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Abstract

The spectral radius p(G) of a graph G is the largest eigenvalue of its adjacency matrix
A(G). For a fixed integer e > 1, let G;'}" . be a graph with minimal spectral radius among
all connected graphs on n vertices with diameter n —e. Let P},72 >t be a tree obtained

from a path of p vertices (0 ~ 1 ~ 2 ~ .-+ ~ (p — 1)) by linking one pendant path P,, at
m; for each i € {1,2,...,t}. For e = 1,2,3,4,5, G™"  were determined in the literature.

n,n—e

Cioaba-van Dam-Koolen-Lee [2] conjectured for fixed e > 6, G4, is in the family P, . =

{P221mz’1 it “?12<my < <meyq<n—e—2} Fore=6,7, they conjectured

_ . D+2 _ | D42 _

min - p2lE P and grin | = p2LE IR i paper, we settle their

conjectures positively. Note that any tree in P, . is uniquely determined by its internal

path lengths. For any e — 4 non-negative integers ki,ko,...,ke—a, let Tip, gy ko y) =

P221m2,1 v % with k; = miy1 —m; — 1, for 1 <i < e—4. (Here we assume m; = 2
andme 3—n—e—2)

e—4 1.
Let s = w For any integer e > 6 and sufficiently large n, we proved that G?}L” .

must be one of the trees T(x, ... k._,) With the parameters satisfying [s] — 1 < k; < [s] <
k; <Js]+1lforj=1e—4andi=2...,e—5 Moreover, 0 < k; —k; §2for2§z§
e—5, j=1le—4;and |k —k;| <1 for 2 <i,7 <e—5. These results are best possible
as shown by cases e = 6,7,8, where Gﬁﬂie are completely determined here. Moreover, if
n—=~6 is divisible by e — 4 and n is sufficiently large, then Gg“e" =T(k—1,k k,...kkk-1) Where

k=12

1 Introduction

Let G = (V,E) be a simple connected graph, and A(G) be the adjacency matrix of G. The
characteristic polynomial of G is defined by ¢g(N\) = det(A — A(G)). The spectral radius,
denoted by p(G), is the largest root of ¢g. The problem of determining graphs with small
spectral radius can be traced back to Hoffman and Smith [10, 7, 8]. They completely determined
all connected graphs G with p(G) < 2. The connected graphs with p(G) < 2 are precisely simple
Dynkin Diagrams A, Dy, Ee, E7, and Es. The connected graphs with p(G) = 2 are exactly
those simple extended Dynkin Diagrams A,, D,, Es, E7, and Es. Cvetkovié¢ et al. [4] gave a

nearly complete description of all graphs G with 2 < p(G) < V2 + V/5. Their description was
completed by Brouwer and Neumaier [1]. Those graphs are some special trees with at most two
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vertices of degree 3. Wang et al. [12] studied some graphs with spectral radius close to %\/5

Woo and Neumaier [13] determined the structures of graphs G with v/2 + /5 < p(G) < 3v/2; if
G has maximum degree at least 4, then G is a dagger (i.e., a path is attached to a leaf of a star
S4); if G is a tree with maximum degree at most 3, then G is an open quipus (i.e., the vertices of
degree 3 lies on a path); else G is a closed quipus (i.e., a unicyclic graph with maximum degree
at most 3 satisfies that the vertices of degree 3 lies on a cycle).

Van Dam and Kooij [3] used the following notation to denote an open quipus. Let Py 270"
be a tree obtained from a path on p vertices (0 ~ 1~ 2~ --- ~ (p—1)) by linking one pendant
path P,, at m; for i = 1,2,...;¢ (see Figure 1.) The path 0 ~ 1~ 2 ~ .-+ ~ (p — 1) is called
main path. For i = 1,...,t — 1, let P®) be the i-th internal path (m; ~ mi+1 ~ --- ~ mi;1)
and k; = m;41 — m; — 1 be the the number of internal vertices on PO, In general, an internal
path in G is a path vy ~ vy ~ -+ ~ vg such that d(vg) > 2, d(vs) > 2, and d(v;) = 2, whenever
0 < i < s. An internal path is closed if vy = v;.

. .
P,'" . . . P,
| |
0 1 my my p—1

. . M1 ,M2,...,M¢
Figure 1: Py 5.0 p

Recently van Dam and Kooij [3] asked an interesting question “which connected graph of
order n with a given diameter D has minimal spectral radius?”. Here the diameter of a connected
graph is the maximum distance among all pairs of its vertices. They [3] solved this problem
explicitly for graphs with diameter D € {1,2, |n/2|,n —3,n —2,n — 1}. The cases D = 1 and
D = n — 1 are trivial. A minimizer graph, denoted by G;ﬁm, is a graph that has the minimal
spectral radius among all the graphs of order n and diameter D. They proved that TQ” is
either a star or a Moore graph; G?Zﬁ /2| 18 the cycle Cp; GM , is the tree P11,n—1; Gmm_?) is the

N n

1,n—4 : min L%J:”—B—P;Ql-‘
tree Py, 5. They conjectured G7')" , = PLEQIJ,[%ILn—eH for any constant e > 1 and n large
enough.

This conjecture is proved for e = 4 by Yuan et al. [5] and for e = 5 by Cioaba et al. [2].
However, it is disproved for e = 6 by [11] and any e > 6 by [2] when n large enough. Cioaba-van
Dam-Koolen-Lee [2] proved the following theorem.

Theorem 5.2 of [2]: For e > 6, p(Gir ) — 2+ V5 as n — oco. Moreover G is

n,n—e
contained in one of the following three families of graphs

Pre = {PITgne i 2 |2 <m <o <meg <n—e—2),

Pl = (P 3 < <me g <1,

Pg,e = {P11,71n,1..2.’1';'17,73i7£71l_e_1 ’ l<mog < -+ <Meg<n—e— 1} .
Cioaba et al. [2] made three conjectures.

Conjecture 1 ([2], 5.3) For fixed e > 5, a minimizer graph with n vertices and diameter
D =n — e is in the family P, , for n large enough.



2,[2=11 D2
Conjecture 2 ([2], 5.4) The graph P27’£231_]5’ is the unique minimizer graph with n vertices

and diameter D = n — 6, for n large enough.

. 2| 22| D—| 2+2| D2 . . . .
Conjecture 3 ([2], 5.5) The graph P75, = ° is the unique minimizer graph with

n vertices and diameter D = n — 7, for n large enough. !

In this paper, we settle these three conjectures positively.

Note that graphs in each family can be determined by the lengths of internal paths (see
Figure 2). The parameters k;’s and m;’s are related as follows. In the first family P, .,
Tk koo sboa) = ng’{fé"i;é’fg:i?_e_z if k; = mjyy1 —my; — 1 for 1 < i < e— 4, where mj = 2

. 2,ma2,.../Me—gn—e—1 .
and me—3 = n —e — 2. In the second family P}, ., T(/k1 Ko ke 3) = Py 1’726_;;;711 THif k=
’ SN2y sve— sty

mijy1 —m; — 1 for 1 <4 <e—3, where m; =2 and me—2 = n — e — 1. In the third family 77;{76,
1,ma,....me_2,n—e—1 . .
T(’];hk%_“’ke%) = P1,1,~-2-171,n—e2+1 if ki =miy1 —m; —1for 1 <i<e—2, where m; =1 and

me_1 =n — e — 1. In all three cases, the summation of all k;’s is always equal to n — 2e.

- I - I 777777 L - - - Tk ko, ke—a)

—— j\_ _ /I 777777 L\ - ,I d T(/kl,kz,...,k‘e_g)
k;l k2 oo ke—S
N ) G0 D ) A
Nl At el = (k1 ko yeeoskie—2)
k ko .o koo

Figure 2: The three families of graphs: Py, Py, ., Py .-

We have the following theorem.

Theorem 1.1 For any e > 6 and sufficiently large n, G;"%”_e m

Pne satisfying

must be a tree Tk, ky, . ke y)

1. [s]—1<k;j<|s]<k<[s]+1for2<i<e—5andj=1ce—4, wheres="2=8_2

e—

2.0<ki—kj<2for2<i<e—-5andj=1e—4,

3. ki —kj| <1 for2<i,j<e-5.

In particular, if n — 6 is divisible by e — 4, then G = (5—1,5,..0,8,5—1) -

n,n—e

Here we completely determine the G?}L’Le for e = 6,7,8 and settle the conjectures 2 and 3
positively.

. . 2,| 252, p- | 252),p—2
! Conjecture 5.5 of [2] contains a typo: “...P2)1L71’32,n£6 5 2




Theorem 1.2 For e =6 and n large enough, Gnmé"_e is unique up to a graph isomorphism.

1. If n =2k 4+ 12, then G o = Ty 1.

nn—6

2. If n = 2k + 13, then GM" Tk o1y

n,n—6 —

min
n,n—e

Theorem 1.3 For e =7 and n large enough, G s unique up to a graph isomorphism.

1. Ifn =3k + 14, then G o = Ty i) -

nn—7 "

2. If n = 3k + 15, then G Tk ot 1,1) -

nn—7 "

3. If n = 3k + 16, then G™" Tk o2, -

nn—7 "

Theorem 1.4 For e =8 and n large enough, GZ’Z;T_E is determined up to a graph isomorphism
as follows.

1. If n = 3k + 16, then Gnm};"fS =Tk kb Llhkktr1,k—1)s OT T(h—1,k+1,k+1,k—1); all three trees

have the same spectral radius.

2. Ifn =3k + 17, then Gmin T(k,k+1,k,k)'

n,n—8 ~

3. If n =3k + 18, then G™™ Tk ot 1, +1,8) -

nn—8 —
4. If n =3k + 19, then GM" o = Tk kot 1,k4+2,k)

nn—8 ~

For e = 6, Theorem 1.2 is an easy corollary of Theorem 1.1. Theorem 1.3 and Theorem 1.4
show that the bounds on k;’s in Theorem 1.1 are best possible.

The remaining of the paper is organized as follows. In section 2, we prove some useful
lemmas. The proof of Theorem 1.1 is presented in section 3 and the proofs of Theorem 1.3 and
1.4 are given in section 4.

2 Basic notations and Lemmas

2.1 Preliminary results

For any vertex v in a graph G, let N(v) be the neighborhood of v. Let G — v be the remaining
graph of G after deleting the vertex v (and all edges incident to v). Similarly, G — u — v is
the remaining graph of G after deleting two vertices u,v. Here are some basic facts found in
literature [6, 7, 9, 11], which will be used later.

Lemma 2.1 [6] Suppose that G is a connected graph. If v is not in any cycle of G, then
96 = MG—v — Cwen(e) 9G—u—v- If e = wv is a cut edge of G, then ¢ = G—c — dG—u—v-

Lemma 2.2 [6] Let G1 and G2 be two graphs, then the following statements hold.
1. If Go is a proper subgraph of G1, then p(G1) > p(G2).

2. If Gy is a spanning proper subgraph of G1, then p(G1) > p(G2) and ¢G,(A) > ¢a, (M) for
all X > p(Gy).

3. If 6, (N) > by () for all X > p(Gh), then p(Ga) < p(Gh).
4- If 66, (p(G2)) < 0,then p(G1) > p(Ga).
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Figure 3: The graphs H; and H»

Lemma 2.3 [11] Let G1 and G be two (possibly empty) graphs with a € V(G1) and b € V(G2),
and let Hy and Hy be two graphs shown in Figure 3. Then p(H1) = p(Ha3).

Lemma 2.4 [7] Let uv be an edge of a connected graph G of order n, and denote by G, , the
graph obtained from G by subdividing the edge uv once, i.e., adding a new vertex w and edges
wu, wv in G —uv. Then the following two properties hold.

1. If uv does not belong to an internal path of G and G # Cy,, then p(Gy, ) > p(G).
2. If uwv belongs to an internal path of G and G # Plly’ff, then p(Gy,v) < p(G).

Theorem 2.1 (Cauchy Interlace Theorem (see p.183, [9])) Let A be a Hermitian matrix
of order n, and let B be a principal submatriz of A of ordern—1. If Ay < A1 < -+ < \q lists
the eigenvalues of A and pp—1 < pn—o < --- < 1 the eigenvalues of B, then

An S -1 S Ape1 <o < Ao <pp <A

Applying Cauchy Interlace Theorem to the adjacency matrices of graphs, we have the fol-
lowing corollary.

Corollary 2.1 Suppose G is a connected graph. Let Ao(G) be the second largest eigenvalue of
G. For any verter v, we have

A2 (G) < p(G —v) < p(Q).

2.2 QOur approach

A rooted graph (G,v) is a graph G together with a designated vertex v as a root. For i = 1,2,3
and a given rooted graph (H,v'), we get a new rooted graph (G;,v) from H by attaching a path
P; to v' and changing the root from v’ to v as shown by Figure 4.

Uo—»vl H UI—«U/ H v ﬂ)/ H

Gy Ga Gs

Figure 4: For ¢ = 1,2,3, three graphs (G;,v) are constructed from (H,v’).
Note that any tree in the three families Py ¢, P}, ., Py, . can be built up from a single vertex
through a sequence of three operations above. Applying Lemma 2.1, we observe that the pair
(PG, s G;—v) linearly depends on (¢m, pp—o) with coefficients in Z[A]. We can choose proper
base to diagonalize the operation from (H,v') to (G1,v).



Let Ao be the constant /24 /5 = 2.058---. In this paper, we consider only the range
A > A\g. Let 21 and x5 be two roots of the equation z2 — Az + 1 = 0. We have

— VA4 A+ VA2 —14

e B
and
1+ a0 =N, 120 = 1. (1)
For any vertex v in a graph G, we define two functions (of \) p(g ) and g, satisfying
bc¢ = P T UGw):
PG—v = TaDGw) T T19G )

This definition can be written in the following matrix form:

pc \_ (1 1 P(Gw) )
< dG—v ) ( T2 I ) ( q(Gv) ' (2)

Using Equation (1), we can solve p(¢ .y and g, and get
() -sta(r )(E)
4G ) ro—x1 \ T2 —1 GG—v
For example, let v be the center of the odd path Ps;.1. We have
(b)) = L (57). )
4Py ) T2 — X1 \ T2
2
(r0) = (). o
4(pPs3,v) L2
<p(P5,v)> -1 (()\ - 30“;’)961) . (©)
q(pPs,v) T2 — Iy (fg — A)z2

We have the following lemma.

Lemma 2.5 For any tree G and any vertex v, we have
li A) = .
Wm g6, (A) = +o0 (7)
Proof From Lemma 2.1, we have

¢G:)‘¢G’—v_ Z ¢G w—v-

weN (v)
By Equation (3), we get
1
“W6Gn) = o m (200G — pG—v)
S A6 S 6 6
= Lo — 21 €2 G—v G—w—v G—v

weN (v)

= ! (Ax2_1¢6’v_ Z ¢G’wv

T2 weN (v)

x2
= x2¢G—v_ Z OG—w—v

Tr9 — T
2 1 weN (v)




Note that ¢g_, is a polynomial of degree n — 1 with highest coefficient 1 while ¢g_,—, is a
polynomial of degree n — 2 with highest coefficient 1. Since x5 > 1 > x1, we have xo¢g_, —
> we N@) dG_w—_v goes to infinity as A approaches infinity. O

Lemma 2.6 Let G1,Gs, G3 be the graphs shown in Figure 4. Then the following equations hold.
1 ( PG ) ) _ ( r1 0 > ( P(Hw") ) ‘
4Gy w) 0 d(Hv")
9. ( P(Gaw) ) _ 1 ( A—af @ ) ( P ) _
4(Ga,v) T2 — I —T2 w% —A d(H,v")
2. < p(G;;,v) > _ 1 < —SCle + )\2 —1 )\271 > ( p(H,v’) > ‘
4(G3w) Ty — a1 \ —AT2 a3 — A +1 q(H,v")

Proof By Lemma 2.1, we have
Lo )= (1ot ) ()
¢G1—”U 1 0 ¢H7U’ )
Combining it with equations ( 2) ( 3), we get
() = o) (o) Ca o) )
4(G10) T2 x1 10 To X1 q(H")
B 1 2 — A1y JU% — Az +1 P W)
B To — T —.'L'% -+ AZ'Q —1 A.%'Q —2 q(H,’U’)
( z1 0 ) ( P W) > )
0 q(H ')

The proofs of items 2 and 3 are similar as that of item 1. O
We denote the three matrices by A, B, and C. Namely,

1 3 1 _ 4 2
A z1 O B A—xy xé = ]+ A 1 )\icl )
0 a2 To —x1 \ —2 T5— A To —x1 \ —AT3 Ty —A"+1
The diagonal elements of B are very useful parameters. To simplify our notations later, we
define two parameters d; and ds as follows:

d = A—ad (8)
dQ = l’g—)\- (9)

Note that do = 0 if A = A\g. The equation (6) can be written as

2
<p<P5v”>> At (d”“). (10)
q(Ps,v) xy —x1 \ d2t2

From the definitions of d; and ds, we can derive the following identity

dlxg — dgxl =2. (11)

Given two rooted graphs (Hi,v;) and (Ha,v2), we define some new graphs. Denote by
(Hy,v1) - Py, the graph consisting of the graph H; and a path P; linking one of its ends at the
vertex vy. Similarly denote by (Hi,v1) - P; - (H2,v2) the graph consisting of graphs Hj, Hy and
a path P; linking the two ends at v1, vy respectively.

).
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Figure 5: The graph (Hy,v1) - Py - (Ha,v2)

Lemma 2.7 @, v,).Py-(Haws)(N) = (T2 — 21)(Q(H, 01) U Ho o) — P(HL01)P(Haws))-

Proof By Lemmas 2.1 and 2.6, we have

BHy 01)-Py-(Hawe) (A)
= AoH, 01y — OHy—0, PHy — PHy—0, OH,
= (21 +22)(P(Hy00) T UHL01)) (P(Hov2) T UHa ) — P(HL 00 T2 + (Hy 01)T1)
(P(Ha,v2) + U(Haw0)) — P(HLw01) T (L 1)) (P(How2) T2 + A(Ha00) 1)
(P(Ha02) T A(Hzy02)) (P(H100)T1 + A1 00)T2) — (P(Hy 01) F A 01)) (P 02) T2 + A(Hy 02)T1)
D(Hy,w2)P(Hy,01)T1 + Q(How0)A(Hy,v1)T2 = P(Ha o) P(Hy 1) T2 — A(Ha,ve)4(Hy v1)T1

= (22 — 1) (9(Hy 01) U Hoyo) — P(HL01)P(Haws))- U
H; V& - - o—I—o - - 4—01)2]’[2
i J

Figure 6: The graph Gj ;

Lemma 2.8 Let G;; be the graph shown in Figure 6 where i,j are the numbers of included
vertices. Then

¢Gi’j B ¢Gi+1’j71 B (xl - x2) (p(Hl’”l)q(Hz,w)x%iiil - Q(H1,v1)p(H2,v2)${iiil> .
Proof By lemma 2.1, we have
6.5 = /\¢(H17v1)’Pi+j+1‘(H2vU2) - ¢(H1,U1)'P¢¢(H2,v2)'Pja
PG = AP0 Prgya-(Hawa) ~ P(H1010)-Prt @(Hzw2)- Py

Thus, we get

¢Gi,j - ¢Gi+1,j71 = ¢(H1,U1)'Pi+1 (z)(HQ,UQ)'Pj_l - ¢(H1,’U1)-P¢¢(H2,U2)~Pj
; ; j—1 j—1
= (p(Hl,vl)‘TllJrl + q(H1,v1)x12+1) (p(H27v2)${ + q(HQ,vz)‘T% )

— (P o7 + 01 078) (P10 + (11,0075

1 i1 y 1 a1 o
= D(Hyw1)4(Ha2,v2) (le—i_ xJQ - xllx%> + 4(Hy,v1)P(H2,v2) (le xl2+ - le$5>

j—i—1

o y o -
= 17 [p(Hl,m)q(Hg,m)(!Elffz Ty ")+ Qe o) P(Hawe) (T T2 — 1] l)]

i i
= (xl - mQ) (p(HhUl)q(HQ:'UQ)wJQ - q(Hlvvl)p(H%W)x{ ' ) :

The proof is completed. O



Lemma 2.9 Suppose G1 and Ga are two connected graphs satisfying G1 — uy = Go — us for
some vertices up € V(G1) and ug € V(G2). If ¢a,(p(G1)) > 0, then p(G1) > p(Ga).

Proof Let G = G1 —uy; = Go — ue. By Corollary 2.1, we have
,O(GZ) > p(G) > )\Q(Gl) fori=1,2.

Here A2(G;) is the second largest eigenvalue of G;. We have p(G1) > A2(Ga).
Since p(G2) is a simple root and )\lim $a,(A) = +oo, we have

QZ)GQ(/\) <0 for \ € ()\Q(Gg),p(Gg)).

Since ¢, (p(G1)) > 0 and p(G1) > A2(G2), we must have p(G1) > p(G2). O

2.3 A special tree T{;_1 . k1)

The tree T(x—14,... .k k—1) (€ Pne) plays an important role in this paper. We have the following
lemma.

Lemma 2.10 The spectral radius of the tree T, _1 ...k k—1) 5 the unique root py of the equation
k
dy = 207 T in the interval ( 2+ /5, oo).

k+
1—z

Remark 1: The following equations are equivalent to one another.

21"{
d2 - k1’
11—z
dgl”; — d1$]f = 2,
k—1
d2 = dlscl s
k—1 k—1

dzl‘QT = d1$12 5
k 2k

If “=" is replaced by “>”", then these inequalities are still equivalent to each other. These
equivalences can be proved by equation (11). The details are omitted.

Remark 2: For any k > 4, we have pp < pg < %ﬂ For any e > 6 and n > (k+ 2)(e — 4) + 6,
we can obtain a tree T' on n vertices and diameter n — e by subdividing some edges on internal
paths of T(g_1 %, rr—1)- By Lemma 2.4, we have

3
p(T) < p(Tlh—1 k... kk—1)) = Pk < 5\@.

In particular, for e > 6 and n > (k+2)(e —4)+6 = |T(3_1 4, k1), we have p(GJ' ) < 3V2.

n,n—e
In the set of graphs with spectral radius at most \/2 + /5 (see [1]), there is no graph with
diameter n — e for e > 6. Thus, p(Gpir ) > /24 /5.

Proof of Lemma 2.10. Let G = T(3_1 ;. xx—1) and v be the leftmost vertex. Note that G
can be built up from a single vertex with a series of three operations as specified in Lemma 2.6.



We have

UT o1k, 1 —1) V)

b = (1,1) ( DTt g, oo—1)0) >

2 Ak—1 1 gk k—1 11 \ '/
= (1,1)A2cA*1pAF. BAF10A

T2 T 1
2 1)2
— u(_dhd2)Ak—1BAkmBAk—1 ( diz1 )
To — I daxo
2 1 2
- ()‘)(—dl,dg)AleAk...BAk< d >
Ty — I do
l
Let [ = %; [ does not have to be an integer. Define A! = < gl gl ) We can write ¢ as
2
A2 —1)2 _ dy !
oo =0 = E e ) alpaty (). (12
It is easy to calculate
1 dizh 1
AlBAH-l — 17 . 13
Ty — 21 ( —1  dya} (13)
Now we prove that py is a root of ¢g. At A = pg, we have diz} = dozl, and dyzh +1 = doah — 1.
Thus
1 1 dix¥ 1 1
l I+1 _ 141
_ digb 411
N Tro9 — T 1 ’
We have
A2 —1)2 _ dyzt
soto) = S datyamatty (1)
IOk k| opyr—1 g2 k-1 1
= m(dlxl + Uiy (=L
= 0.

It remains to prove ¢g(A) > 0 for any A > p. When X\ > py,, we have dozk — 1 > dyaf + 1
and doxl > dyzt). Tt is easy to check AlBAHL maps the region {(z1,22): 22 > 21 > 0} to
2 1
{(21,29): 22 > 21 > 0}. By induction on r, (A'BA™1)"~! maps the region {(z1, 22): 22 > 2, > 0}
to {(z1,22): 22 > z1 > 0}. Let

21\ ittt [ dizh
(5) = e (00)

Since dgxlz > dlxll > 0, we have zo > z; > 0. From equation (12), we get

(-1 ! N sl gltiye—1 ( dih
(ZsG’ = H(—dlwl, dQ.fz)(A BA ) d2$l2
(- ooy [ A
= m(—dlxl, d2$2) %
)\2 -1 2
> 0.

10



The proof of the Lemma is finished. O

2.4 Limit points of some graphs

Using the tools developed in the previous section, we can compute the limit point of the spectral
radius of some graphs.

Figure 7: The graphs T(Z k.7)

k

Lemma 2.11 Let T}, ) be the tree shown in Figure 7 and p), be the unique root of dy = xf in

(i7k7j
the interval ( 24+ /5, —|—oo). Then lim p(T(’l’.kj)) = pf.
i,j—00 .

Proof By Lemma 2.4, we have

It suffices to show llim p(T(’l’ % l)) = p}. Let v be the leftmost vertex of T(’Z 1)~ A simple calculation
—00 vy vy

shows

b1

(1,k,0)
= (1,1) ( P e py0) >
q(T(/ll,k,lVU)
-1
= (1,1)ABAZBAkBAlB<1 1 ) (A)
ro I 1

w2 (dyay + 23)?

(zg — 21)°

[((d2)? = 1) = 22373 (duaf + dyat) — 23 (duah)? - 1))

As [ goes to infinity, llirgo p(T(’l”k’l)) is the largest root of (dax%)? — 1 = 0; namely dy = z¥.

The proof is completed. O
We have the following Corollary from Lemma 2.11.

Corollary 2.2 Let T(/I/c,z‘) be the tree shown in Figure 8. We have Zl:rglo p(T(’]/cvi)) = Py

Proof By Lemma 2.3, we have p(T(/;€ ) = p(T(’Z’. okt3.))- Thus lim p(T(’f€ ») = lim p(T(’Z{ okt3.)) =

/!
Pok+3- O

1oyl
Lemma 2.12 Let T(’k’j) be the tree shown in Figure 9 and p. be the unique root of do = d3 x’f+2

in the interval ( 2 + /5, —i—oo). Then lim p(T(’k j)) = pl,.-
Jj—00 ’

11



—_—— —— —_——— ——
i k ] k
Figure 8: The graph T"(k, 1) Figure 9: The graph T"(k, j)

Proof Similarly, we have
b, v
or, = ([ e
(ks3) q(T(/k,j)’v)

— (LDABAjBAkCA(l 1 >_1<i\>

T2 T

j+k+1
) (N = 1)(daws + a) A2 — g2kl g p 2B g2, 20 2k+4
3 2 127 24 121 .

(w2 — 71)

2k+1. 3 k+3

As j goes to infinity, lim p(T(’k j)) is the largest root of d3 = dyx7"'; namely dy = d?
J—00 ’

The proof is completed. U]

2.5 Comparison of pg, p), and p}

Observe that py, p)., and p} satisfy similar equations. Since 1 < v/dix; <7 k -, we have

or < Pl < pr-

For A € [\, %\/ﬁ], T2, do, and dyxy are increasing while x1 is decreasing. Using these facts,
it is easy to check that for k > 7, py, p}, and pj are in the interval (Ao, 3v/2).
We have the following lemma.

Lemma 2.13 For k > 7, we have py < pj_, and py < pj_5.

Proof Recall that p}_, is the root of dy = k * and py, is the root of dy = 27,6“ We need to

show 2 < (1 — 281 for X € [\, 3\V2]. For k > 7, we have

Aok 2 ool
> (JU% m411)|>\0
> 2.

Note that pj_5 is the root of dy = \/dlxlxl . Tt suffices to show 2 < /diz123(1 — ka)
for A € [Ao, 3v/2]. We have

Vdizizs(l — bty > Vidizia3(1
> dyzya3(1 |,\0
> 2.
The proof is completed. O

12



3 Proof of Theorem 1.1

The proof of Theorem 1.1 can be naturally divided into two parts. In the first part, we prove

that GZ?%"_E € Pr.e. In the second part, we prove the other statements in Theorem 1.1.

3.1 Part1l
Let pnm’%”,e = p(Gnm’%”,e) in the rest part of this paper. Now we prove the following theorem,

which implies the first part of Theorem 1.1.

Theorem 3.1 Ife > 6 and n > 10e® — T4de + 142, then G™" € Pre-

n,n—e

Proof By Theorem 5.2 of [2] (see page 2), it suffices to show G ¢ Py, and Gt ¢ Py ..

n,n—e n,n—e
Suppose Gy, = T(’kl’k%.’ke_g) € Py, .. Note that T(’khk%. k._.y contains sub-trees of type
T/ T//

) 6—3)
(et > Loy _g,0)» a0 T(’fk o ) for 2 < i < e—4. By Lemma 2.4, Lemma 2.11, Corollary 2.2, and
Lemma 2.12, we have

min /
pn,nfe > pk1 ’
min 11
pn,nfe > Poke_5+3>
min

Prn—e > p'k/i, for2<i<e—4.

Next, we show that at least one of k1, ko, ..., ke—g is small. Let [; = ("e__‘ﬂg‘gﬂ We claim

ki <li+1 or ke_ggll_?’

or Fie€{2,3,...,e—4} st k <.

Otherwise, we have

lh—2
k>0 +2 and keg > - and ko, .o kg > 1 + 1

We get

e—3

lh—2
n=> ki+2>h+2+ +(h+1)(e—5)+2e=(e—35) +3e—4>n+1.

i=1

Contradiction!
If k1 <1y + 1, then we have pmﬁ?,e > p21+1 > ppy44; i ez < 11;3, then we have pﬂ}{ie >

Py was > PL > pryas if ki <1y for some i € {2,..., e — 4}, then we have pi'i" . > pj > p} >
Pi,+4- In all cases, we have
min
pn,nfe > Pli+4-

Let k = |2=2%E2 | There exists a tree T' € Py, which can be obtained by subdividing some
edges on internal paths of T{y_q k. g r—1)- Since n > 10e? — 74e 4 142, we have

n—3e+5 n—2e+2
4= |—F T8 4y < |20 g
b+t {e—3.5 }r L e—4 J K

We get '
Prnee > Plita = P(Te—1 k.. kk—1)) = p(T).

Contradiction!

13



min  __ ol " fad fn :
Now we assume G;'3, = T(kl,kg,...,ke,z) € Pj - This is very similar to previous case. We
must have

lo—3 lo =3

k< 5 or ke_g9<

or 3i€{2,...,6—3}8.t./€i§l2,

min
n,n—e

where [y = [%@571 A similar argument shows p > pi,+4. Here we omit the detail.

Let k = |2=2%t2 | There exists a tree T' € Py, which can be obtained by subdividing some

edges on internal paths of Ty _1 % . xx—1)-
Since e > 5 and n > 10e? — 74e + 142, we have n > 5e? — 31e + 50; thus,

— -2 2
l2+4:{n 3e+7w+4§{n e+ J:
e

e—3 —4
We get
P:Zfﬁn—e > plyra = P(T—1,.. ke k—1)) = p(T)-
Contradiction!
O
Remark 3: Assume Gn"fil"_e = Tlky,...ky) € Pre- Let k= @ By Lemma 2.13, we can get

kizLE+%j—3for2§i§r—1andki2LE—F%J—2forz':1,rwhenevern29€—30.

3.2 Part 2

From now on, we only consider a tree T(g, ,,. k) I Pre. (Here r = e — 4 through the re-
maining of the paper.) Let vy, v1, ..., v, be the list (from left to right) of all degree 3 vertices in
Tky ks, kr) € Prje. Let H, g, . k;) be the graph shown in Figure 10.

Figure 10: The graphs H, .. k)

Now we define two families of sub-trees of T(y, r, . - Fori=1,....r—1,let L; = Hg, g, . k)
(from the left direction). For j =2,...,r, let R; = H(y, ,_, . ;) (from the right direction). We
also define Ly = P5 and R,41 = Ps.

Lemma 3.1 For any A > p(T{4, k... k), we have
L pron(A) =0 and qp, v,y (A) 20 fori=0,1,2,...,7r = 1;

2. D(R;w;_1)(A) 20 and q(g; v;_)(A) =0 for j=2,....r+1

Proof For simplicity, we also write p; = p(r, v,)s ¢ = (L0, for @ = 0,1,2,...,7 — 1, and

Pj = P(Rjv;-1) 4G = d(R;w,_1) for § =2,...,7+ 1. From equation (10), we have p;, ; = pg =
diz1(A\2-1 daza(A2-1

D(Ps o) = % > (0 and q;Jrl =40 = q(Ps00) = % > 0 for any A > Ag.

It remains to consider p;, ¢; for ¢ = 1,2,...,r — 1, and p;-, q; for j =2,...,r. Let u be the
least number such that these functions p;(A), ¢i(A) pj(A), ¢j(A) take non-negative values for all
A > .

14



We need to show such p exists. By Lemma 2.5, we have lim ¢;(\) = 400 and R lim ¢;(\) =
——+400

A——400
. . . d A2—1 ) o
+00. Since )\Einoopo = ,\ETOO% = +oo and p; = x;ml (dlwlf’pz'ﬂ + xgl 1q1;,1) (see
Lemma 2.6), by induction on i, we have lim p;(\) = +oo. Similarly, we have lim p’()\) =
A—+4o00 Aofoo

+00. Thus p is well-defined.
If o < p(Ti, ko,... ky))» then we are done. Otherwise, we assume p > p(Tig, ko, k). NoOte
that 4 is always a root of one of those p;(\), ¢i(A), P;(A), ¢;(A).

Case (1) There exists an ¢ (1 <4 <r — 1) such that p;(x) = 0. Since p; = #(dlxlfipi,l +

T2—21

25 g; 1), we must have p;_1(p) = ¢;_1(12) = 0. By Lemma 2.7, we have

It contradicts to the assumption g > p(T(4, ky.... k)
Case (2) There exists a j (2 < j <) such that p};(u) = 0. This case is symmetric to Case (1).
Case (3) There exists an ¢ (1 <4 <7 — 1) such that ¢;(xx) = 0. By Lemma 2.7, we have

kir1—1
¢T(k1,k2 kr)(lu) = (z2 — 1) (xy™

kip1—1
AAAAA Qiq;+2 — i pip;+2) ‘ug 0.
It contradicts to > p(Tik, ky,... k))-

Case (4) There exists a j (2 < j <) such that ¢j(u) = 0. This case is symmetric to Case (3).

The proof of this Lemma is finished. O
The following Lemma gives the lower bound for the spectral radius of a general tree Tz, ,, . k) €
Pre-

ki

Lemma 3.2 Let k = E:%l We have
k+2
dy > 20 "
E+2+1
11—z 7
for all X > p(T (4, o,... 1)), Where the equality holds if and only if ki+1 =ky = -+ = ky—1 = ky+1

and X = p(T(k, ks,...kr))-

Proof Fori=0,1,2,...,7 — 1, we define t; = ¢;/p;. Similarly, for j = 2,...,r + 1, we define
t; = q;/p;. For any s > 0, we define

dgx%st — T2 dQIL’Qt — :c25_2
fs(t) = 25—1 = 25171 , t>0.
5 t+ d1 t+ dlxl

We consider the fixed point of f,(¢), which satisfies
2 — (dg:ﬂg - dll‘%sil)t + .’E%872 =0.
This quadratic equation has a unique root :L“Tl when

do = 2%“{ + dll’%S. (14)

15



We choose s = s(A) to be the root of Equation (14). The line y = ¢ is tangent to the curve
y = fs(t) at t = 257" Because fy(t) is an increasing and concave function of ¢, we have

fs(t) <t, Vt>0.
For i =1,...,r, we have
Fio (1) = fs(@3F 791y < ad® . (15)

By Lemma 2.7, we get

kr) (z2 — wl)(afgﬁlqr—lqiﬂ - xlfrflpr—lpiﬂ)-

,,,,,

,,,,,

tr—lt;drlxg(kr_l) > 1.
Note t; | =tg = Zfﬁ = %x%. Applying inequality (15) recursively, we have
d 1) Qr—
1 < dix% . zg(kT 1) 4r-1
1 Pr—1
da o
= dflfﬂg " frry (fio—z (- (i (F0) )
d _ _ _
< d—i:vgerg(k“l S)xg(krﬂ S)...:Ug(kl s)to
d _ _ _gd
= d—zm%k%g(k’"*l s)xg(krﬁ S)...:Ug(kl s)d—zm%
1 1
. d% 2(rk—(r—1)s+1)
= d7%$2 .
We get dy > dlxa%_(r_l)sﬂ; and the equality holds if and only if ky +1 =ky = --- = k1 =
kr +1=sand A = p(T(y, k,,....k,))- By Remark 1, dy > cllﬂrzqk_(r_l)sJrl is equivalent to
dy > 2$11”E7(r71)s+2 _'_dlx?(rﬁf(rfl)erQ)‘ (16)

Comparing this inequality with equation (14), we must have s < rk — (r — 1)s + 2. Solving s,
we get s < k + % Thus,

k42 k42
dy = 225 + dya3® > 2w1+T + dlx?( )
Applying Remark 1 one more time, we get
k42
R241
1 - :L‘l "
The proof is completed. O
Lemma 3.3 Let G?Lffl”,e = T(ky ko, ky) QDA k= @ Then
a2
233% o
dy < ———=——
1 ka+%J+1
-

holds at A = p™"

n,n—e-
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Proof Let s =Fk+ % Observe that we can always subdivide some edges on internal paths of
T(1s]=1,[5],...|5),|s]—1) tO get a tree T" on n vertices and diameter n — e. By Lemma 2.4, we have

ot o < p(T) < p(T( )1, 5] [5).L5] 1)) = Pls)-

By Lemma 2.10, p| is the root of

Qx%SJ

dy = ——————.
1 —x%SJH

Ls]
Since da(A) is increasing while % is decreasing on ( 2 +/5, oo), we get
!

s s]
mn 2:61 2xl
da(Pim=e) < dapls) = — 7 []+1
11—z PLa) 1— pin
The proof is completed. O

We get the following corollary.

Corollary 3.1 Let G = = Tlky koyekr) € Pre and s = IS ki + % = n=2e82 e have

n,n—e e
273 21"
— <, < et S
1— l,i-‘rl 1— x%sj—i—l

holds at X\ = p(Gpin ). In particular, p(Gi ) = V2 + V54O (

3/2)

min _ P /(P )2 +4d da
Lemma 3.4 Assume Gnn e = Ty, Riskisokr) and ¢ = :  Then the
following equalities hold at the point A = pp'"" ..

\/Edlxlfiﬂ < dy < \/Edlazlfi fori=1,r. (18)

Proof We reuse notations L;, p;, gi, t; (fori = 0,1,...,r—1) and Ry, p};, ¢, t; (for j = 2,...,r+1),
which are introduced in Lemma 3.1 and Lemma 3.2.
Choosing any i € {1,...,r — 1}, by Lemma 2.7 we have

2(k; 1
tt2+2 2( +1— ) 1

at A = pmf .- This means

doxati 1 — ] g2k _
Z L+ dlxzk i—1 i+2%2
We can rewrite it as
2;—1 2k;iiq1—1
by x] g +1 _ dyds + 1x2(ki+ki+1—1) (19)
1— d2 i+2 d2 d% 1 .
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2(k;—1)

d ti—1—
Note t; = fkl (ti—l) = % > 0. We have
ti—1+diz] "

2k;—1
]

ti—1 >
i—1 d2

(20)

Fori=1,...,7—1, we apply Lemma 2.9 to G| = T(k17---7ki7ki+1,---,kr) and Gg = T(k1,...,ki+1,ki+1—1,...,k7»)7
where both trees contain a common induced subtree Ty, . ki 4k;\i+1,..k,) (after removing one
leaf vertex). If ¢q,(p(G1)) > 0, then p(G1) > p(G2). This contradict to the assumption
Gy = G:Lnflnfe‘

We get da, (p(G1)) <0, ie., o7, T k”(pm%n_e) <0.

,,,,,,,,,,

We apply Lemma 2.8 to obtain the difference of characteristic polynomials of T(x, . % kii1....kr)
and T(kl’~~-7ki+17ki+1_17--~’k7‘)’

_ . / kip1—ki—1 ) / kit1—ki—1
¢T(k1 ..... b ki 1o kT)_¢T(k1 ,,,,, kit kg —Loenkr) (z1—22) (pz—lqi+2x2 — 4i-1Pi421 ‘
Evaluating the function above at A = p"i" . we have

) kipr—ki—1 ;o kig—ki—1
(z1 — 22) <pi—1qi+2$22 L =GPy =0
pn,nfe

t R A .
Since ¢;—1 > 0 and p}_ 5 > 0 (from Lemma 3.1), we get ﬁ < x?(kzﬂ Fiml) g A = Pt e In the
min

rest of the proof, all expressions are evaluated at A = pj'7" ..

The notation “| min ” is omitted

Prn—e
for simplicity.
On the one hand, by inequality (20), we can substitute ¢}, , < ti,lmf(ki“*ki*l)

and get

into equation(19)

i— 2kit1—1
tioq — SU%kZ ' xQ(ki-H_ki—l)t, | — Ly o > dld2 + 1x2(ki+ki+1—1)
! ds 1 k ds =T & 1

After simplification, we have

2 2k; ] 4k;
dgtifl - me;nfeti_l — dlxl ©>0.

ppin /(o )2 44d1da

Recall ¢ = 5 . Solving this quadratic inequality, since t;_1 > 0, we get

ti—1 Zéx%ki/dg, 1=1,..,r—1.

By symmetry, we have
i > E$%ki/d2, 1=2,..,T.

Z(kilefk‘ifl)
2

On the other hand, we substitute t; 1 >t ,x into equation (19). By the similar

calculation, we get
thy <t g, =1, r—1
Changing the index i + 2 to ¢ 4+ 1, we have
<™ V/dy, =2 .

By symmetry, we have
ti—1 §5{L‘§(ki_1)/d2, t1=1,...,r—1

18



Combining the inequalities above, we get

d%xf’“i <t < d—(;xf(’“‘l), i=1,..r—1, (21)
c 2k; < / < c 2(]61'—1) i —9 99
Za S tiH_d—xl , 1=2,..,7T. (22)
2 2
Now we apply Lemma 2.7 and get
2(k;—1
tz‘_lt;Jrl{L'Q( ) =1. (23)

Taking product of inequalities (21), (22), and then substituting ¢; 1}, into equation (23). After
simplification, wet get inequality (17).
When i =1 or r, we have

¢ o dy o € 9(ki—1
dle §t0:t4~+1:d <d—x1( ),
Solving for dy, we get inequality (18). The proof of this lemma is completed. 0

Proof of the second part of theorem 1.1. As in the proof of Lemma 3.4, all expressions in

this proof are evaluated at A\ = pzlil” . and | prin ” is omitted for simplicity.

By Lemma 3.4, for 2 < ¢ <7 — 1, we have
El‘]fi—H <d < Ea:lfi_l.

By the definition of ¢, we get

n,n—e

2dpi ! < prin 4 \/ (pmin V2 4 ddydy < 2dpaki™?

After solving do and simplifying, we have

pimert 42 ey 2
> 02 > ok
Since pmf%”_e >2> 1422 = pﬁg” .1, We observe
. 1 2
R e
1— $’1€i+2 1— xl(k1+2)
and ki—1 2k;—1
prt i - 2afh T gyl
1 2k; < 1 ki—1°
T — T
We obtain - L
2z’ 27 .
A cdy< L for2<i<r-—1. (24)
ki+2 ki—1
11—z 1—x
From Theorem 3.1, we have
223 QxLSJ
— g S < — (25)
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Combining inequalities (24) and (25), we get

23;11”Jrl QwFJ
1— gk t? 1— gt
23;11”72 2x5
1-— :L']fi_l 1— it

Thus, [s] —1<k;<s+2. So |s] <k;j<[s]+1wherei=2,...,r—1.
For j =1 or r, combining inequalities (18) and (25), we have

Vedi ki 2l
T‘rl <

= [+ 1’
1—x3
cdy :Ek]- > ZL"{

Note that d; — 2x1 and ¢ — Ag as n approaches infinity. For sufficiently large n, we have
29! < % < 292, We get
xllcj+1+0.45 < .ZE%SJ

kj+0.4
1

and > xf.

So |s] =1 < k;j < [s] for n large enough.
In conclusion, we get
(s~ 1< ky < |s) < ks < [s] + 1

for2<i<r—1landj=1,r.
Now we will prove item 2. It suffices to show k; — k; < 2,for 2 <7 <r—1and j =1,r.
Suppose that there exist ¢, j with ¢ € {2,...,7—1} and j € {1,7} so that k; > k; + 3. By Lemma

3.4, we have
— kj+1 _ kj+2
\/cdl:J:IJJr <dy < c:J:IJJr .

Since /\:r% =1+ x%):pl < 2x1 < dj for A > Ag and ¢ — A\g as n approaches infinity, we have

_ k42 —— kj+1 i
cry’ Y, cdixy’ ™ for n large enough. Contradiction!

Now we will prove item 3. By Lemma 3.4, we have E;vlfjﬂ <dy < E:L‘Ifi_l for all 2 <4,5 <
r — 1. This implies |k; — k;| < 2. It is sufficient to show that there are no ¢, j with |k; — k;| = 2.
Otherwise, suppose there exist i,j € {2,...,r — 1} such that k; = k and k; = k + 2. Without
loss of generality, we can assume that ¢ < j and in addition %, j are mostly close to each other.
Namely, k; = k + 1 for all integer [ between 7 and j.

Applying inequality (17) to k; = k and k; = k + 2, we have

- ki+1 k+1

do cry"" " =cxy ",

= kil o k1
dy < cx =cx] .

v

Two inequalities above force dy = ezt . These equalities force t; 1 = t/ 11 = bt

thig = 281 by inequalities (21) and (22).
Consider the function f(t) = 2222 = f; (23%¢) and let ¢ = ¢/dy = 25 Tt is easy to check

xr1t+dq
f(e) =1. We claim

y tj—-1 =

ty=at fori<I<j—1.

For [ = i, we have
_ 1
ti = fitio) = fr(@i ™) = fla5™h) = f(e) = = e
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By induction on [, we have

0= feralin) = fen () = Fa5) = flo) = - = b+

By Lemma 2.7, we have
tjfgt;ﬂ?%k =1.

Since tj_o = xlfH, it implies t;- = 1:11“*1. However, we also have

th = frro(tip1) = fara(al™) = f25™2) # )71

Contradiction!

If n — 6 is divisible by e — 4, then s = g — 4 is an integer. In this case, the only possible
sequence (ki, ko, ..., k) satisfying items 1-3 is (s — 1,s,...,s,s — 1). In particular, we have
Grnzﬂf:lnfe = T(sfl,s,...,s,sfl)'

The proof is completed. U

4 Proofs of Theorems 1.3 and 1.4

4.1 e=7
Let Gﬁfq = Tk kg ,ks) € Pn,7- Note k1 + kg + k3 = n — 14. By Theorem 1.1, here are all the

min
n,n—"7°

possible graphs for

3
Case 1. ) k; = 3k. We have (ki, ko, k3) = (k,k, k) or (k,k+1,k—1).
i=1

3
Case 2. Y k; =3k+ 1. We have (ki, ko, k3) = (k, k + 1, k).
i=1

3
Case 3. ) k; =3k +2. We have (ki, ko, k3) = (k,k+2,k) or (k,k+1,k+1).
i=1
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To simplify the proof of Theorem 1.3, we introduce the following short notations. We have

A2 —1
Po = P(Lowo) = Ty — a1 dyxq,
X -1
a0 = Y4(Lowo) — Ty — 21 Clzxg,
(k—1) A2 — 1
P = PlHE-y0) T m(d to} + daa ™),
(k—1) A2 — b1
q = Q(H(k_l)ﬂ;l) = m(dzxz d]_{l','l )’
(k) . \?— 2, k+1 k
p = p(H<k),u1) = m(dlxl =+ d2$2),
k) . N -1 2, k+1 k
q = q(H(k>,U1) = m(deQ — d11'1),
(k+1) NP — 2 k+2 k+1
P = PHggy0n) T m(dlxl +dazy™),
)\2
D)= = 2 k+2 k+1
q( ) = q(H(k+1)7U1) = m(d dlxl ),
)\2
p(k,k+1) = P(H g1y we) = m(ds p2k+2 + dydoz; +dgx%k+1 ),
A2 -1
gk = U(H o oy1)02) = m(d:% 222 i dyy — d2a Y — dy),

Proof of Theorem 1.3. We will compare the spectral radius of the possible graphs listed
above in three cases separately.
3
Case 1. > k; = 3k.

i=1
By Lemma 2.8, we have

PTorny ~ PTawprrn-y = (r1 — x2) (p(k)QO-Tl — q(k)pol‘2>
A2 —1)2
((2:2_1:1)) |:(d2f171 + )d%l‘l (dlfL’Q — 1)d2$2i|

(dgxl + 1)()\2 - 1)2 (d%

—d
(IQ *%1)2 1x1)

In the last step, we applied the fact dox1 + 1 = dyx9 — 1.

k/2 k/2

By Lemma 2.10 and Remark 1, p(T(; 41,k)) (= prr1) satisfies doxy' ™ = dizy’". The largest

root of ¢T(k bk ng(k lko1) = 0is pr41-

Noting that d2z} —d?x¥ is an increasing function of \ € (\/ 2 +/5, 5\@) for sufficiently large
k. By Lemma 2.4, we have px11 = p(T (1 p11,6)) < P(L(kkk))- Evaluating Py — PTirkst i)
at A = p(T(k k k)) we get ng(k,k-H,k—l)(p(T(k7k7k'))) < 0. Thus, by Lemma 2.2, p(T(k;,k,k)) <

min

Pk fot1, - 1)) and G0 7 = Tk k)-

Case 2. Z ki = 3k + 1. We must have GJ'" 7 = Tig ji1,k)-
2—1

Case 3. Z ki = 3k + 2.
i=1
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Similarly by Lemma 2.8, we have

(dazy + D)A? =12 15 & o 4
¢T(k,k+1,k+1) - ¢T(k,k+2,k) = (2 — 21)2 <d2x2 - dlxl) .
Noting that d3z§ — d2z¥ is an increasing function of A € (\/ 2+ /5, §\/§> for sufficiently large

k. We have ¢, .0 (A) < é1 400, (A) for any V2+1V5 < A < prgy1. By Lemma 2.4,
we get p(Tkrrok) < PTkrr1k) = pet1- Thus, o7, 0 (0T ps2k)) < 0. It follows

P(T o1 ,b41)) > P(Tpran))- S0 Gpit o =Ty pio,k)-

The proof of Theorem 1.3 is completed. O
4.2 e=8
Now we let ?’%”78 = Ty ko ks, ka) € Pns. By Theorem 1.1, all the possible graphs for %{18

are as follows.

4
Case 1. If S k; = 4k, then (ki, ko, ks, ka) = (k. k, k. k), (k. ke, e+ 1,k — 1), (k. k + 1,k k — 1),
=1
or (k—1,k+1,k+1k—1).

4
Case 2. If S k; = 4k + 1, then (ky, ko, kg, ka) = (k. k + 1,k k) or (k,k+ 1,k +1,k—1).
=1

4
Case 3. If S k; = 4k + 2, then (ky, ko, kg, ka) = (k, k + 1,k + 1, k).
=1

4
Case 4. If S k; = 4k + 3, then (ky, ko, kg, ka) = (k. k+ 1,k +1,k+1) or (k. k+ 1,k +2,k).
=1

(k.k) — (k—1,k+1)

Proof of Theorem 1.4. Similarly, we denote plkk) — P(H(k,k),vz)v q
(k=Lk+1) — ¢

Q(H(k,k)ﬂ)g)J p

P(H(k—l,k+1)7”2)’ and ¢ (H(g—1,k+1),2)"
We will compare the spectral radius of all possible graphs listed in four cases above.

4
Case 1. > k; = 4k.

i=1
First we prove

(T ke ek)) = PTlhe e kr1,6—1)) = (L (k=1 kb1, k+1,5—1))-
By Lemma 2.3, it is easy to see
(T eek)) = P(Tlh=1,1)) = P(T (k=141 k+1,k—1))-
Applying Lemma 2.7 to these graphs, we get

(k,k) (k)
kk k) k— q D e
Oy = PNV (w2 — ) (pum‘qwﬁ 2>,
(k) (k—1)
— plkk) (k=1) .k q P ok
Opiniriey = POV (s — ) (W_q(k—l)l‘l)

& — U LD g T g LA _&w2k—2
T gokt1,k—1) — P RS S B W D R )

(k—1,k+1) (k-1)
_(k=Lk41) (k=1)_ k(. q _® 2k
= p )q )1‘2(1‘2 ZEl) (p(k_l’k'H) q(k—l)w1 > ’

¢T(k—l,k+l,k+1,k—1)
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Let p = p(Tpik) = P(Th-1h+1k41,5—1)) a0d p" = (T g s1,6—1))- Write J(A)
pER gDk (zy — 1) and K(\) = pF=1A+DgW® b1 () — 21). By Lemma 3.1, J(p) > 0
and K(p) >0

Note that p is the root of both equations

(k—1,k+1) (
2k—2 q D 2k
xy and O ThTD q(k—l)xl . (26)

(k,k) (k—1) (k—1,k+1) (k)
2 =2 2k @ v _ P 2k-2
p(k,k) - q(k—l)xl and p(k—l,k—i-l) — q(k)xl ' (27)
We have
(k) (k—1)
p 2 P
¢T(k,k,k+1,k—1) (p) = J(p) (q(k)x%k 2_ gy x%k)
p
(k1) (k)
= p PV og—2
= K(p) <q(k—1) (k)1 )
p

(k) plk=1) 2
Thus, ¢T(k,k,k+1,k—1)(p)2 =—J(p)K(p) ($%k 2p(k) p(kfl) x%k) ‘p < 0. We get ¢T(k,k,k+1,k—l)(p) =
0. Similarly, we can prove ¢r, , . . (p") = 0. Hence, we get p = p'.
Now we prove p(T{ i k+1,k—1)) < P(T(k,k+1,k,k—1))- By Lemma 2.8, we have

¢T(k,k,k+1,k—1) (Z)T(k k+1,k,k—1) = (71 — x2) (p(k)q(k_l) - q(k)p(k_1)> = d1d2/\2()‘2 - 1)2 >0

for any A > )\0 So p(Te e k41,k—1)) < P(T (ke j1,k,k—1))- We are done in this case.

Case 2. Zk =4k + 1.

Slmllarly, by Lemma 2.8, we have

DToerrin) — Plionsrisiny = (T1—2) (p(k,kﬂ) qo — q(k,k+1)p0>
d 112 — 1)22k+1
_ (daz1 + 1)( 1)z (d3 _2d1d2$2k+1 d:%arzllk—&-Z).
(w2 — 21)?

Here we use proof by contradiction. Suppose Gmm 8 = Tk k+1,k+1,k—1)- By Lemma 3.4,
dy = edizh at \ = P(Tikkt1,k41,k—1))- Note € — Ao as n — co. When n is large enough, we
will get ¢ > (2 4 €)x; for some constant € > 0. Thus, we get

d} =ed123* > (2 + €)di .

For n large enough, we have ¢, , \ o) =Ty jy1pp1s) > 08 A= P(T ko1, k+1,k—1)) - Equiva-
lently o7, 41 ) (P(T(k ket 1,541,5—1))) > 0. By Lemma 2.9, we get p(Th k+1,k.k) < (T kt1,54+1,6-1)-

Contradiction! Hence, we have G:’L’;‘{‘ 8 = Tk 1,k k-

4
Case 3. > k; = 4k + 2. There is only one possible graph Tk kot 1,k+1,k)-
i=1

4
Case 4. > k; =4k + 3.
i=1
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Similarly by Lemma 2.8, we have

¢T(k,k+1,k+1,k+1) - ¢T<k,k+1,k+2,k)
k,k+1 k,k+1
= (21— 22) (p( k) gy — gkt )po>

d 1 2 _ 1 2,.2k+1
_ (e DA~ (dg — 2dydpz it —di’xi"““)

(w2 — a1)?
(damr +1)(A2 = 123" 2h+1
T (d2 — 2d;dy? )
_ dy(damy + 1)(A2 — 1)%3H ! B2 9, 2k
We now suppose Zfil”_s = T{k,k+1,k+1,k+1) 0 this case. By Lemma 3.4, dy = édlm'fﬂ at

A= p(T (e jo41,k+1,6+1))- Recall that € — Mg as n — oo. When n is large enough, we get ¢ < 2x5.
Thus dy = Védlﬂ?llﬁ_l < 2d1x2$’f+1. We get ¢T(k,k+1,k+2,k>(p(T(k,k—i-l,k—l-l,k—i-l))) > 0. Apply-
ing Lemma 2.9 with G2 = T(y g1 1 k42.4) and G1 = T(g p41,k+1,6+1), We have P(Th kot 1 kt2,k) <

P(Th k+1,k+1,k+1). Contradiction! Hence ?}L’LS = Tk k+1,k+2,k- The proof is completed. O
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