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An Upper Bound for the Tura� n Number t3(n, 4)
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Let tr(n, r+1) denote the smallest integer m such that every r-uniform hypergraph
on n vertices with m+1 edges must contain a complete graph on r+1 vertices. In
this paper, we prove that

lim
n � �

t3(n, 4)
( n

3)
�

3+- 17
12

=0.593592... .
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1. INTRODUCTION

For an r-uniform hypergraph H (or r-graph, for short), we denote by
tr(n, H) the smallest integer m such that every r-graph on n vertices with
m+1 edges must contain H as a subgraph. When H is a complete graph
on k vertices, we write tr(n, k)=tr(n, H ). In 1941, Tura� n [10] determined
the Tura� n number t2(n, k) for 2-graphs and he asked the problem of deter-
mining the limit

lim
n � �

tr(n, k)
( n

r)
,

for 2<r<k. For this problem, Erdo� s offered 81000 in honor of Paul
Tura� n (see [1, 10]). Since 1941, the above problem has remained open,
even for the first non-trivial case of r=3 and k=4. The exact value for
Tura� n number t3(n, 4) is conjectured [10] as follows:
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Conjecture.

k2(5k&3)�2 if n=3k,

t3(n, 4)={k(5k2+2k&1)�2 if n=3k+1,

k(k+1)(5k+2)�2 if n=3k+2.

For small values of n, the conjectured values for t3(n, 4), n�13, have
been verified [8]. The above conjecture, if true, would give

lim
n � �

t3(n, 4)
( n

3)
=

5
9

.

For the lower bound, Kostochka [5] gave several different constructions
which achieve the conjectured value for t3(n, 4). For the upper bound for
t3(n, 4)�( n

3), de Caen [3] gave an upper bound of 0.6213 } } } which is the
real root of 9x3&33x2+46x&18. The best upper bound is due to Giraud
(unpublished, see [3]) who proved

lim
n � �

t3(n, 4)
( n

3)
�

- 21&1
6

=0.5971... .

We will show the following:

Theorem 1.

lim
n � �

t3(n, 4)
( n

3)
�

3+- 17
12

=0.5936...

For general r-graphs, de Caen [2], Sidorenko [6], Tazawa and Shirakura
[9] proved

lim
n � �

tr(n, r+1)
( n

r)
�1&

1
r

.

Giraud (unpublished) improved this upper bound to

lim
n � �

tr(n, r+1)
( n

r)
�1&

2

r(1+- r�(r+4))
for odd r.

By similar methods as in the proof of Theorem 1, we have the following
improvement:

Theorem 2. For any odd r�3, we have

lim
n � �

tr(n, r+1)
( n

r)
�1&

5r+12&- 9r2+24r
2r(r+3)

.

382 NOTE



We remark that the best lower bound was due to A. Sidorenko [7],

lim
n � �

tr(n, r+1)
( n

r)
�1&(0.5+or(1))

log r
r

,

where or(1) denotes a quantity that goes to 0 as r approaches infinity.
For smaller even r=2s, several constructions (due to Giraud, D. de Caen,
D. L. Kreher, and J. Wiseman, see [4]) gave better lower bounds. They
showed

lim
n � �

t2s(n, 2s+1)
( n

2s)
�1&

1
4

&4&s, for all s�1.

2. PRELIMINARIES

In this section, we consider a 3-graph G=(V, E) which contains no com-
plete 3-graph on 4 vertices as a subgraph. We say that G is 24-free. Let e
be the number of edges and e� be the number of non-edges in G. We first
introduce some definitions and notations.

Let dij denote the number of edges (triples) which are incident with both
vertices i and j. Similarly, we denote by d� ij the number of non-edges which
are incident with both vertices i and j. Clearly dij+d� ij=n&2. Here are two
basic equations,

3e= :
[i, j]

dij (1)

3e� = :
[i, j]

d� ij , (2)

where the summation is over all the subsets of unordered two-elements of
V(G). Now we define

1 if [a, i, j], [a, i, k], and [a, j, k] are edges while

=a
ijk={ [i, j, k] is non-edge,

0 otherwise.

We associate each unordered pair [i, j] with the weight wij defined as

wij=
�n

a, k=1 =a
ijk

d� ij
.
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We remark that in the extremal constructions of 3-graphs achieving the
Tura� n number t3(n, 4), the weights wij are approximately equal for all i, j.
However, the degrees dij 's are not. This illustrates the difficulties for
tightening the bounds by using Cauchy�Schwarz inequalities. The main
idea of our improved bounds in this paper is by utilizing the weights wij

together with Giraud's bounds.
We will prove several useful facts about the relations between dij , wij ,

and e.

Lemma 1. For a 24-free 3-graph G, we have

:
[i, j]

d� ij (dij+wij)�2(n&3)e. (3)

Proof. For i=1, 2, 3, 4, let $i denote the number of the induced sub-
graphs of G which are isomorphic to the unique 3-graph (denoted by 2i )
on 4 vertices with i triples. We have two basic equations:

(n&3)e=$1+2$2+3$3 (4)

:
[i, j]

dijd� ij=3$1+4$2+3$3 . (5)

By the definition of wij , we have

:
[i, j]

d� ijwij=3$3 . (6)

From Eqs. (4), (5), and (6), we get

:
[i, j]

d� ij (dij+wij)=2(n&3)e+$1 .

The proof of inequality (3) then follows. K

The next lemma involves further structures in a 24 -free 3-graph and it is
particularly useful later.

Lemma 2. In a 24 -free 3-graph G, we have

:
[i, j]

dijd� ij (dij+wij&1)� :
[i, j]

d� ijwij (4wij&3). (7)

Proof. Every 3-graph H on 5 vertices is in one-to-one correspondence
to a 2-graph F on 5 vertices as following. We connect two vertices in F if
the other 3 vertices form an edge in the 3-graph H. Among all 3-graphs on

384 NOTE



5 vertices, we are particularly interested in two of them, P and Q, described
below:

P Q

Let p (or q) denote the number of the induced sub-3-graphs on 5 vertices
of G which are isomorphic to P (or Q). For every non-edge [i, j, k] in G,
we choose two vertices a and b from the subset consisting of vertices
x # V(G) so that the induced sub-3-graph of G on vertices [i, j, k, x] is
isomorphic to 23 . Since G is 24-free, the induced graph on vertices
[i, j, k, a, b] is isomorphic to either P or Q. By careful counting, we get

p+q= :
non-edge[i, j, k]

\:
a

=a
ijk

2 +
= 1

6 :
[i, j]

:
k \\:

a

=a
ijk+

2

&:
a

=a
ijk+

� 1
6 :

[i, j]

(d� ijw2
ij&d� ij wij) (8)

and

:
[i, j] \

dij

2 + d� ij�7p+9q (9)

:
[i, j ]

(dij&1) d� ijwij�10p+6q. (10)

By summing inequalities (9) twice and (10), we can use (8) to derive the
inequality (7). K

We will further manipulate the inequalities in Lemma 1 and Lemma 2 to
derive the following result.

Lemma 5. Suppose e�e� . Then for any n�4, we have

:
[i, j] \dij+

1
2+

2

d� ij�
49&9 - 17

32
:

[i, j]

d� ij (dij+wij)
2. (11)
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Proof. We rewrite inequality (7) as

9
4 :

[i, j]

(dij+
1
2) d� ij (dij+wij)� :

[i, j]

(dij+
1
2)2 d� ij+ :

[i, j]

d� ij (d ij+wij)
2

+\ 3
8 :

[i, j]

d� ij (dij+wij)& 1
4 :

[i, j]

d� ij+ . (12)

By the assumptions, inequality (3) in Lemma 3 and Eq. (2), we see that the
last term is always non-negative,

3
8 :

[i, j]

d� ij (dij+wij)& 1
4 :

[i, j]

d� ij�
3
8 2(n&3)e& 1

4 3e�

�( 3
4 (n&3)& 3

4)e�

= 3
4 (n&4)e�

�0.

Now we use the Cauchy�Schwarz inequality

\ :
[i, j]

A2
ij+\ :

[i, j]

B2
ij+�\ :

[i, j]

Aij Bij+
2

, (13)

where Aij=(dij+
1
2) - d� ij and Bij=- d� ij (dij+wij).

Inequality (12) can be rewritten as

9
4 :

[i, j]

AijBij� :
[i, j]

A2
ij+ :

[i, j]

B2
ij .

By combining the above two inequalities, we have

\ :
[i, j]

A2
ij+\ :

[i, j]

B2
ij+� 16

81 \ :
[i, j]

A2
ij+ :

[i, j]

B2
ij+

2

.

After solving this quadratic inequality, we get

:
[i, j]

A2
ij�

49&9 - 17
32

:
[i, j]

B2
ij .

The proof of Lemma 3 is complete. K

The next lemma is due to Giraud. The original version has the constant
c=0. Here it is modified for latter usage.
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Lemma 4. For a constant c with dij�c for all pairs [i, j], if e�
1
3 ((n�2)+(c�2)&1)( n

2), we have

3e� \
3e

\n
2+

&c+
2

� :
[i, j]

(dij&c)2 d� ij . (14)

Proof. Observe the fact that the following function f (x) is convex,

f (x)={\
n
2

&
c
2

&1+
2

(x&c)

(x&c)2 (n&2&x)

if c�x�
n
2

+
c
2

&1

if
n
2

+
c
2

&1�x�n&2,

and that f (x)�(x&c)2 (n&2&x), for all c�x�n&2. Since the average
�[i, j] dij �( n

2)�(n�2)+(c�2)&1, the proof of this lemma follows from the
convexity of f (x). K

3. THE MAIN THEOREM

We are now ready to prove the main theorem.

Proof of Theorem 1. Let G be a 24 -free 3-graph with the maximum
number of triples. If e� 1

2 ( n
3), then we are done since 1

2<(3+- 17)�12.
From now on we may assume that e� 1

2 ( n
3). Hence e�e� . All assumptions

of Lemma 3 are satisfied. We can use inequality (11).
Let c=&1

2 . Since n�4, we have e� 1
2 ( n

3)� 1
3 ((n�2)+(c�2)&1)( n

2). By
inequality (14) in Lemma 4, we get

3e� \
3e

\n
2+

+
1
2+

2

� :
[i, j] \d ij+

1
2+

2

d� ij . (15)

On the other hand, we can use the Cauchy�Schwartz inequality

\ :
[i, j]

d� ij+\ :
[i, j]

d� ij (dij+wij)
2+�\ :

[i, j]

d� ij (dij+wij)+
2

. (16)

Combining inequalities (15) and (16) as well as inequality (3) of
Lemma 1 and inequality (11) of Lemma 3, we have

9e� 2 \
3e

\n
2+

+
1
2+

2

�
49&9 - 17

32
(2(n&3)e&e� )2. (17)

387NOTE



By taking square root on both sides, we get

3e� \
3e

\n
2+

+
1
2+�

9&- 17
8

(2(n&3)e&e� ). (18)

Let x denote limn � � e�( n
3). We divide by (n&2)( n

2) on both sides of (18)
and let n approach infinity. Then

3(1&x)x�
9&- 17

8
2x.

Hence, we have x�(3+- 17)�12 and therefore

lim
n � �

t3(n, 4)

\n
3+

�
3+- 17

12
.

We have proved Theorem 1. K

4. CONCLUDING REMARKS

The result in Theorem 1 can be generlized for any odd r�3 by using the
same technique. Although the formulation is more complicated, the
application is quite staightforward. We will omit the proof here.

Theorem 2. For any odd r�3, we have

lim
n � �

tr(n, r+1)

\n
r+

�1&
5r+12&- 9r2+24r

2r(r+3)
.
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