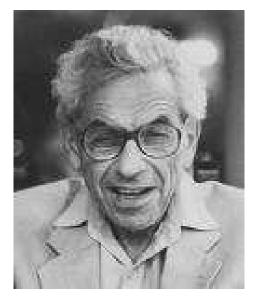
Location: Conference room 3, floor 2.

History

Paul Erdős: 1913–1996 1525 papers 511 coauthors

History

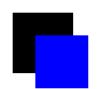




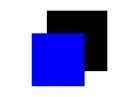
Paul Erdős: 1913–1996 1525 papers 511 coauthors

Main contributions:

- Ramsey theory
- Probabilistic method
- Extremal combinatorics
- Additive number theory



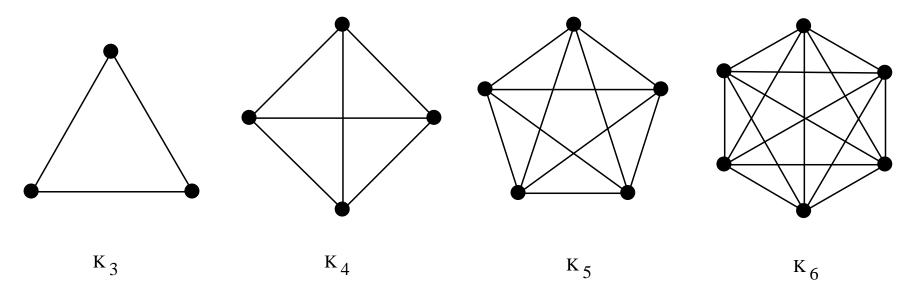
Notation



A graph G consists of two sets V and E.

- V is the set of vertices (or nodes).
- *E* is the set of edges, where each edge is a pair of vertices.

Complete graphs K_n :



Ramsey number R(k,k)

Ramsey number R(k, l): the smallest integer n such that in any two-coloring of the edges of a complete graph on nvertices K_n by red and blue, either there is a red K_k or a blue K_l .

Ramsey number R(k,k)

Ramsey number R(k, l): the smallest integer n such that in any two-coloring of the edges of a complete graph on nvertices K_n by red and blue, either there is a red K_k or a blue K_l .

Major question: How large is R(k, k)?

Ramsey number R(k,k)

Ramsey number R(k, l): the smallest integer n such that in any two-coloring of the edges of a complete graph on nvertices K_n by red and blue, either there is a red K_k or a blue K_l .

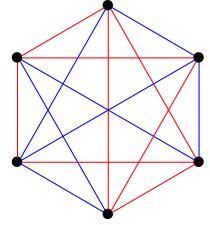
Major question: How large is R(k, k)?

Proposition (by Erdős): If $\binom{n}{2}2^{1-\binom{k}{2}} < 1$, then R(k,k) > n. Thus

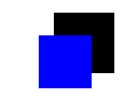
$$R(k,k) > \frac{k}{e\sqrt{2}}2^{k/2}.$$

Ramsey number R(3,3) = 6

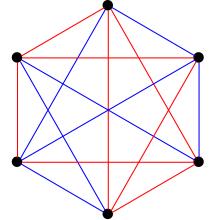
If edges of K_6 are 2-colored then there exists a monochromatic triangle.



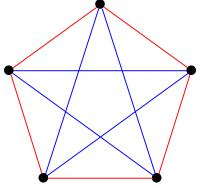
Ramsey number R(3,3) = 6



If edges of K_6 are 2-colored then there exists a monochromatic triangle.



There exists a 2-coloring of edges of K_5 with no monochromatic triangle.



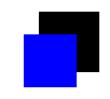
Erdős' idea

To prove R(k,k) > n, we need construct a 2-coloring of K_n so that it contains no red K_k or blue K_n .

Erdős' idea

To prove R(k,k) > n, we need construct a 2-coloring of K_n so that it contains no red K_k or blue K_n .

Make the set of all 2-colorings of K_n into a probability space, then show the event "no red K_k or blue K_n " with positive probability.



Finite probability space (Ω, P) :

• $\Omega := \{s_1, s_2, \dots, s_n\}$: a set of n elements.

Finite probability space (Ω, P) :

- $\Omega := \{s_1, s_2, \dots, s_n\}$: a set of n elements.
- $P: \Omega \rightarrow [0, 1]$: a probability measure. View P as a vector (p_1, p_2, \dots, p_n) , where $0 \le p_i \le 1$ and $\sum_{i=1}^{n} p_i = 1$.

Finite probability space (Ω, P) :

- $\Omega := \{s_1, s_2, \dots, s_n\}$: a set of n elements.
- $P: \Omega \to [0, 1]$: a probability measure. View P as a vector (p_1, p_2, \dots, p_n) , where $0 \le p_i \le 1$ and $\sum_{i=1}^{n} p_i = 1$.

An event A: a subset of Ω .

Finite probability space (Ω, P) :

- $\Omega := \{s_1, s_2, \dots, s_n\}$: a set of n elements.
- $P: \Omega \rightarrow [0, 1]$: a probability measure. View P as a vector (p_1, p_2, \ldots, p_n) , where $0 \le p_i \le 1$ and $\sum_{i=1}^{n} p_i = 1$.
 - An event A: a subset of Ω .
 - Probability of A: $Pr(A) = \sum_{s_i \in A} p_i$.

Finite probability space (Ω, P) :

- $\Omega := \{s_1, s_2, \dots, s_n\}$: a set of n elements.
- $P: \Omega \rightarrow [0, 1]$: a probability measure. View P as a vector (p_1, p_2, \dots, p_n) , where $0 \le p_i \le 1$ and $\sum_{i=1}^{n} p_i = 1$.
 - An event A: a subset of Ω .
 - Probability of A: $Pr(A) = \sum_{s_i \in A} p_i$.
 - Two events A and B are independent if

$$\Pr(AB) = \Pr(A)\Pr(B).$$

Color every edge of K_n independently either red or blue, where each color is equally likely.

Color every edge of K_n independently either red or blue, where each color is equally likely.

For any fixed set R of k vertices, let A_R be the event that all pairs with both ends in R are either all red or all blue.

Color every edge of K_n independently either red or blue, where each color is equally likely.

For any fixed set R of k vertices, let A_R be the event that all pairs with both ends in R are either all red or all blue.

 $\Pr(A_R) = 2^{1 - \binom{k}{2}}.$

Color every edge of K_n independently either red or blue, where each color is equally likely.

For any fixed set R of k vertices, let A_R be the event that all pairs with both ends in R are either all red or all blue.

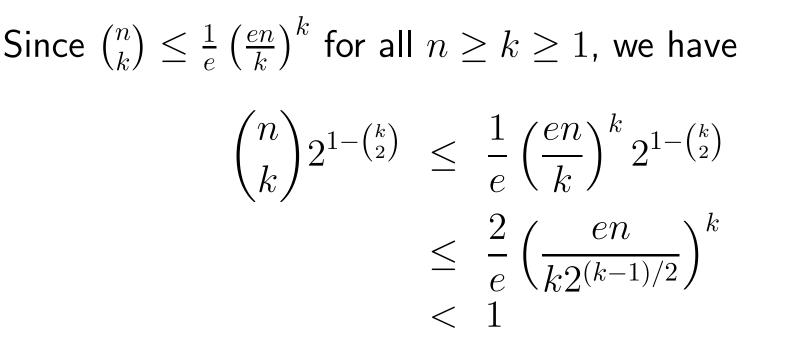
$$\Pr(A_R) = 2^{1 - \binom{k}{2}}.$$
$$\Pr(\bigvee_R A_R) \le \sum_R \Pr(A_R) = \binom{n}{k} 2^{1 - \binom{k}{2}} < 1.$$

Color every edge of K_n independently either red or blue, where each color is equally likely.

For any fixed set R of k vertices, let A_R be the event that all pairs with both ends in R are either all red or all blue.

$$\Pr(A_R) = 2^{1 - \binom{k}{2}}.$$
$$\Pr(\lor_R A_R) \le \sum_R \Pr(A_R) = \binom{n}{k} 2^{1 - \binom{k}{2}} < 1.$$
Hence
$$\Pr(\land_R \bar{A}_R) = 1 - \Pr(\lor_R A_R) > 0.$$

Estimation of n



provided $n \leq \frac{k}{e\sqrt{2}} 2^{k/2}$.

Estimation of n

Since
$$\binom{n}{k} \leq \frac{1}{e} \left(\frac{en}{k}\right)^k$$
 for all $n \geq k \geq 1$, we have

$$\binom{n}{k} 2^{1-\binom{k}{2}} \leq \frac{1}{e} \left(\frac{en}{k}\right)^k 2^{1-\binom{k}{2}}$$

$$\leq \frac{2}{e} \left(\frac{en}{k2^{(k-1)/2}}\right)^k$$

$$< 1$$

provided
$$n \leq \frac{k}{e\sqrt{2}} 2^{k/2}$$
.
Hence,

$$R(k,k) > \frac{k}{e\sqrt{2}}2^{k/2}.$$

How good is the bound?

Erdős [1947]:

 $R(k,k) > (1+o(1))\frac{1}{e\sqrt{2}}k2^{k/2}.$

How good is the bound?

Erdős [1947]:

$$R(k,k) > (1+o(1))\frac{1}{e\sqrt{2}}k2^{k/2}.$$

Spencer [1990]:

$$R(k,k) > (1+o(1))\frac{1}{e}k2^{k/2}.$$

How good is the bound?

Erdős [1947]:

$$R(k,k) > (1+o(1))\frac{1}{e\sqrt{2}}k2^{k/2}.$$

Spencer [1990]:

$$R(k,k) > (1+o(1))\frac{1}{e}k2^{k/2}.$$

Spencer [1975] (using Lovasz Local Lemma)

$$R(k,k) > (1+o(1))\frac{\sqrt{2}}{e}k2^{k/2}$$

Upper bound of R(k,k)

A trivial bound:

$$R(k,k) \le \binom{2k-2}{k-1}.$$

Upper bound of R(k,k)

A trivial bound:

$$R(k,k) \le \binom{2k-2}{k-1}.$$

Thomason [1988]:

$$R(k,k) \le k^{-1/2 + c/\sqrt{\log k}} \binom{2k-2}{k-1}.$$

Upper bound of R(k,k)

A trivial bound:

$$R(k,k) \le \binom{2k-2}{k-1}.$$

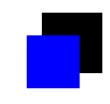
Thomason [1988]:

$$R(k,k) \le k^{-1/2 + c/\sqrt{\log k}} \binom{2k-2}{k-1}.$$

Colon [2009]:

$$R(k,k) \le k^{-C\frac{\log k}{\log \log k}} \binom{2k-2}{k-1}$$

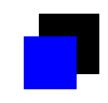
Diagonal Ramsey Problem



Erdős problems:

• \$100 for proving the limit $\lim_{k\to\infty} R(k,k)^{1/k}$ exists.

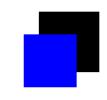
Diagonal Ramsey Problem



Erdős problems:

- \$100 for proving the limit $\lim_{k\to\infty} R(k,k)^{1/k}$ exists.
- \$250 for determining the value of $\lim_{k\to\infty} R(k,k)^{1/k}$ if it exists.

Diagonal Ramsey Problem

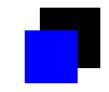


Erdős problems:

- \$100 for proving the limit $\lim_{k\to\infty} R(k,k)^{1/k}$ exists.
- \$250 for determining the value of $\lim_{k\to\infty} R(k,k)^{1/k}$ if it exists.

If $\lim_{k\to\infty} R(k,k)^{1/k}$ exists, then it is between $\sqrt{2}$ to 4.

Tournament

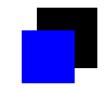


• V: a set of n players.

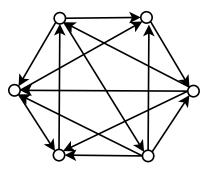
Tournament

- V: a set of n players.
- (x, y) means player x beats y.

Tournament

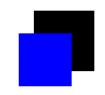


- V: a set of n players.
 - (x, y) means player x beats y.
- **Tournament on** V: an orientation T = (V, E) of complete graphs on V. For each pair of plays x and y, either (x, y) or (y, x) is in E.



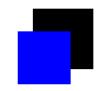
We say T has **property** S_k if for every set of k players there is one beats all.

Question (by Schütte): Is there a tournament satisfying the property S_k ?



Question (by Schütte): Is there a tournament satisfying the property S_k ?

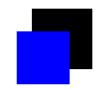
Theorem (Erdős [1963]) If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, then there is a tournament on n vertices that has the property S_k .



Question (by Schütte): Is there a tournament satisfying the property S_k ?

Theorem (Erdős [1963]) If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, then there is a tournament on n vertices that has the property S_k .

Proof: Consider a random tournament on V. For each pair x and y, the choice of (x, y) and (y, x) is equally likely.

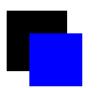


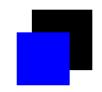
Question (by Schütte): Is there a tournament satisfying the property S_k ?

Theorem (Erdős [1963]) If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, then there is a tournament on n vertices that has the property S_k .

Proof: Consider a random tournament on V. For each pair x and y, the choice of (x, y) and (y, x) is equally likely.

- K: a fixed subset of size k of V.
 - A_K : the event that there is no vertex that beats all the members of K.





Question (by Schütte): Is there a tournament satisfying the property S_k ?

Theorem (Erdős [1963]) If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, then there is a tournament on n vertices that has the property S_k .

Proof: Consider a random tournament on V. For each pair x and y, the choice of (x, y) and (y, x) is equally likely.

• K: a fixed subset of size k of V.

 A_K : the event that there is no vertex that beats all the members of K.

$$\Pr(A_K) = (1 - 2^{-k})^{n-k}.$$

Proof continues

$$\Pr\left(\bigvee_{K \in \binom{V}{k}} A_K\right) \leq \sum_{K \in \binom{V}{k}} \Pr(A_K)$$
$$= \binom{n}{k} (1 - 2^{-k})^{n-k} < 1.$$

Therefore, with positive probability, no event A_K occurs; that is, there is a tournament on n vertices that has the property S_k .

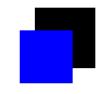
Estimation of n

Let f(k) denote the minimum possible number of vertices of a tournament that has the property S_k . On one hand, since $\binom{n}{k} < (en/k)^k$ and $(1-2^{-k})^{n-k} < 2^{(n-k)/2^k}$, we have

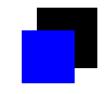
$$f(k) \le (1 + o(1)) \ln 2 \cdot k^2 \cdot 2^k.$$

On the other hand, **Szekeres** proved

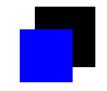
 $f(k) \ge c_1 k 2^k.$



• (Ω, P) : a probability space.

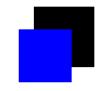


- (Ω, P) : a probability space.
- $X: \Omega \to \mathbb{R}$: a random variable.



- (Ω, P) : a probability space.
 - $X: \Omega \to \mathbb{R}$: a random variable.
 - The **expectation** of X, denoted by E(X), is defined as

$$\mathcal{E}(X) = \sum_{v \in \Omega} X(v) p_v.$$



- (Ω, P) : a probability space.
 - $X: \Omega \to \mathbb{R}$: a random variable.
 - The **expectation** of X, denoted by E(X), is defined as

$$\mathcal{E}(X) = \sum_{v \in \Omega} X(v) p_v.$$

Linearity of expectation:

$$E(X + Y) = E(X) + E(Y).$$

Dominating set

A dominating set of a graph G = (V, E) is a set $U \subseteq V$ such that vertex $v \in V - U$ has at least one neighbor in U.

Dominating set

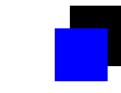
A dominating set of a graph G = (V, E) is a set $U \subseteq V$ such that vertex $v \in V - U$ has at least one neighbor in U.

Theorem: Let G = (V, E) be a graph on n vertices, with minimum degree $\delta > 1$. Then G has a dominating set of at most $\frac{1+\ln(\delta+1)}{\delta+1}n$.

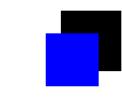
• $p \in [0, 1]$: a probability chosen later.

• $p \in [0, 1]$: a probability chosen later.

X: a random set, whose vertex is picked randomly and independently with probability p.

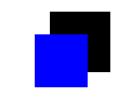


- $p \in [0, 1]$: a probability chosen later.
 - X: a random set, whose vertex is picked randomly and independently with probability p.
- $Y := Y_X$: the set of vertices in V X that do not have any neighbor in X.



- $p \in [0, 1]$: a probability chosen later.
 - X: a random set, whose vertex is picked randomly and independently with probability p.
- $Y := Y_X$: the set of vertices in V X that do not have any neighbor in X.

$$\mathcal{E}(|X|) = \sum_{v} \Pr(v \in X) = np.$$

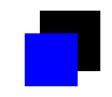


- $p \in [0, 1]$: a probability chosen later.
 - X: a random set, whose vertex is picked randomly and independently with probability p.
- $Y := Y_X$: the set of vertices in V X that do not have any neighbor in X.

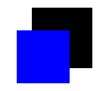
$$\mathcal{E}(|X|) = \sum_{v} \Pr(v \in X) = np.$$

$$E(|Y|) = \sum_{v} \Pr(v \in Y)$$

$$\leq n(1-p)^{\delta+1}.$$



Let $U = X \cup Y_X$. The set U is clearly a dominating set.



Let $U = X \cup Y_X$. The set U is clearly a dominating set. We have

$$E(|U|) = E(X) + E(Y)$$

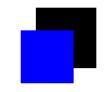
$$\leq np + n(1-p)^{\delta+1}$$

$$\leq n(p + e^{-p(\delta+1)}).$$

Choose $p = \frac{\ln(\delta+1)}{\delta+1}$ to minimize the upper bound. There is a dominating set of size at most

$$\frac{1+\ln(\delta+1)}{\delta+1}n.$$

Hypergraphs



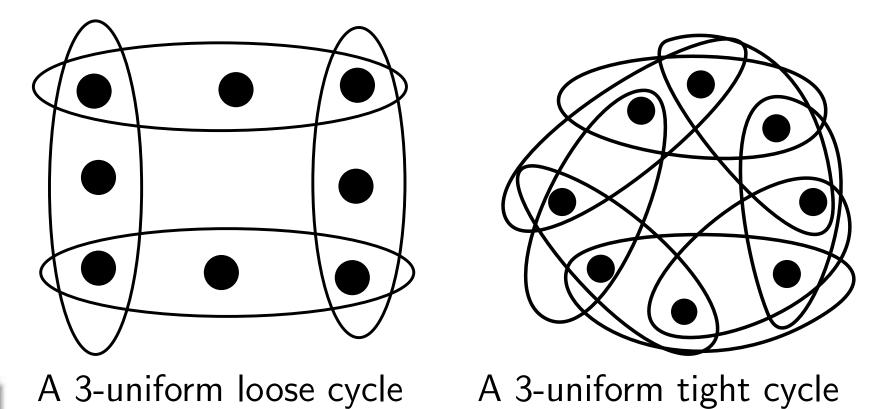
H = (V, E) is an *r*-uniform hypergraph (*r*-graph, for short).

- V: the set of vertices
- E: the set of edges, each edge has cardinality r.

Hypergraphs

H = (V, E) is an *r*-uniform hypergraph (*r*-graph, for short).

- V: the set of vertices
- E: the set of edges, each edge has cardinality r.



Property B problem

We say a r-uniform hypergraph H has **property B** if there is a two-coloring of V such that no edge is monochromatic.

Property B problem

We say a r-uniform hypergraph H has **property B** if there is a two-coloring of V such that no edge is monochromatic.

Let m(r) denote the minimum possible number of edges of an *r*-uniform hypergraph that does not have property *B*.

Property B problem

We say a r-uniform hypergraph H has **property B** if there is a two-coloring of V such that no edge is monochromatic.

Let m(r) denote the minimum possible number of edges of an *r*-uniform hypergraph that does not have property *B*.

Proposition [Erdős (1963)] Every *r*-uniform hypergraph with less than 2^{r-1} edges has property B. Therefore $m(r) \ge 2^{r-1}$.

Let H be an r-uniform hypergraph with less than 2^{r-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic.

$$\Pr(A_e) = 2^{1-r}.$$

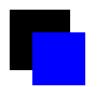
Let H be an r-uniform hypergraph with less than 2^{r-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic.

$$\Pr(A_e) = 2^{1-r}.$$

Therefore,

$$\Pr\left(\vee_{e\in E}A_e\right) \le \sum_{e\in E}\Pr(A_e) < 1.$$

There is a two-coloring without monochromatic edges.



Theorem (Erdős [1964]): $m(r) < (1 + o(1))\frac{e \ln 2}{4}r^2 2^r$.

Theorem (Erdős [1964]): $m(r) < (1 + o(1))\frac{e \ln 2}{4}r^22^r$.

Proof: Fix V with n points. Let χ be a coloring of V with a points in one color, b = n - a points in the other. Let $S \subset V$ be a uniformly selected r-set.

Theorem (Erdős [1964]): $m(r) < (1 + o(1))\frac{e \ln 2}{4}r^2 2^r$.

Proof: Fix V with n points. Let χ be a coloring of V with a points in one color, b = n - a points in the other. Let $S \subset V$ be a uniformly selected r-set. Then

 $\Pr(S \text{ is monochromatic under } \chi) = \frac{\binom{a}{r} + \binom{b}{r}}{\binom{n}{r}}.$

Theorem (Erdős [1964]): $m(r) < (1 + o(1))\frac{e \ln 2}{4}r^2 2^r$.

Proof: Fix V with n points. Let χ be a coloring of V with a points in one color, b = n - a points in the other. Let $S \subset V$ be a uniformly selected r-set. Then

$$\Pr(S \text{ is monochromatic under } \chi) = \frac{\binom{a}{r} + \binom{b}{r}}{\binom{n}{r}}.$$

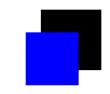
Assume n = 2k is even. Then $\binom{a}{r} + \binom{b}{r}$ reaches the minimum when a = b = k. Thus

 $\Pr(S \text{ is monochromatic under } \chi) \geq \frac{2\binom{k}{r}}{\binom{n}{r}}.$

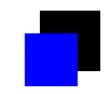


• Let $p := \frac{2\binom{k}{r}}{\binom{n}{r}}$.

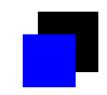
continue



- Let $p := \frac{2\binom{k}{r}}{\binom{n}{r}}$.
- Pick m r-edges S_1, \ldots, S_m uniformly and independently from $\binom{V}{r}$.



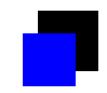
- Let $p := \frac{2\binom{k}{r}}{\binom{n}{r}}$.
 - Pick m r-edges S_1, \ldots, S_m uniformly and independently from $\binom{V}{r}$.
 - Let H = (V, E) where $E = \{S_1, \dots, S_m\}$.



- Let $p := \frac{2\binom{k}{r}}{\binom{n}{r}}$.
- Pick m r-edges S_1, \ldots, S_m uniformly and independently from $\binom{V}{r}$.
- Let H = (V, E) where $E = \{S_1, \dots, S_m\}$.

For each coloring $\chi,$ let A_{χ} be the event that none of S_i are monochromatic.

$$\Pr(A_{\chi}) \le (1-p)^m.$$

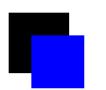


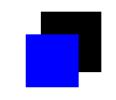
- Let $p := \frac{2\binom{k}{r}}{\binom{n}{r}}$.
- Pick m r-edges S_1, \ldots, S_m uniformly and independently from $\binom{V}{r}$.
- Let H = (V, E) where $E = \{S_1, \dots, S_m\}$.

For each coloring $\chi,$ let A_{χ} be the event that none of S_i are monochromatic.

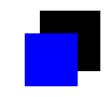
$$\Pr(A_{\chi}) \le (1-p)^m.$$

$$\Pr(\bigvee_{\chi} A_{\chi}) \le \sum_{\chi} \Pr(A_{\chi}) \le 2^n (1-p)^m.$$



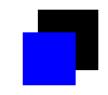


Choose $m = \lceil \frac{n \ln 2}{p} \rceil$. Then $2^n (1-p)^m < 1$. There is a positive probability that H does not have property B.



Choose $m = \lceil \frac{n \ln 2}{p} \rceil$. Then $2^n (1-p)^m < 1$. There is a positive probability that H does not have property B. Hence,

$$m(r) \le \lceil \frac{n \ln 2}{p} \rceil.$$



Choose $m = \lceil \frac{n \ln 2}{p} \rceil$. Then $2^n (1-p)^m < 1$. There is a positive probability that H does not have property B. Hence,

$$m(r) \le \lceil \frac{n \ln 2}{p} \rceil.$$

$$p = \frac{2\binom{k}{r}}{\binom{n}{r}} \\ = 2^{1-r} \prod_{i=0}^{r-1} \frac{n-2i}{n-i} \\ \approx 2^{1-r} e^{-r^2/2n}.$$

Optimization

Choose
$$n = \frac{r^2}{2}$$
 to minimize n/p .

Optimization

Choose $n = \frac{r^2}{2}$ to minimize n/p. We get

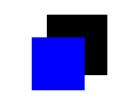
$$m = \left\lceil \frac{n \ln 2}{p} \right\rceil$$
$$\approx (\ln 2) 2^{r-1} n e^{r^2/2n}$$
$$\approx \frac{e \ln 2}{4} r^2 2^r.$$

Optimization

Choose $n = \frac{r^2}{2}$ to minimize n/p. We get

$$m = \left\lceil \frac{n \ln 2}{p} \right\rceil$$
$$\approx (\ln 2) 2^{r-1} n e^{r^2/2n}$$
$$\approx \frac{e \ln 2}{4} r^2 2^r.$$

Hence $m(r) < (1 + o(1))\frac{e \ln 2}{4}r^2 2^r$.



Beck [1978]:

 $m(r) \ge r^{1/3 - \epsilon} 2^r.$

Property B problem

Beck [1978]:

$$m(r) \ge r^{1/3 - \epsilon} 2^r.$$

Radhakrishnan-Srinivasan [2000]: (best lower bound)

$$m(r) \ge \Omega\left(\left(\frac{r}{\ln r}\right)^{1/2} 2^r\right).$$

Property B problem

Beck [1978]:

$$m(r) \ge r^{1/3 - \epsilon} 2^r.$$

Radhakrishnan-Srinivasan [2000]: (best lower bound)

$$m(r) \ge \Omega\left(\left(\frac{r}{\ln r}\right)^{1/2} 2^r\right).$$

Theorem (Erdős [1964]): (best upper bound)

$$m(r) < (1+o(1))\frac{e\ln 2}{4}r^22^r$$

Property B problem

Beck [1978]:

$$m(r) \ge r^{1/3 - \epsilon} 2^r.$$

Radhakrishnan-Srinivasan [2000]: (best lower bound)

$$m(r) \ge \Omega\left(\left(\frac{r}{\ln r}\right)^{1/2} 2^r\right).$$

Theorem (Erdős [1964]): (best upper bound)

$$m(r) < (1+o(1))\frac{e\ln 2}{4}r^22^r.$$

$$m(2) = 3$$
, $m(3) = 7$, $20 \le m(4) \le 23$.