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Abstract David Vogan gave programmatic conjectures about the Dixmier's map and he made two conjec-

tures that induction may be independent of the choice of parabolic group used and the sheets of orbit data are

conjugated or disjointed[1]. In our previous paper, we gave a geometric version of the parabolic induction of

the geometric orbit datum (i.e. orbit covers), and proved Vogan's �rst conjecture for geometric orbit datum:

the parabolic induction of the geometric orbit datum is independent of the choice of parabolic group. In this

paper, we will prove the other Vogan's conjecture, that is, the sheets are conjugated or disjointed for classical

semisimple complex groups.
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Vogan[1] gave the de�nition of induction of orbit datum. He made two conjectures : the

induction may be independent of the choice of parabolic group used and the sheets of orbit data

are conjugated or disjointed. Since his de�nition is algebraic, and is diÆcult to calculate, it is not

easy to verify them via his algebraic de�nition. But restricted to geometric orbit datum, we gave

a geometric version of Vogan's de�nitions and proved the �rst conjecture in ref. [2]. In this paper

we will prove the other Vogan's conjecture: the sheets are conjugated or disjointed for classical

semisimple complex groups. By the Jordan decomposition of orbit datum[1], we just need to prove:

Theorem 1. For all classical semisimple Lie groups, the sets of nilpotent orbit covers

induced by di�erent rigid nilpotent orbit covers are disjointed.

1 Induced nilpotent orbit cover

With the same notations as in ref. [2], here we assume u; v are both nilpotent. By ref. [3], we

have Gv
=G

v

0
�= G

�
=G

�

0 , where � is a standard triple of v in g by Jacobson-Morozov theorem. Of

course we have Lu=Lu0
�= L

�
0

=L
�

0

0 , where �0 is a standard triple of u in l
[3]. The following lemma

shows we can calculate the induction of nilpotent orbit cover in a better way.

Lemma 1. With notations as above, we can �nd suitable �; �0 such that

1. P� = L
�;

2. L� � L
�

0

and meets all the components of L�
0

, so induces a surjective homomorphism

which coincides with �v given by

�v:L
�
=P

�

0 �! L
�

0

=L
�

0

0 :

Proof. Obviously. Q.E.D.

Remark 1. We also call the pair (�;�) the representation of eO[2]. In the following sections,

we always choose proper �; �0 satisfying the above lemma.

Unlike orbits, which are only dependent on g, orbit covers are dependent on the group G.

The following lemma points out the relation between orbit covers of G and that of its cover group
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eG.
Lemma 2. Let eG and G be two connected Lie groups and �: eG! G the cover map (which

is also a group homomorphism). Then it induces a nature injective map:

�
�: forbit covers of Gg ! forbit covers of eGg

de�ned by ��(v;�)
�
= (v; ��(�)); where ��(�) = �

�1(N)= eGv

0. Here N is the open subgroup of Gv

0

de�ned � (i.e. � = N=G
v

0).

Proof. Obviously. Q.E.D.

Since given a Levi subgroup L of G,
�

L= �
�1(L) is the Levi subgroup of eG. By Lemma 2,

there is an injective map (here still denoted by �
�) from orbit covers of L to that of

�

L. The

following lemma gives the relation between induction for G and induction for eG:
Lemma 3. With notations as above, �� is commutative to Ind, i.e. given an orbit covereOL of L, we have

Ind
eGeL (��( eOL)) = �

�(IndG
L
( eOL)):

Proof. Obviously. Q.E.D.

Corollary 1. Every cover of orbit (of g) is an orbit cover of simple-connected group G.

If G is not simple-connected, only part of such covers which admit a G-action on it become the

orbit cover of G.

2 The induction of orbit covers for classical simple groups

First, we consider the simple groups of type Al, this is the simplest case. By Lemma 3, we

need only consider the simple-connected group SL(n; C ).

Let G = SL(n; C ) with Lie algebra g = sl(n; C ). Choose �, �0 as Lemma 1 does. Let

(�0;�L) be a representation of eOL and (�;�G) be a representation of eOG. Every orbit of G is

1-1 corresponding to a partition of n (an element of P(n)). Given a partition d = (d1; : : : ; dr),

denote the corresponding orbit by Od, then �1(Od) = G
�
=G

�

0 = Zgcd(d1;:::;dr). Given a Levi

subgroup L = S(GL(n1; C ) � � � � � GL(nr; C )) with Lie algebra l, the semisimple part of l is

[l l] = sl(n1; C ) � � � � � sl(nr; C ). Each orbit OL of L is given by partitions (d(1); : : : ; d(r)) where

d
(k)
2 P(nk) for k = 1; : : : ; r.

L
�

0

=L
�

0

0 = Z
gcdfdk

i
j8k;ig:

The induction of orbit is given by:

Let OG = IndG
L
(OL): Then the partition d of OG is given by : di =

P
r

k=1 d
(k)
i
;8i > 1.

The induction of orbit cover:

In the case, G� = P
�. So we have a surjective map:

�v:G
�
=G

�

0 ! L
�

0

=L
�

0

0 :

Denote gcdfd
(k)
i
j 1 6 k 6 r; 1 6 ig by nl and gcdfdi j 1 6 ig by ng, of course nl j ng and ng j n.

Let Zn be the center of G. Notice Zn meets every component of both G� and L�
0

. So there exists

the following commutative diagram:

Zn
id
 ! Zn

# #

Zng
�v

�! Znl
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Here Zl is the multiplication group of the primitive l-th root of unity, and all maps are natural

projective maps. Then: �G = ��1(�L).

De�nition 1. An orbit cover is called rigid, if it cannot be induced from any orbit cover

of any Levi subgroup.

Proposition 1. The non-conjugated sheets of SL(n; ;C) are disjointed.

Proof. In fact, we can write every sheet of orbit covers in G as follows: Given an orbit

cover eOd of G, let (v;�G) be a representation of eOG. Let (f1; : : : ; fk) be the dual partition

of (d1; : : : ; dr) (this partition rewritten as �f = [ �f t11 ; : : : ;
�f tm
m

], where �f1 > � � � > �fm > 0 with

multiplicity t1; : : : ; tm), and ng = gcd(d1; : : : ; dr), �G = Zn0

g
and s = ng=n

0
g
. Since s j ti; 8 1 6

i 6 m, let

L = S(

t1=sz }| {
GL(s �f1; C ) � � � �GL(s �f1; C )� � � � �

tm=sz }| {
GL(s �fm; C ) � � � �GL(s �fm; C )):

Let OL correspond to the partition:

f1z }| {
(s; : : : ; s)� � � � �

fmz }| {
(s; : : : ; s) :

Now (OL; f1g) is the rigid orbit cover of L, and

IndG
L
(OL; f1g) = eOG:

Notice this construction is unique. So two non-conjugated sheets are disjointed. Q.E.D.

Now, we assume g is the simple complex Lie algebra with Cartan type of Bl; Cl, and Dl. Let G

be the corresponding connected algebraic group, i.e. G is one of Sp(2n; C ); SO(n; C ); Spin(n; C );

PSp(2n; C ) and PSO(2n; C ). We will give the induction of nilpotent orbit covers.

We introduce some result of ref. [3] about the induction of (co)adjoint orbit of classical g,

suppose g � sl(N; C ) naturally. Then

Proposition 2. The (co)adjoint orbit of g is naturally one to one corresponding to the

following set P�1(N):

1. For g of type Bl, P1(N) =f the partition of N such that the even parts occur even timesg.

2. For g of type Cl, P�1(N) =f the partition of N such that the odd parts occur even timesg.

3. For g of type Dl, let P1(N) be the same as 1, except that the partition d is very even (it

has no odd part, and all even parts occur even). Then d is corresponding to two orbits, namely

O
I
d
;O

II
d
.

For any partition d, realizing the corresponding orbit Od as Chapter 5 in ref. [3] does, let �

be a proper standard triple � (by Jacobson-Morozov Theorem[3]) containing v 2 Od and Z2 be the

multiplication group of two elements 1;�1. For d 2 P�1(N) (type Cl) we pick up the even parts

and for d 2 P1(N) (type Bl and Dl) we pick up the odd parts: �d1 > � � � > �dm > 0 with multiplicity

s1; : : : ; sm, or we simply denote it by �d = [ �ds11 ; : : : ;
�dsm
m
]. Let �0

d
be the image of sign-diagonal

map : Z2 �! (Z2)
m which sends � to (�s1 ; : : : ; �sm). Denote S((Z2)

m) := f(�1; : : : ; �m) 2 (Z2)
m
jQ

m

k=1 �k = 1g, S(�0
d
) := S((Z2)

m) \�0
d
: Then
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Proposition 3.

G
�
=G

�

0 =

8>>>>>>>>><>>>>>>>>>:

(Z2)
m

G = Sp(2n; C );

S((Z2)
m) G = SO(N; C );

S((Z2)
m) d is not rather odd G = Spin(N; C );

S((Z2)m) d is rather odd G = Spin(N; C );

(Z2)
m
=�0

d
G = PSp(2n; C );

S((Z2)
m)=S(�0

d
) G = PSO(2n; C );

where S((Z2)m) is the central extension of S((Z2)
m) by Z2 = f�1g, i.e. there is a short exact

sequence: 1 �! Z2 �! S((Z2)m) �! S((Z2)
m), where Z2 is the center of S((Z2)m). d is called

rather odd if its odd parts have multiplicity one.

Because of the induction-by-stages[2], we only need to know how the fundamental induction[3]

does. Let l = gl(l; C ) � g
0, where g

0 is classical and of the same type as that of g. The standard

representation of g0 (res. g ) is r (res. N), then 2l + r = N . Let L be the corresponding Levi

subgroup. Then

L =

8>>>>>><>>>>>>:

GL(l; C ) � Sp(2r0; C ) Sp(2n; C );

GL(l; C ) � SO(r; C ) SO(N; C );

GL(l; C ) 
Z2
Spin(r; C ) Spin(N; C );

(GL(l; C ) � Sp(2r0; C ))=�I PSp(2n; C );

(GL(l; C ) � SO(r; C ))=�I PSO(2n; C );

(1)

where 2r0 = r; 2n = N . GL(l; C ) 
Z2
Spin(r; C ) is double cover of GL(l; C ) � SO(r; C ) in

Spin(N; C ). In type Dl, r = 2 is not allowed, while r = 0 there are two non-conjugated L:

Replace GL(l; C ) by GL(l; C )I and GL(l; C )II in the above formula.

Now we assume that the orbit OL of L has zero factor in gl(l; C ), so we can view OL as the

orbit of g0, corresponding to the partition p = [p1; : : : ; pr] 2 P�1(N). We have

Proposition 4. Let G0 be the corresponding Lie group corresponding to g
0 with the same

type of G, except for G = Spin(N; C ), in this case let G0 = SO(r; C ). Then L�
0

=L
�

0

0 = G
0�
=G

0�

0 .

Proposition 5[3]. With notation above, let X be the Cartan type for g, so that X = B;C

or D. Put O = IndG
L
(Op):

1. The partition of O is the X-collapse qX . If g = so(4n; C ) and qX is very even, then qX = q.

2. If g = so(4n; C ), and qX = q is very even, but r 6= 0, then the numeral of O is the same

as that of Op.

3. If g = so(4n; C ), qX = q is very even, and r = 0, then the numeral of O is the same as

that of l if n is even but di�ers from it if n is odd.

Let d = qX , and de�ne �p = [�pt11 ; : : : ; �p
t
m0

m0 ], for the chosen part of p as we de�ne �d in (Corollary

2.4.1 in ref. [3]).

De�nition 2. We call the fundamental induction:

1. of type I, if q = qX and there exists a unique j, 1 6 j 6 m, such that �dj = �pj + 2; �dj+1 =

�pj+1 = �pj : In this case, we have m0 = m� 1, and tk =

8><>:
sk; k < j;

sj + sj+1; k = j;

sk�1; k > j;

2. of type II, if q = qX and not of type I, we have m0 = m; sk = tk; 81 6 k 6 m;
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3. of type III, if q 6= qX . We have m0 = m � 1 and there exists a unique i, 1 6 i 6 m, such

that �di = �pi + 1 with si = 2 and sk =

8><>:
tk; k < i;

2; k = i;

tk�1; k > i:

for type I, de�ne  j: (Z2)
m
! (Z2)

m�1

by

 j (�1; : : : ; �m) =

8><>: (�1; : : : ;

jz }| {
�j�j+1; : : : ; �m); j < m;

(�1; : : : ; �m�1); j = m:

For type III, de�ne 'i : (Z2)
m�1

! (Z2)
m by

'i (�1; : : : ; �m�1) = (�1; : : : ;

i

1; : : : ; �m�1):

Also de�ne �0
p
as �0

d
. Since

 j(�
0
d
) = �0

p
;

'i(�
0
p
) = �0

d
;

 j((S(Z2)
m)) = S((Z2)

m�1);

'i(S((Z2)
m�1)) = S(Z2)

m
;

 j(S((Z2)
m)=S(�0

d
)) = S((Z2)

m�1)=S(�0
p
);

'i(S((Z2)
m�1)=S(�0

p
)) = S((Z2)

m)=S(�0
d
);

these induce the following maps ( simply we denote them by  j and 'i ):

 j : (Z2)
m
=�0

d
�! (Z2)

m�1
=�0

p
surjective;

'i: (Z2)
m�1

=�0
p

�! (Z2)
m
=�0

d
injective;

 j : S((Z2)
m) �! S((Z2)

m�1) surjective;

'i: S((Z2)
m�1) �! S((Z2)

m) injective;

 j : S((Z2)
m)=S(�0

d
) �! S((Z2)

m�1)=S(�0
p
) surjective;

'i: S((Z2)
m�1)=S(�0

p
) �! S((Z2)

m)=S(�0
d
) injective:

For G = Spin(N; C ) and d is rather odd, type III does not exist. But in this case, it becomes

complex by the following lemma:

Lemma 4. Let G = GL(n; C ) be a two-folder cover of GL(n; C ): The rigid orbit G other

than the zero orbit cover occurs when n = 2k and d = 2k, the non-zero rigid orbit cover is the

2-folder cover of Od.

Proof. Obviously. Q.E.D.

Proposition 6. For G = Spin(N; C ) and d is rather odd, consider the Levi subgroup

L = GL(l; C ) 
Z2
Spin(r; C ), if l = 2k, and OL has O[2k] factor in gl(l; C ) and Op factor in

Spin(r; C ): Suppose p is also rather odd. Then we have the following two more fundamental

inductions:

1. of type IV, there exists a unique j such that �dj = �pj + 4, �dj+1 = �pj+1. In this case, we

have m0 = m, sk = tk, 81 6 k 6 m.

2. of type V, we have m0 = m � 2 and there exists a unique i, such that �di = pi + 3 and
�di+1 = pi + 1 with pi even.
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For type IV, L�
0

=L
�

0

0
�= G

�
=G

�

0 :

For type V,

L
�

0

=L
�

0

0
�= Z

m�2
2

�=

(
the product of

even terms of Fk

����� F 2
k
= (�1)�pk(�pk+1)=2; 1 6 k 6 m� 2;

FkFj = �FjFk; k 6= j:

)
;

G
�
=G

�

0
�= Z

m

2

�=

(
the product of

even terms of Ek

����� E2
k
= (�1)

�dk( �dk+1)=2; 1 6 k 6 m;

EkEj = �EjEk; k 6= j:

)
;

(see 14.3 in ref. [4]).

There is a nature injective map �i : L
�

0

=L
�

0

0 �! G
�
=G

�

0 given by:

�i(Fk) =

(
Ek; k < i;

Ek+2; k > i;

which is a group isomorphism. Now for any subgroup �L of L�
0

=L
�

0

0 , we de�ne �G as the

subgroup generated by �i(�L) and EiEi+1. Up to the conjugation of G�
=G

�

0 , �G is well-de�ned

(independent of the choice of �1 in �Ek) and have the following properties:

1. �1 2 �G if and only if �1 2 �L.

2. If �1 2 �L, then �G=f�1g =  
�1
i+1('i(�i)).

Now, we can prove the following theorem.

Theorem 2. With notation above, let eOd = IndG
L
( eOp) with corresponding representations

(�;�G) and (�0;�L), then we have the following induction table (table 1).

Here H is the Z2-central extension of H, i.e. there is an exact sequence : 1 ! Z2 ! H !

H ! 1 where Z2 = f�1g is the central subgroup. If H
0
� H, H 0 stands for the inverse image of

H
0 in H.

3 Sheets of classical semisimple groups

De�nition 3. Given a Levi subgroup L of G and a rigid orbit cover eOL of L, let l
L =

fv 2 l j L � v = vg. A sheet attached to (L; eOL) is fInd
G

L
(vs +OL;�L) j vs 2 l

L
g.

By Jordan decomposition[1], we know every orbit cover of G belongs to some sheets. In this

section, we will prove Theorem 1. If two sheets attached to (L1;
eOL1

) and (L2;
eOL2

) intersect at eOG

(with Jordan decomposition: (L; vs; eOL)), then IndG
L1
(vs + eOL1

) = IndG
L2
(vs + eOL2

) = IndG
L
(vs +

OL;�L). Now, L1; L2 � G
vs = L by ref. [1], we have eOL = IndL

L1
( eOL1

) = IndL
L2
( eOL2

), then

IndG
L1
( eOL1

) = IndG
L2
( eOL2

). Hence, if we show that any two di�erent (here mean not conjugated

in G) sheets cannot share the same nilpotent orbit cover, then we can prove that the di�erent

sheets are disjoint.

First we consider the Levi-subgroups of simple groups. By sec. 2, except for the case G =

Spin(N; C ) and d is rather odd, if eOL is rigid, O has to have zero on the factor of
P
gl(�; C ) in l:

By induction-by-stages[2], we can decompose IndG
L
into the product of a series of the fundamental

induction. What we do in the above section is the last step of the fundamental induction for the

simple groups (table 1). Now we will list the middle step of the fundamental induction (table 2)

for the simple groups, then show that di�erent sheets have di�erent nilpotent orbit covers.

Let g be the Lie algebra of G, then g = m + g
0 (where m =

P
gl(�; C ) and g

0 is the simple

Lie algebra of type Bl; Cl or Dl). Consider a maximal Levi subalgebra l = m+ gl(l; C ) + g
00 of g:
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Table 1 Induction of orbit cover

G Type G�=G
�
0 L�

0

=L
�0

0 �G

I (Z2)
m (Z2)

m�1  �1
j

(�L)

Sp(2n; C ) II (Z2)
m (Z2)

m �L

III (Z2)
m (Z2)

m�1 'i(�L)

SO(N; C ) I S((Z2)
m) S((Z2)

m�1)  �1
j

(�L)

Spin(N; C ) for d II S((Z2)
m) S((Z2)

m) �L

is not rather odd III S((Z2)
m) S((Z2)

m�1) 'i(�L)

I S((Z2)m) S((Z2)
m�1)  �1

j
(�L)

Spin(N; C ) for d
II S((Z2)m) S((Z2)

m) �L

IV S((Z2)m) S((Z2)m) �L

is rather odd
V S((Z2)m) S((Z2)m�2) �G

I (Z2)
m=�0

d
(Z2)

m�1=�0

p  �1
j

(�L)

PSp(2n; C ) II (Z2)
m=�0

d
(Z2)

m=�0

p �L

III (Z2)
m=�0

d
(Z2)

m�1=�0

p 'i(�L)

I S((Z2)
m)=S(�0

d
) S((Z2)

m�1)=S(�0

p)  �1
j

(�L)

PSO(2n; C ) II S((Z2)
m)=S(�0

d
) S((Z2)

m)=S(�0

p) �L

III S((Z2)
m)=S(�0

d
) S((Z2)

m�1)=S(�0

p) 'i(�L)

Let L be the corresponding Levi subgroup (L has the same form as that of G except additional

GL-factor GL(l; C )). Suppose that the dimension of the standard representation of g0 (res. g00) is

N (res. r). p 2 P�(r) de�nes an orbit Op of l with zero factor outside g
00. Let eOd = IndG

L
( eOp),

here d 2 P�(N) as above section and p. Let

M =

(
GL(�; C ) 
Z2

� � � 
Z2
GL(�; C ); G = Spin(�; C );

GL(�; C ) � � � � �GL(�; C ); otherwise:

We have the following fundamental induction (table 2).

Table 2 Fundamental induction of orbit cover with zero in GL-factor(2)

G Type G�=G
�
0 L�

0

=L
�0

0 �G

I (Z2)
m (Z2)

m�1  �1
j

(�L)

M � Sp(2n; C ) II (Z2)
m (Z2)

m �L

III (Z2)
m (Z2)

m�1 'i(�L)

I S((Z2)
m) S((Z2)

m�1)  �1
j

(�L)

II S((Z2)
m) S((Z2)

m) �L

M�SO(N; C )

M
Z2Spin(N; C )
III S((Z2)

m) S((Z2)
m�1) 'i(�L)

I (Z2)
m=�0

d
(Z2)

m�1=�0

p  �1
j

(�L)

(M�Sp(2n; C ))=� I II (Z2)
m=�0

d
(Z2)

m=�0

p �L

III (Z2)
m=�0

d
(Z2)

m�1=�0

p 'i(�L)

I S((Z2)
m)=S(�0

d
) S((Z2)

m�1)=S(�0

p)  �1
j

(�L)

(M�SO(2n; C )) II S((Z2)
m)=S(�0

d
) S((Z2)

m)=S(�0

p) �L

III S((Z2)
m)=S(�0

d
) S((Z2)

m�1)=S(�0

p) 'i(�L)

This table is obtained by Proposition 6. In the rest of this section, we simply talk L1 � L2

means L1 is conjugated to L2 in G, eOL1
� eOL2

means (L1;
eOL1

) is conjugated to (L2;
eOL2

) in G,
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L1 � L2 means 9L
0
1 and L

0
2 such that L1 � L

0
2 � L

0
2 � L2. Now, whenever L1 � L2, Ind

L2

L1
( eOL1

)

is de�ned by Ind
L

0

2

L
0

1

( eOL
0

1

) at the meaning of \�".

Remark 2. Given two orbit covers eO1 and eO2 of the same L, eO1 �
eO2 does not mean eO1

is conjugated to eO2 in L, but they have the same partition. This case only occurs in that L is

of type D2l0 and G is of type Bl or D2l+1, where eO1 and eO2 are corresponding to the same very

even partition.

Corollary 2. If IndG
L
is the fundamental induction, then for any �G 2 Im(IndG

L
), there

exist a unique �l such that IndG
L
(�L) = �G . So we can de�ne (IndG

L
)
�1
(�G) = �L.

Now, we consider the Levi-subgroups of classical semisimple groups.

Lemma 5. Given two di�erent fundamental inductions satisfying: IndG
L1
( eOL1

) = IndG
L2
( eOL2

),

then there exist a Levi subgroup L and orbit cover eOL such that L � L1 ; L � L2 and

eOL1
� IndL1

L
( eOL);eOL2

� IndL2

L
( eOL):

Proof. First: Let G be a simple group.

Consider a special case : two induction types are type I and type II (so i; j are de�ned) and

i = j or i = j + 1. Since 'i(�) =  
�1
j
(�) never happens, by IndG

L1
( eOL1

) = IndG
L2
( eOL2

) we know

this special case does not occur here. We construct L and OL as follows:

Suppose that the partition of OL1
(res.OL2

) is p(1) (res. p(2)), let l = m+gl(l1; C )+gl(l2 ; C )+

gN�2l1�2l2 with L the corresponding Levi subgroup of G. Let p 2 P�(N � 2l1 � 2l2) given by

If IndG
L2

is of type I, II let pk =

(
p
(1)
k
� 2; 1 6 k 6 l2;

p
(1)
k
; k > l2:

If IndG
L2

is of type III let pk =

8><>:
p
(1)
k
� 2; 1 6 k 6 l2 � 1;

p
(1)
k
� 1; k = l2; l2 + 1;

p
(1)
k
; k > l2 + 1:

Because the special case does not happen, it is easy to show that the de�nition of p symmet-

rically depends on L1 and L2. De�ne OL = Op: Let �; �
0
; �

00
; �

000 be a proper standard triple in

G, L1, L2 and L respectively. Consider the following commutative diagram:

Induction diagram

�
�
�

H
H
H

H
H
H

�
�
�

L
�

000

=L
�

000

0

L1
�

0

=L1
�

0

0

L2
�

00

=L2
�

00

0

G
�
=G

�

0

on each side we label the induction map as table 3 showing.

Now table 3 (if needed, exchange L1 and L2) shows the complete possibility of maps label on

each side. Let (�0;�L1
), (�00;�L2

) be the representation of eOL1
, eOL2

respectively. It is easy to

verify that �L1
2 Im(IndL1

L
); �L2

2 Im(IndL2

L
), by Corollary 2, we can de�ne
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� = (IndL1

L
)
�1
(�L1

)

= (IndL1

L
)
�1
(IndG

L1
)
�1
(�G)

= (IndG
L
)
�1
(�G)

= (IndL2

L
)
�1
(IndG

L2
)
�1
(�G)

= (IndL2

L
)
�1
(�L2

)

then IndLk
L
( eOL) � eOLk

, k = 1, 2.

Table 3 Maps of the diagram above

Type pair L! L1 L1 ! G L! L2 L2 ! G

I, I j2 > j1  j2�1  j1  j1  j2

I, I j2 = j1  j2�1  j1  j1�1  j2

III, III i2 > i1 'i2�1 'i1 'i1 'i2

III, III i2 = i1 'i2�1 'i1 'i1�1 'i2

I, III j > i 'i  j  j�1 'i

I, III i > j + 1 'i�1  j  j 'i

I, II �=  j  j �=

II, III 'i �= �= 'i

Second: For semisimple groups.

First, assume that G is simply connected and G=G1
�G

2 ( where G1 and G
2 are simple

groups), then L1 = L
1
1 � L

1
2 and L2=L

2
1�L

2
2 (where Li

j
is a Levi subgroup of Gi). From the

above, we can get the Levi subgroups Li of Li
j
for i; j = 1; 2: Now let L=L1

�L
2, then L is a Levi

subgroup of L1 and L2. By table 3 and the proof of Proposition 1, we can prove that for G, we

have the following commutative diagram.
~�1
.(P1 \ L)

�1=(P1 \ L)
�1

0 ,! L
�1

1 =(L1)
�1

0
�1
 P

�1

1 =(P1)
�1

0 &

L
�3=L

�3

0 G
�
=G

�

0
~�2
-(P2 \ L)

�2=(P2 \ L)
�2 ,! L

�2

2 =(L2)
�2

0
�2
 P

�2

2 =(P2)
�2

0 %

In general, we can also assume G to be simple connected by sec. 1. Then we still can get the Levi

subgroup L and the above diagram, and prove the diagram is commutative by induction. From

the commutative diagram, we can get the lemma easily. Q.E.D.

Lemma 6. If eOL is a rigid orbit cover of L, IndG
L1

is a fundamental induction and

IndG
L
( eOL) = IndG

L1
( eOL1

), then L � L1 andeOL1
� IndL1

L
( eOL):

Proof. Decompose IndG
L1

into the product of some fundamental induction. We use induc-

tion on the number k of the fundamental inductions which occur in IndG
L1
, if k = 1, by Lemma 5

and the rigid condition of eOL, it is obviously true. For general k, we can use Lemma 5 again and

again, to reduce it to the case k = 1. Q.E.D.

Theorem 3. If eOL1
(res. eOL2

) is a rigid orbit cover of L1 (res. L2), and IndG
L1
( eOL1

)

= IndG
L2
( eOL2

), then L1 � L2 and eOL1
� eOL2

:

Proof. Decompose IndG
L1
( eOL1

) into the product of fundamental induction. Suppose the

last one is IndG
G0( eOG0), by Lemma 6, L2 � G

0 and eOG0 � IndG
0

L2
( eOL2

), we do it again and
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again, �nally we get L2 � L1 and eOL1
� IndL1

L2
( eOL2

), but eOL1
is rigid. Hence, L1 � L2 andeOL1

� eOL2
. Q.E.D.

Remark 3. Since G is Spin(N; C ), there exists another class of sheet: Let L = GL(l1; C )


Z2
� � � 
Z2

GL(ls; C ) 
Z2
Spin(r; C ) and all li even, eOL has factor eO[2li=2] (the 2-folder cover of

O[2li=2]) in GL(li; C ), and rigid rather odd eOp in Spin(r; C ) such that �1 62 �. These classes of

sheets all induce to rather odd eOd with �1 62 � and vice versa: The fundamental induction is

type IV or V.

On the other hand, for d is not rather odd or d is rather odd but �1 2 �, we can view eOd as

the orbit cover of SO(N; C ). Under this identi�cation, the parabolic induction of the orbit cover

in Spin(N; C ) and SO(N; C ) is the same.

Corollary 3. For group Sp(2n; C ); SO(n; C ); Spin(n; C ); P sp(2n; C ) and PSO(2n; C ), the

di�erent sheets are disjoint.

Remark 4. From this and the above sections, we can give all rigid orbit covers of classical

semisimple Lie groups. We will present them in another paper (in fact, we also can give the rigid

orbit covers of exception simple Lie groups[5]).
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