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Abstract

The spectral radius ρ(G) of a graph G is the largest eigenvalue of its adjacency matrix
A(G). For a fixed integer e ≥ 1, let Gmin

n,n−e be a graph with minimal spectral radius among
all connected graphs on n vertices with diameter n− e. Let Pm1,m2,...,mt

n1,n2,...,nt,p be a tree obtained
from a path of p vertices (0 ∼ 1 ∼ 2 ∼ · · · ∼ (p − 1)) by linking one pendant path Pni

at
mi for each i ∈ {1, 2, ..., t}. For e = 1, 2, 3, 4, 5, Gmin

n,n−e were determined in the literature.
Cioabǎ-van Dam-Koolen-Lee [2] conjectured for fixed e ≥ 6, Gmin

n,n−e is in the family Pn,e =
{P 2,m2,...,me−4,n−e−2

2,1,...1,2,n−e+1 | 2 < m2 < · · · < me−4 < n − e − 2}. For e = 6, 7, they conjectured

Gmin
n,n−6 = P

2,dD−1
2 e,D−2

2,1,2,n−5 and Gmin
n,n−7 = P

2,bD+2
3 c,D−b

D+2
3 c,D−2

2,1,1,2,n−6 . In this paper, we settle their
conjectures positively. Note that any tree in Pn,e is uniquely determined by its internal
path lengths. For any e − 4 non-negative integers k1, k2, . . . , ke−4, let T(k1,k2,...,ke−4) =
P

2,m2,...,me−4,n−e−2
2,1,...1,2,n−e+1 with ki = mi+1 −mi − 1, for 1 ≤ i ≤ e− 4. (Here we assume m1 = 2

and me−3 = n− e− 2.)

Let s =
Pe−4

i=1 ki+2

e−4 . For any integer e ≥ 6 and sufficiently large n, we proved that Gmin
n,n−e

must be one of the trees T(k1,k2,...,ke−4) with the parameters satisfying bsc − 1 ≤ kj ≤ bsc ≤
ki ≤ dse + 1 for j = 1, e− 4 and i = 2, . . . , e − 5. Moreover, 0 ≤ ki − kj ≤ 2 for 2 ≤ i ≤
e− 5, j = 1, e− 4; and |ki − kj | ≤ 1 for 2 ≤ i, j ≤ e− 5. These results are best possible
as shown by cases e = 6, 7, 8, where Gmin

n,n−e are completely determined here. Moreover, if
n− 6 is divisible by e− 4 and n is sufficiently large, then Gmin

n,e = T(k−1,k,k,...,k,k,k−1) where
k = n−6

e−4 − 2.

1 Introduction

Let G = (V,E) be a simple connected graph, and A(G) be the adjacency matrix of G. The
characteristic polynomial of G is defined by φG(λ) = det(λI − A(G)). The spectral radius,
denoted by ρ(G), is the largest root of φG. The problem of determining graphs with small
spectral radius can be traced back to Hoffman and Smith [10, 7, 8]. They completely determined
all connected graphs G with ρ(G) ≤ 2. The connected graphs with ρ(G) < 2 are precisely simple
Dynkin Diagrams An, Dn, E6, E7, and E8. The connected graphs with ρ(G) = 2 are exactly
those simple extended Dynkin Diagrams Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8. Cvetković et al. [4] gave a
nearly complete description of all graphs G with 2 < ρ(G) ≤

√
2 +
√

5. Their description was
completed by Brouwer and Neumaier [1]. Those graphs are some special trees with at most two
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vertices of degree 3. Wang et al. [12] studied some graphs with spectral radius close to 3
2

√
2.

Woo and Neumaier [13] determined the structures of graphs G with
√

2 +
√

5 ≤ ρ(G) ≤ 3
2

√
2; if

G has maximum degree at least 4, then G is a dagger (i.e., a path is attached to a leaf of a star
S4); if G is a tree with maximum degree at most 3, then G is an open quipus (i.e., the vertices of
degree 3 lies on a path); else G is a closed quipus (i.e., a unicyclic graph with maximum degree
at most 3 satisfies that the vertices of degree 3 lies on a cycle).

Van Dam and Kooij [3] used the following notation to denote an open quipus. Let Pm1,m2,...,mt
n1,n2,...nt,p

be a tree obtained from a path on p vertices (0 ∼ 1 ∼ 2 ∼ · · · ∼ (p− 1)) by linking one pendant
path Pni at mi for i = 1, 2, ..., t (see Figure 1.) The path 0 ∼ 1 ∼ 2 ∼ · · · ∼ (p − 1) is called
main path. For i = 1, ..., t − 1, let P (i) be the i-th internal path (mi ∼ mi+1 ∼ · · · ∼ mi+1)
and ki = mi+1 −mi − 1 be the the number of internal vertices on P (i). In general, an internal
path in G is a path v0 ∼ v1 ∼ · · · ∼ vs such that d(v0) > 2, d(vs) > 2, and d(vi) = 2, whenever
0 < i < s. An internal path is closed if v0 = vs.

s s s ss s s s s ss s
s sq q q

0 1 p− 1m1 mt

Pn1 Pnt

Figure 1: Pm1,m2,...,mt
n1,n2,...,nt,p

Recently van Dam and Kooij [3] asked an interesting question “which connected graph of
order n with a given diameter D has minimal spectral radius?”. Here the diameter of a connected
graph is the maximum distance among all pairs of its vertices. They [3] solved this problem
explicitly for graphs with diameter D ∈ {1, 2, bn/2c, n− 3, n− 2, n− 1}. The cases D = 1 and
D = n − 1 are trivial. A minimizer graph, denoted by Gminn,D , is a graph that has the minimal
spectral radius among all the graphs of order n and diameter D. They proved that Gminn,2 is
either a star or a Moore graph; Gminn,bn/2c is the cycle Cn; Gminn,n−2 is the tree P 1

1,n−1; Gminn,n−3 is the

tree P 1,n−4
1,1,n−2. They conjectured Gminn,n−e = P

b e−1
2
c,n−e−d e−1

2
e

b e−1
2
c,d e−1

2
e,n−e+1

for any constant e ≥ 1 and n large

enough.
This conjecture is proved for e = 4 by Yuan et al. [5] and for e = 5 by Cioabǎ et al. [2].

However, it is disproved for e = 6 by [11] and any e ≥ 6 by [2] when n large enough. Cioabǎ-van
Dam-Koolen-Lee [2] proved the following theorem.

Theorem 5.2 of [2]: For e ≥ 6, ρ(Gminn,n−e) →
√

2 +
√

5 as n → ∞. Moreover Gminn,n−e is
contained in one of the following three families of graphs

Pn,e =
{
P

2,m2,...,me−4,n−e−2
2,1,...1,2,n−e+1 | 2 < m2 < · · · < me−4 < n− e− 2

}
,

P ′n,e =
{
P

2,m2,...,me−3,n−e−1
2,1,...1,1,n−e+1 | 2 < m2 < · · · < me−3 < n− e− 1

}
,

P ′′n,e =
{
P

1,m2,...,me−2,n−e−1
1,1,...1,1,n−e+1 | 1 < m2 < · · · < me−2 < n− e− 1

}
.

Cioabǎ et al. [2] made three conjectures.

Conjecture 1 ([2], 5.3) For fixed e ≥ 5, a minimizer graph with n vertices and diameter
D = n− e is in the family Pn,e, for n large enough.
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Conjecture 2 ([2], 5.4) The graph P
2,dD−1

2
e,D−2

2,1,2,n−5 is the unique minimizer graph with n vertices
and diameter D = n− 6, for n large enough.

Conjecture 3 ([2], 5.5) The graph P
2,bD+2

3
c,D−bD+2

3
c,D−2

2,1,1,2,n−6 is the unique minimizer graph with
n vertices and diameter D = n− 7, for n large enough. 1

In this paper, we settle these three conjectures positively.
Note that graphs in each family can be determined by the lengths of internal paths (see

Figure 2). The parameters ki’s and mi’s are related as follows. In the first family Pn,e,
T(k1,k2,...,ke−4) = P

2,m2,...,me−4,n−e−2
2,1,...1,2,n−e+1 if ki = mi+1 − mi − 1 for 1 ≤ i ≤ e − 4, where m1 = 2

and me−3 = n − e − 2. In the second family P ′n,e, T ′(k1,k2,...,ke−3) = P
2,m2,...,me−3,n−e−1
2,1,...1,1,n−e+1 if ki =

mi+1 −mi − 1 for 1 ≤ i ≤ e− 3, where m1 = 2 and me−2 = n− e− 1. In the third family P ′′n,e,
T ′′(k1,k2,...,ke−2) = P

1,m2,...,me−2,n−e−1
1,1,...1,1,n−e+1 if ki = mi+1 −mi − 1 for 1 ≤ i ≤ e − 2, where m1 = 1 and

me−1 = n− e− 1. In all three cases, the summation of all ki’s is always equal to n− 2e.

s s s s s s
s
s

s
s

s
s

s
s

s
sq q q

q q qk1 k2 ke−4

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ T(k1,k2,...,ke−4)

s s s s s
s
s

s
s
s

s
s

s
sq q q

q q qk1 k2 ke−3

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ T ′(k1,k2,...,ke−3)

s s s s
s s

s
s

s
s

s
sq q q

q q qk1 k2 ke−2

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ T ′′(k1,k2,...,ke−2)

Figure 2: The three families of graphs: Pn,e, P ′n,e,P ′′n,e.

We have the following theorem.

Theorem 1.1 For any e ≥ 6 and sufficiently large n, Gminn,n−e must be a tree T(k1,k2,...,ke−4) in
Pn,e satisfying

1. bsc − 1 ≤ kj ≤ bsc ≤ ki ≤ dse+ 1 for 2 ≤ i ≤ e− 5 and j = 1, e− 4, where s = n−6
e−4 − 2,

2. 0 ≤ ki − kj ≤ 2 for 2 ≤ i ≤ e− 5 and j = 1, e− 4,

3. |ki − kj | ≤ 1 for 2 ≤ i, j ≤ e− 5.

In particular, if n− 6 is divisible by e− 4, then Gminn,n−e = T(s−1,s,...,s,s−1).

Here we completely determine the Gminn,n−e for e = 6, 7, 8 and settle the conjectures 2 and 3
positively.

1Conjecture 5.5 of [2] contains a typo: “...P
2,bD−2

3 c,D−bD−2
3 c,D−2

2,1,1,2,n−6 ...”.
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Theorem 1.2 For e = 6 and n large enough, Gminn,n−e is unique up to a graph isomorphism.

1. If n = 2k + 12, then Gminn,n−6 = T(k,k).

2. If n = 2k + 13, then Gminn,n−6 = T(k,k+1).

Theorem 1.3 For e = 7 and n large enough, Gminn,n−e is unique up to a graph isomorphism.

1. If n = 3k + 14, then Gminn,n−7 = T(k,k,k).

2. If n = 3k + 15, then Gminn,n−7 = T(k,k+1,k).

3. If n = 3k + 16, then Gminn,n−7 = T(k,k+2,k).

Theorem 1.4 For e = 8 and n large enough, Gminn,n−e is determined up to a graph isomorphism
as follows.

1. If n = 3k+ 16, then Gminn,n−8 = T(k,k,k,k), T(k,k,k+1,k−1), or T(k−1,k+1,k+1,k−1); all three trees
have the same spectral radius.

2. If n = 3k + 17, then Gminn,n−8 = T(k,k+1,k,k).

3. If n = 3k + 18, then Gminn,n−8 = T(k,k+1,k+1,k).

4. If n = 3k + 19, then Gminn,n−8 = T(k,k+1,k+2,k).

For e = 6, Theorem 1.2 is an easy corollary of Theorem 1.1. Theorem 1.3 and Theorem 1.4
show that the bounds on ki’s in Theorem 1.1 are best possible.

The remaining of the paper is organized as follows. In section 2, we prove some useful
lemmas. The proof of Theorem 1.1 is presented in section 3 and the proofs of Theorem 1.3 and
1.4 are given in section 4.

2 Basic notations and Lemmas

2.1 Preliminary results

For any vertex v in a graph G, let N(v) be the neighborhood of v. Let G− v be the remaining
graph of G after deleting the vertex v (and all edges incident to v). Similarly, G − u − v is
the remaining graph of G after deleting two vertices u, v. Here are some basic facts found in
literature [6, 7, 9, 11], which will be used later.

Lemma 2.1 [6] Suppose that G is a connected graph. If v is not in any cycle of G, then
φG = λφG−v −

∑
w∈N(v) φG−w−v. If e = uv is a cut edge of G, then φG = φG−e − φG−u−v.

Lemma 2.2 [6] Let G1 and G2 be two graphs, then the following statements hold.

1. If G2 is a proper subgraph of G1, then ρ(G1) > ρ(G2).

2. If G2 is a spanning proper subgraph of G1, then ρ(G1) > ρ(G2) and φG2(λ) > φG1(λ) for
all λ ≥ ρ(G1).

3. If φG2(λ) > φG1(λ) for all λ ≥ ρ(G1), then ρ(G2) < ρ(G1).

4. If φG1(ρ(G2)) < 0,then ρ(G1) > ρ(G2).
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Figure 3: The graphs H1 and H2

Lemma 2.3 [11] Let G1 and G2 be two (possibly empty) graphs with a ∈ V (G1) and b ∈ V (G2),
and let H1 and H2 be two graphs shown in Figure 3. Then ρ(H1) = ρ(H2).

Lemma 2.4 [7] Let uv be an edge of a connected graph G of order n, and denote by Gu, v the
graph obtained from G by subdividing the edge uv once, i.e., adding a new vertex w and edges
wu,wv in G− uv. Then the following two properties hold.

1. If uv does not belong to an internal path of G and G 6= Cn, then ρ(Gu, v) > ρ(G).

2. If uv belongs to an internal path of G and G 6= P 1,n−2
1,1,n , then ρ(Gu, v) < ρ(G).

Theorem 2.1 (Cauchy Interlace Theorem (see p.183, [9])) Let A be a Hermitian matrix
of order n, and let B be a principal submatrix of A of order n− 1. If λn ≤ λn−1 ≤ · · · ≤ λ1 lists
the eigenvalues of A and µn−1 ≤ µn−2 ≤ · · · ≤ µ1 the eigenvalues of B, then

λn ≤ µn−1 ≤ λn−1 ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1.

Applying Cauchy Interlace Theorem to the adjacency matrices of graphs, we have the fol-
lowing corollary.

Corollary 2.1 Suppose G is a connected graph. Let λ2(G) be the second largest eigenvalue of
G. For any vertex v, we have

λ2(G) < ρ(G− v) < ρ(G).

2.2 Our approach

A rooted graph (G, v) is a graph G together with a designated vertex v as a root. For i = 1, 2, 3
and a given rooted graph (H, v′), we get a new rooted graph (Gi, v) from H by attaching a path
Pi to v′ and changing the root from v′ to v as shown by Figure 4.

s s ss s ss ss
v v vv′ v′ v′

H H H

G1 G2 G3

Figure 4: For i = 1, 2, 3, three graphs (Gi, v) are constructed from (H, v′).

Note that any tree in the three families Pn,e, P ′n,e, P ′′n,e can be built up from a single vertex
through a sequence of three operations above. Applying Lemma 2.1, we observe that the pair
(φGi , φGi−v) linearly depends on (φH , φH−v′) with coefficients in Z[λ]. We can choose proper
base to diagonalize the operation from (H, v′) to (G1, v).
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Let λ0 be the constant
√

2 +
√

5 = 2.058 · · · . In this paper, we consider only the range
λ ≥ λ0. Let x1 and x2 be two roots of the equation x2 − λx+ 1 = 0. We have

x1 =
λ−
√
λ2 − 4
2

, x2 =
λ+
√
λ2 − 4
2

and
x1 + x2 = λ, x1x2 = 1. (1)

For any vertex v in a graph G, we define two functions (of λ) p(G,v) and q(G,v) satisfying

φG = p(G,v) + q(G,v),

φG−v = x2p(G,v) + x1q(G,v).

This definition can be written in the following matrix form:(
φG
φG−v

)
=
(

1 1
x2 x1

)(
p(G,v)

q(G,v)

)
. (2)

Using Equation (1), we can solve p(G,v) and q(G,v) and get(
p(G,v)

q(G,v)

)
=

1
x2 − x1

(
−x1 1
x2 −1

)(
φG
φG−v

)
. (3)

For example, let v be the center of the odd path P2k+1. We have

(
p(P1,v)

q(P1,v)

)
=

1
x2 − x1

(
−x2

1

x2
2

)
, (4)(

p(P3,v)

q(P3,v)

)
= λ

(
x2

1

x2
2

)
, (5)(

p(P5,v)

q(P5,v)

)
=

λ2 − 1
x2 − x1

(
(λ− x3

1)x1

(x3
2 − λ)x2

)
. (6)

We have the following lemma.

Lemma 2.5 For any tree G and any vertex v, we have

lim
λ→+∞

q(G,v)(λ) = +∞. (7)

Proof From Lemma 2.1, we have

φG = λφG−v −
∑

w∈N(v)

φG−w−v.

By Equation (3), we get

q(G,v) =
1

x2 − x1
(x2φG − φG−v)

=
1

x2 − x1

x2

λφG−v − ∑
w∈N(v)

φG−w−v

− φG−v


=
1

x2 − x1

(λx2 − 1)φG−v − x2

∑
w∈N(v)

φG−w−v


=

x2

x2 − x1

x2φG−v −
∑

w∈N(v)

φG−w−v

 .
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Note that φG−v is a polynomial of degree n − 1 with highest coefficient 1 while φG−w−v is a
polynomial of degree n − 2 with highest coefficient 1. Since x2 > 1 > x1, we have x2φG−v −∑

w∈N(v) φG−w−v goes to infinity as λ approaches infinity. �

Lemma 2.6 Let G1, G2, G3 be the graphs shown in Figure 4. Then the following equations hold.

1.
(
p(G1,v)

q(G1,v)

)
=
(
x1 0
0 x2

)(
p(H,v′)

q(H,v′)

)
.

2.
(
p(G2,v)

q(G2,v)

)
=

1
x2 − x1

(
λ− x3

1 x1

−x2 x3
2 − λ

)(
p(H,v′)

q(H,v′)

)
.

3.
(
p(G3,v)

q(G3,v)

)
=

1
x2 − x1

(
−x4

1 + λ2 − 1 λx1

−λx2 x4
2 − λ2 + 1

)(
p(H,v′)

q(H,v′)

)
.

Proof By Lemma 2.1, we have(
φG1

φG1−v

)
=
(
λ −1
1 0

)(
φH
φH−v′

)
.

Combining it with equations ( 2) ( 3), we get(
p(G1,v)

q(G1,v)

)
=

(
1 1
x2 x1

)−1(
λ −1
1 0

)(
1 1
x2 x1

)(
p(H,v′)

q(H,v′)

)
=

1
x2 − x1

(
2− λx1 x2

1 − λx1 + 1
−x2

2 + λx2 − 1 λx2 − 2

)(
p(H,v′)

q(H,v′)

)
=

(
x1 0
0 x2

)(
p(H,v′)

q(H,v′)

)
.

The proofs of items 2 and 3 are similar as that of item 1. �
We denote the three matrices by A, B, and C. Namely,

A =
(
x1 0
0 x2

)
, B =

1
x2 − x1

(
λ− x3

1 x1

−x2 x3
2 − λ

)
, C =

1
x2 − x1

(
−x4

1 + λ2 − 1 λx1

−λx2 x4
2 − λ2 + 1

)
.

The diagonal elements of B are very useful parameters. To simplify our notations later, we
define two parameters d1 and d2 as follows:

d1 = λ− x3
1, (8)

d2 = x3
2 − λ. (9)

Note that d2 = 0 if λ = λ0. The equation (6) can be written as(
p(P5,v)

q(P5,v)

)
=

λ2 − 1
x2 − x1

(
d1x1

d2x2

)
. (10)

From the definitions of d1 and d2, we can derive the following identity

d1x2 − d2x1 = 2. (11)

Given two rooted graphs (H1, v1) and (H2, v2), we define some new graphs. Denote by
(H1, v1) · Pi, the graph consisting of the graph H1 and a path Pi linking one of its ends at the
vertex v1. Similarly denote by (H1, v1) · Pi · (H2, v2) the graph consisting of graphs H1, H2 and
a path Pi linking the two ends at v1, v2 respectively.
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s s sH1 H2v1 v2

u

Figure 5: The graph (H1, v1) · P1 · (H2, v2)

Lemma 2.7 φ(H1,v1)·P1·(H2,v2)(λ) = (x2 − x1)(q(H1,v1)q(H2,v2) − p(H1,v1)p(H2,v2)).

Proof By Lemmas 2.1 and 2.6, we have

φ(H1,v1)·P1·(H2,v2)(λ)
= λφH1φH2 − φH1−v1φH2 − φH2−v2φH1

= (x1 + x2)(p(H1,v1) + q(H1,v1))(p(H2,v2) + q(H2,v2))− (p(H1,v1)x2 + q(H1,v1)x1)
(p(H2,v2) + q(H2,v2))− (p(H1,v1) + q(H1,v1))(p(H2,v2)x2 + q(H2,v2)x1)

= (p(H2,v2) + q(H2,v2))(p(H1,v1)x1 + q(H1,v1)x2)− (p(H1,v1) + q(H1,v1))(p(H2,v2)x2 + q(H2,v2)x1)
= p(H2,v2)p(H1,v1)x1 + q(H2,v2)q(H1,v1)x2 − p(H2,v2)p(H1,v1)x2 − q(H2,v2)q(H1,v1)x1

= (x2 − x1)(q(H1,v1)q(H2,v2) − p(H1,v1)p(H2,v2)). �

s ss ss s ss
H1 H2v1 v2

i j

︸ ︷︷ ︸ ︸ ︷︷ ︸
Figure 6: The graph Gi,j

Lemma 2.8 Let Gi,j be the graph shown in Figure 6 where i, j are the numbers of included
vertices. Then

φGi,j − φGi+1,j−1 = (x1 − x2)
(
p(H1,v1)q(H2,v2)x

j−i−1
2 − q(H1,v1)p(H2,v2)x

j−i−1
1

)
.

Proof By lemma 2.1, we have

φGi,j = λφ(H1,v1)·Pi+j+1·(H2,v2) − φ(H1,v1)·Pi
φ(H2,v2)·Pj

,

φGi+1,j−1 = λφ(H1,v1)·Pi+j+1·(H2,v2) − φ(H1,v1)·Pi+1
φ(H2,v2)·Pj−1

.

Thus, we get

φGi,j − φGi+1,j−1 = φ(H1,v1)·Pi+1
φ(H2,v2)·Pj−1

− φ(H1,v1)·Pi
φ(H2,v2)·Pj

=
(
p(H1,v1)x

i+1
1 + q(H1,v1)x

i+1
2

) (
p(H2,v2)x

j−1
1 + q(H2,v2)x

j−1
2

)
−
(
p(H1,v1)x

i
1 + q(H1,v1)x

i
2

) (
p(H2,v2)x

j
1 + q(H2,v2)x

j
2

)
= p(H1,v1)q(H2,v2)

(
xi+1

1 xj−1
2 − xi1x

j
2

)
+ q(H1,v1)p(H2,v2)

(
xj−1

1 xi+1
2 − xj1x

i
2

)
= xi1x

i
2

[
p(H1,v1)q(H2,v2)(x1x

j−i−1
2 − xj−i2 ) + q(H1,v1)p(H2,v2)(x

j−i−1
1 x2 − xj−i1 )

]
= (x1 − x2)

(
p(H1,v1)q(H2,v2)x

j−i−1
2 − q(H1,v1)p(H2,v2)x

j−i−1
1

)
.

The proof is completed. �
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Lemma 2.9 Suppose G1 and G2 are two connected graphs satisfying G1 − u1 = G2 − u2 for
some vertices u1 ∈ V (G1) and u2 ∈ V (G2). If φG2(ρ(G1)) > 0, then ρ(G1) > ρ(G2).

Proof Let G = G1 − u1 = G2 − u2. By Corollary 2.1, we have

ρ(Gi) > ρ(G) ≥ λ2(Gi) for i = 1, 2.

Here λ2(Gi) is the second largest eigenvalue of Gi. We have ρ(G1) > λ2(G2).
Since ρ(G2) is a simple root and lim

λ→∞
φG2(λ) = +∞, we have

φG2(λ) < 0 for λ ∈ (λ2(G2), ρ(G2)).

Since φG2(ρ(G1)) > 0 and ρ(G1) > λ2(G2), we must have ρ(G1) > ρ(G2). �

2.3 A special tree T(k−1,k,...,k,k−1)

The tree T(k−1,k,...,k,k−1) (∈ Pn,e) plays an important role in this paper. We have the following
lemma.

Lemma 2.10 The spectral radius of the tree T(k−1,k,...,k,k−1) is the unique root ρk of the equation

d2 = 2xk
1

1−xk+1
1

in the interval
(√

2 +
√

5,∞
)

.

Remark 1: The following equations are equivalent to one another.

d2 =
2xk1

1− xk+1
1

,

d2x
k
2 − d1x

k
1 = 2,

d2 = d1x
k−1
1 ,

d2x
k−1
2

2 = d1x
k−1
2

1 ,

d2 = 2xk1 + d1x
2k
1 .

If “=” is replaced by “≥”, then these inequalities are still equivalent to each other. These
equivalences can be proved by equation (11). The details are omitted.

Remark 2: For any k ≥ 4, we have ρk ≤ ρ4 <
3
2

√
2. For any e ≥ 6 and n ≥ (k + 2)(e− 4) + 6,

we can obtain a tree T on n vertices and diameter n− e by subdividing some edges on internal
paths of T(k−1,k,...,k,k−1). By Lemma 2.4, we have

ρ(T ) ≤ ρ(T(k−1,k,...,k,k−1)) = ρk <
3
2

√
2.

In particular, for e ≥ 6 and n ≥ (k+2)(e−4)+6 = |T(k−1,k,...,k,k−1)|, we have ρ(Gminn,n−e) <
3
2

√
2.

In the set of graphs with spectral radius at most
√

2 +
√

5 (see [1]), there is no graph with
diameter n− e for e ≥ 6. Thus, ρ(Gminn,n−e) ≥

√
2 +
√

5.

Proof of Lemma 2.10. Let G = T(k−1,k,...,k,k−1) and v be the leftmost vertex. Note that G
can be built up from a single vertex with a series of three operations as specified in Lemma 2.6.

9



We have

φG = (1, 1)

(
p(T(k−1,k,...,k,k−1),v)

q(T(k−1,k,...,k,k−1),v)

)

= (1, 1)A2CAk−1BAk...BAk−1CA

(
1 1
x2 x1

)−1(
λ
1

)
=

(λ2 − 1)2

x2 − x1
(−d1, d2)Ak−1BAk...BAk−1

(
d1x1

d2x2

)
=

(λ2 − 1)2

x2 − x1
(−d1, d2)Ak−1BAk...BAk

(
d1

d2

)
.

Let l = k−1
2 ; l does not have to be an integer. Define Al =

(
xl1 0
0 xl2

)
. We can write φG as

φG =
(λ2 − 1)2

x2 − x1
(−d1x

l
1, d2x

l
2)(AlBAl+1)r−1

(
d1x

l
1

d2x
l
2

)
. (12)

It is easy to calculate

AlBAl+1 =
1

x2 − x1

(
d1x

k
1 1

−1 d2x
k
2

)
. (13)

Now we prove that ρk is a root of φG. At λ = ρk, we have d1x
l
1 = d2x

l
2 and d1x

k
1 + 1 = d2x

k
2 − 1.

Thus

(AlBAl+1)
(

1
1

)
=

1
x2 − x1

(
d1x

k
1 1

−1 d2x
k
2

)(
1
1

)
=

d1x
k
1 + 1

x2 − x1

(
1
1

)
.

We have

φG(ρk) =
(λ2 − 1)2

x2 − x1
(−d1x

l
1, d2x

l
2)(AlBAl+1)r−1

(
d1x

l
1

d2x
l
2

)
=

(λ2 − 1)2

(x2 − x1)r
(d1x

k
1 + 1)r−1d2

1x
k−1
1 (−1, 1)

(
1
1

)
= 0.

It remains to prove φG(λ) > 0 for any λ > ρk. When λ > ρk, we have d2x
k
2 − 1 > d1x

k
1 + 1

(and d2x
l
2 > d1x

l
1). It is easy to check AlBAl+1 maps the region {(z1, z2) : z2 ≥ z1 > 0} to

{(z1, z2) : z2 > z1 > 0}. By induction on r, (AlBAl+1)r−1 maps the region {(z1, z2) : z2 ≥ z1 > 0}
to {(z1, z2) : z2 > z1 > 0}. Let(

z1

z2

)
= (AlBAl+1)r−1

(
d1x

l
1

d2x
l
2

)
.

Since d2x
l
2 > d1x

l
1 > 0, we have z2 > z1 > 0. From equation (12), we get

φG =
(λ2 − 1)2

x2 − x1
(−d1x

l
1, d2x

l
2)(AlBAl+1)r−1

(
d1x

l
1

d2x
l
2

)
=

(λ2 − 1)2

x2 − x1
(−d1x

l
1, d2x

l
2)
(
z1

z2

)
=

(λ2 − 1)2

x2 − x1
(d2x

l
2z2 − d1x

l
1z1)

> 0.

10



The proof of the Lemma is finished. �

2.4 Limit points of some graphs

Using the tools developed in the previous section, we can compute the limit point of the spectral
radius of some graphs.

s ss
s

s
s

s
s

s
s

i k j

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 7: The graphs T ′′(i,k,j)

Lemma 2.11 Let T ′′(i,k,j) be the tree shown in Figure 7 and ρ′′k be the unique root of d2 = xk1 in

the interval
(√

2 +
√

5,+∞
)

. Then lim
i,j→∞

ρ(T ′′(i,k,j)) = ρ′′k.

Proof By Lemma 2.4, we have

ρ(T ′′(i,k,i)) ≥ ρ(T ′′(i,k,j) ≥ T
′′
(j,k,j) if i ≤ j.

It suffices to show lim
l→∞

ρ(T ′′(l,k,l)) = ρ′′k. Let v be the leftmost vertex of T ′′(l,k,l). A simple calculation

shows

φT ′′
(l,k,l)

= (1, 1)

(
p(T ′′

(l,k,l)
,v)

q(T ′′
(l,k,l)

,v)

)

= (1, 1)ABAlBAkBAlB
(

1 1
x2 x1

)−1(
λ
1

)
=

x2l−k+1
2 (d2x2 + x2

1)2

(x2 − x1)5

[
((d2x

k
2)2 − 1)− 2x2l−k+3

1 (d1x
k
1 + d2x

k
2)− x2(2l−k+3)

1 ((d1x
k
1)2 − 1)

]
.

As l goes to infinity, lim
l→∞

ρ(T ′′(l,k,l)) is the largest root of (d2x
k
2)2 − 1 = 0; namely d2 = xk1.

The proof is completed. �
We have the following Corollary from Lemma 2.11.

Corollary 2.2 Let T ′′(k,i) be the tree shown in Figure 8. We have lim
i→∞

ρ(T ′′(k,i)) = ρ′′2k+3.

Proof By Lemma 2.3, we have ρ(T ′′(k,i)) = ρ(T ′′(i,2k+3,i)). Thus lim
i→∞

ρ(T ′′(k,i)) = lim
i→∞

ρ(T ′′(i,2k+3,i)) =

ρ′′2k+3. �

Lemma 2.12 Let T ′(k,j) be the tree shown in Figure 9 and ρ′k be the unique root of d2 = d
1
2
1 x

k+ 1
2

1

in the interval
(√

2 +
√

5,+∞
)

. Then lim
j→∞

ρ(T ′(k,j)) = ρ′k.

11
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i k

︸ ︷︷ ︸ ︸ ︷︷ ︸ s s s s ssss ss
j k

︸ ︷︷ ︸ ︸ ︷︷ ︸
Figure 8: The graph T ′′(k, i) Figure 9: The graph T ′(k, j)

Proof Similarly, we have

φT ′
(k,j)

= (1, 1)

(
p(T ′

(k,j)
,v)

q(T ′
(k,j)

,v)

)

= (1, 1)ABAjBAkCA
(

1 1
x2 x1

)−1(
λ
1

)
=

xj+k+1
2 (λ2 − 1)(d2x2 + x3

1)
(x2 − x1)3

(
d2

2 − d1x
2k+1
1 − d2x

2j+3
1 − d2

1x
2j+2k+4
1

)
.

As j goes to infinity, lim
→∞

ρ(T ′(k,j)) is the largest root of d2
2 = d1x

2k+1
1 ; namely d2 = d

1
2
1 x

k+ 1
2

1 .

The proof is completed. �

2.5 Comparison of ρk, ρ
′
k, and ρ′′k

Observe that ρk, ρ′k, and ρ′′k satisfy similar equations. Since 1 <
√
d1x1 <

2
1−xk+1

1

, we have

ρ′′k ≤ ρ′k ≤ ρk.

For λ ∈ [λ0,
3
2

√
2], x2, d2, and d1x1 are increasing while x1 is decreasing. Using these facts,

it is easy to check that for k ≥ 7, ρk, ρ′k, and ρ′′k are in the interval (λ0,
3
2

√
2).

We have the following lemma.

Lemma 2.13 For k ≥ 7, we have ρk < ρ′′k−4 and ρk < ρ′k−3.

Proof Recall that ρ′′k−4 is the root of d2 = xk−4
1 and ρk is the root of d2 = 2xk

1

1−xk+1
1

. We need to

show 2 < x4
2(1− xk+1

1 ) for λ ∈ [λ0,
3
2

√
2]. For k ≥ 7, we have

x4
2(1− xk+1

1 ) ≥ x4
2 − x4

1

≥ (x4
2 − x4

1)|λ0

> 2.

Note that ρ′k−3 is the root of d2 =
√
d1x1x

k−3
1 . It suffices to show 2 <

√
d1x1x

3
2(1 − xk+1

1 )
for λ ∈ [λ0,

3
2

√
2]. We have√

d1x1x
3
2(1− xk+1

1 ) ≥
√
d1x1x

3
2(1− x8

1)

≥
√
d1x1x

3
2(1− x8

1)|λ0

> 2.

The proof is completed. �
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3 Proof of Theorem 1.1

The proof of Theorem 1.1 can be naturally divided into two parts. In the first part, we prove
that Gminn,n−e ∈ Pn,e. In the second part, we prove the other statements in Theorem 1.1.

3.1 Part 1

Let ρminn,n−e = ρ(Gminn,n−e) in the rest part of this paper. Now we prove the following theorem,
which implies the first part of Theorem 1.1.

Theorem 3.1 If e ≥ 6 and n ≥ 10e2 − 74e+ 142, then Gminn,n−e ∈ Pn,e.

Proof By Theorem 5.2 of [2] (see page 2), it suffices to show Gminn,n−e /∈ P ′n,e and Gminn,n−e /∈ P ′′n,e.
Suppose Gminn,n−e = T ′(k1,k2,...,ke−3) ∈ P

′
n,e. Note that T ′(k1,k2,...,ke−3) contains sub-trees of type

T ′(k1,∗), T
′′
(ke−3,∗), and T ′′(∗,ki,∗) for 2 ≤ i ≤ e− 4. By Lemma 2.4, Lemma 2.11, Corollary 2.2, and

Lemma 2.12, we have

ρminn,n−e > ρ′k1 ,

ρminn,n−e > ρ′′2ke−3+3,

ρminn,n−e > ρ′′ki
, for 2 ≤ i ≤ e− 4.

Next, we show that at least one of k1, k2, . . . , ke−3 is small. Let l1 = dn−3e+5
e−3.5 e. We claim

k1 ≤ l1 + 1 or ke−3 ≤
l1 − 3

2
or ∃i ∈ {2, 3, . . . , e− 4} s.t. ki ≤ l1.

Otherwise, we have

k1 ≥ l1 + 2 and ke−3 ≥
l1 − 2

2
and k2, ..., ke−4 ≥ l1 + 1.

We get

n =
e−3∑
i=1

ki + 2e ≥ l1 + 2 +
l1 − 2

2
+ (l1 + 1)(e− 5) + 2e = (e− 3.5)l1 + 3e− 4 ≥ n+ 1.

Contradiction!
If k1 ≤ l1 + 1, then we have ρminn,n−e > ρ′l1+1 > ρl1+4; if ke−3 ≤ l1−3

2 , then we have ρminn,n−e >

ρ′′2ke−3+3 > ρ′′l1 > ρl1+4; if ki ≤ l1 for some i ∈ {2, . . . , e− 4}, then we have ρminn,n−e > ρ′′ki
≥ ρ′′l1 >

ρl1+4. In all cases, we have
ρminn,n−e > ρl1+4.

Let k = bn−2e+2
e−4 c. There exists a tree T ∈ Pn,e, which can be obtained by subdividing some

edges on internal paths of T(k−1,k,...,k,k−1). Since n ≥ 10e2 − 74e+ 142, we have

l1 + 4 =
⌈
n− 3e+ 5
e− 3.5

⌉
+ 4 ≤

⌊
n− 2e+ 2
e− 4

⌋
= k.

We get
ρminn,n−e > ρl1+4 ≥ ρ(T(k−1,k,...,k,k−1)) ≥ ρ(T ).

Contradiction!
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Now we assume Gminn,n−e = T ′′(k1,k2,...,ke−2) ∈ P
′′
n,e. This is very similar to previous case. We

must have

k1 ≤
l2 − 3

2
or ke−2 ≤

l2 − 3
2

or ∃i ∈ {2, . . . , e− 3} s.t. ki ≤ l2,

where l2 = dn−3e+7
e−3 e. A similar argument shows ρminn,n−e > ρl2+4. Here we omit the detail.

Let k = bn−2e+2
e−4 c. There exists a tree T ∈ Pn,e, which can be obtained by subdividing some

edges on internal paths of T(k−1,k,...,k,k−1).
Since e ≥ 5 and n ≥ 10e2 − 74e+ 142, we have n > 5e2 − 31e+ 50; thus,

l2 + 4 =
⌈
n− 3e+ 7
e− 3

⌉
+ 4 ≤

⌊
n− 2e+ 2
e− 4

⌋
= k.

We get
ρminn,n−e > ρl2+4 ≥ ρ(T(k−1,k,...,k,k−1)) ≥ ρ(T ).

Contradiction!
�

Remark 3: Assume Gminn,n−e = T(k1,...,kr) ∈ Pn,e. Let k̄ =
Pr

i=1 ki

r . By Lemma 2.13, we can get
ki ≥ bk + 2

r c − 3 for 2 ≤ i ≤ r − 1 and ki ≥ bk + 2
r c − 2 for i = 1, r whenever n ≥ 9e− 30.

3.2 Part 2

From now on, we only consider a tree T(k1,k2,...,kr) in Pn,e. (Here r = e − 4 through the re-
maining of the paper.) Let v0, v1, ..., vr be the list (from left to right) of all degree 3 vertices in
T(k1,k2,...,kr) ∈ Pn,e. Let H(k1,k2,...,kj) be the graph shown in Figure 10.

s s s
s
s

s
s

s
s

s
sr r rr r r

k1 kj

v0 v1 vj−1 vj︸ ︷︷ ︸ ︸ ︷︷ ︸
Figure 10: The graphs H(k1,...,kj)

Now we define two families of sub-trees of T(k1,k2,...,kr). For i = 1, ..., r−1, let Li = H(k1,k2,...,ki)

(from the left direction). For j = 2, ..., r, let Rj = H(kr,kr−1,...,kj) (from the right direction). We
also define L0 = P5 and Rr+1 = P5.

Lemma 3.1 For any λ ≥ ρ(T(k1,k2,...,kr)), we have

1. p(Li,vi)(λ) ≥ 0 and q(Li,vi)(λ) ≥ 0 for i = 0, 1, 2, . . . , r − 1;

2. p(Rj ,vj−1)(λ) ≥ 0 and q(Rj ,vj−1)(λ) ≥ 0 for j = 2, . . . , r + 1.

Proof For simplicity, we also write pi = p(Li,vi), qi = q(Li,vi) for i = 0, 1, 2, . . . , r − 1, and
p′j = p(Rj ,vj−1), q′j = q(Rj ,vj−1) for j = 2, . . . , r + 1. From equation (10), we have p′r+1 = p0 =

p(P5,v0) = d1x1(λ2−1)
x2−x1

> 0 and q′r+1 = q0 = q(P5,v0) = d2x2(λ2−1)
x2−x1

> 0 for any λ > λ0.
It remains to consider pi, qi for i = 1, 2, . . . , r − 1, and p′j , q

′
j for j = 2, . . . , r. Let µ be the

least number such that these functions pi(λ), qi(λ) p′j(λ), q′j(λ) take non-negative values for all
λ ≥ µ.
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We need to show such µ exists. By Lemma 2.5, we have lim
λ→+∞

qi(λ) = +∞ and lim
λ→+∞

q′j(λ) =

+∞. Since lim
λ→+∞

p0 = lim
λ→+∞

d1x1(λ2−1)
x2−x1

= +∞ and pi = 1
x2−x1

(d1x
ki
1 pi−1 + xki−1

2 qi−1) (see

Lemma 2.6), by induction on i, we have lim
λ→+∞

pi(λ) = +∞. Similarly, we have lim
λ→+∞

p′j(λ) =

+∞. Thus µ is well-defined.
If µ ≤ ρ(T(k1,k2,...,kr)), then we are done. Otherwise, we assume µ > ρ(T(k1,k2,...,kr)). Note

that µ is always a root of one of those pi(λ), qi(λ), p′j(λ), q′j(λ).

Case (1) There exists an i (1 ≤ i ≤ r − 1) such that pi(µ) = 0. Since pi = 1
x2−x1

(d1x
ki
1 pi−1 +

xki−1
2 qi−1), we must have pi−1(µ) = qi−1(µ) = 0. By Lemma 2.7, we have

φT(k1,k2,...,kr)
(µ) = (x2 − x1)(xki−1

2 qi−1q
′
i+1 − x

ki−1
1 pi−1p

′
i+1) |µ= 0.

It contradicts to the assumption µ > ρ(T(k1,k2,...,kr)).

Case (2) There exists a j (2 ≤ j ≤ r) such that p′j(µ) = 0. This case is symmetric to Case (1).

Case (3) There exists an i (1 ≤ i ≤ r − 1) such that qi(µ) = 0. By Lemma 2.7, we have

φT(k1,k2,...,kr)
(µ) = (x2 − x1)(xki+1−1

2 qiq
′
i+2 − x

ki+1−1
1 pip

′
i+2) |µ≤ 0.

It contradicts to µ > ρ(T(k1,k2,...,kr)).

Case (4) There exists a j (2 ≤ j ≤ r) such that q′j(µ) = 0. This case is symmetric to Case (3).

The proof of this Lemma is finished. �
The following Lemma gives the lower bound for the spectral radius of a general tree T(k1,k2,...,kr) ∈

Pn,e.

Lemma 3.2 Let k =
Pr

i=1 ki

r . We have

d2 ≥
2x

k+ 2
r

1

1− xk+ 2
r

+1

1

for all λ ≥ ρ(T(k1,k2,...,kr)), where the equality holds if and only if k1+1 = k2 = · · · = kr−1 = kr+1
and λ = ρ(T(k1,k2,...,kr)).

Proof For i = 0, 1, 2, . . . , r − 1, we define ti = qi/pi. Similarly, for j = 2, . . . , r + 1, we define
t′j = q′j/p

′
j . For any s > 0, we define

fs(t) =
d2x

2s
2 t− x2

x2s−1
2 t+ d1

=
d2x2t− x2s−2

1

t+ d1x
2s−1
1

, t > 0.

We consider the fixed point of fs(t), which satisfies

t2 − (d2x2 − d1x
2s−1
1 )t+ x2s−2

1 = 0.

This quadratic equation has a unique root xs−1
1 when

d2 = 2xs1 + d1x
2s
1 . (14)
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We choose s = s(λ) to be the root of Equation (14). The line y = t is tangent to the curve
y = fs(t) at t = xs−1

1 . Because fs(t) is an increasing and concave function of t, we have

fs(t) ≤ t, ∀t > 0.

For i = 1, ..., r, we have

fki
(t) = fs(x

2(ki−s)
2 t) ≤ x2(ki−s)

2 t. (15)

By Lemma 2.7, we get

φT(k1,k2,...,kr)
= (x2 − x1)(xkr−1

2 qr−1q
′
r+1 − x

kr−1
1 pr−1p

′
r+1).

Since φT(k1,k2,...,kr)
≥ 0 for all λ ≥ ρ(T(k1,k2,...,kr)), we get

tr−1t
′
r+1x

2(kr−1)
2 ≥ 1.

Note t′r+1 = t0 = d2x2
d1x1

= d2
d1
x2

2. Applying inequality (15) recursively, we have

1 ≤ d2

d1
x2

2 · x
2(kr−1)
2

qr−1

pr−1

=
d2

d1
x2kr

2 fkr−1(fkr−2(...(fk1(t0)...)))

≤ d2

d1
x2kr

2 x
2(kr−1−s)
2 x

2(kr−2−s)
2 ...x

2(k1−s)
2 t0

=
d2

d1
x2kr

2 x
2(kr−1−s)
2 x

2(kr−2−s)
2 ...x

2(k1−s)
2

d2

d1
x2

2

=
d2

2

d2
1

x
2(rk−(r−1)s+1)
2 .

We get d2 ≥ d1x
rk−(r−1)s+1
1 ; and the equality holds if and only if k1 + 1 = k2 = · · · = kr−1 =

kr + 1 = s and λ = ρ(T(k1,k2,...,kr)). By Remark 1, d2 ≥ d1x
rk−(r−1)s+1
1 is equivalent to

d2 ≥ 2xrk−(r−1)s+2
1 + d1x

2(rk−(r−1)s+2)
1 . (16)

Comparing this inequality with equation (14), we must have s ≤ rk − (r − 1)s + 2. Solving s,
we get s ≤ k + 2

r . Thus,

d2 = 2xs1 + d1x
2s
1 ≥ 2x

k+ 2
r

1 + d1x
2(k+ 2

r
)

1 .

Applying Remark 1 one more time, we get

d2 ≥
2x

k+ 2
r

1

1− xk+ 2
r

+1

1

.

The proof is completed. �

Lemma 3.3 Let Gminn,n−e = T(k1,k2,...,kr) and k =
Pr

i=1 ki

r . Then

d2 ≤
2x
bk+ 2

r
c

1

1− xbk+ 2
r
c+1

1

holds at λ = ρminn,n−e.
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Proof Let s = k + 2
r . Observe that we can always subdivide some edges on internal paths of

T(bsc−1,bsc,...,bsc,bsc−1) to get a tree T on n vertices and diameter n− e. By Lemma 2.4, we have

ρminn,n−e ≤ ρ(T ) ≤ ρ(T(bsc−1,bsc,...,bsc,bsc−1)) = ρbsc.

By Lemma 2.10, ρbsc is the root of

d2 =
2xbsc1

1− xbsc+1
1

.

Since d2(λ) is increasing while 2x
bsc
1

1−xbsc+1
1

is decreasing on
(√

2 +
√

5,∞
)

, we get

d2(ρminn,n−e) ≤ d2(ρbsc) =
2xbsc1

1− xbsc+1
1

∣∣∣∣∣
ρbsc

≤ 2xbsc1

1− xbsc+1
1

∣∣∣∣∣
ρmin

n,n−e

.

The proof is completed. �
We get the following corollary.

Corollary 3.1 Let Gminn,n−e = T(k1,k2,...,kr) ∈ Pn,e and s = 1
r

∑r
i=1 ki + 2

r = n−2e+2
e−4 . We have

2xs1
1− xs+1

1

≤ d2 ≤
2xbsc1

1− xbsc+1
1

holds at λ = ρ(Gminn,n−e). In particular, ρ(Gminn,n−e) =
√

2 +
√

5 +O
(

(
√

5−1
2 )s/2

)
.

Lemma 3.4 Assume Gminn,n−e = T(k1,...,ki,ki+1,...,kr) and c =
ρmin

n,n−e+
q

(ρmin
n,n−e)2+4d1d2

2 . Then the
following equalities hold at the point λ = ρminn,n−e.

cxki+1
1 ≤ d2 ≤ cxki−1

1 for i = 2, ..., r − 1; (17)√
cd1x

ki+1
1 ≤ d2 ≤

√
cd1x

ki
1 for i = 1, r. (18)

Proof We reuse notations Li, pi, qi, ti (for i = 0, 1, ..., r−1) and Rj , p′j , q
′
j , t
′
j (for j = 2, ..., r+1),

which are introduced in Lemma 3.1 and Lemma 3.2.
Choosing any i ∈ {1, ..., r − 1}, by Lemma 2.7 we have

tit
′
i+2x

2(ki+1−1)
2 = 1

at λ = ρminn,n−e. This means

d2x2ti−1 − x2(ki−1)
1

ti−1 + d1x
2ki−1
1

t′i+2x
2(ki+1−1)
2 = 1.

We can rewrite it as(
ti−1 −

x2ki−1
1

d2

)(
t′i+2 −

x
2ki+1−1
1

d2

)
=
d1d2 + 1

d2
2

x
2(ki+ki+1−1)
1 . (19)

17



Note ti = fki
(ti−1) = d2x2ti−1−x

2(ki−1)
1

ti−1+d1x
2ki−1
1

> 0. We have

ti−1 >
x2ki−1

1

d2
. (20)

For i = 1, . . . , r−1, we apply Lemma 2.9 toG1 = T(k1,...,ki,ki+1,...,kr) andG2 = T(k1,...,ki+1,ki+1−1,...,kr),
where both trees contain a common induced subtree T(k1,...,ki+ki+1+1,...,kr) (after removing one
leaf vertex). If φG2(ρ(G1)) > 0, then ρ(G1) > ρ(G2). This contradict to the assumption
G1 = Gminn,n−e.

We get φG2(ρ(G1)) ≤ 0, i.e., φT(k1,...,ki+1,ki+1−1,...,kr)
(ρminn,n−e) ≤ 0.

We apply Lemma 2.8 to obtain the difference of characteristic polynomials of T(k1,...,ki,ki+1,...,kr)

and T(k1,...,ki+1,ki+1−1,...,kr),

φT(k1,...,ki,ki+1,...,kr)
−φT(k1,...,ki+1,ki+1−1,...,kr)

= (x1−x2)
(
pi−1q

′
i+2x

ki+1−ki−1
2 − qi−1p

′
i+2x

ki+1−ki−1
1

)
.

Evaluating the function above at λ = ρminn,n−e, we have

(x1 − x2)
(
pi−1q

′
i+2x

ki+1−ki−1
2 − qi−1p

′
i+2x

ki+1−ki−1
1

)∣∣∣
ρmin

n,n−e

≥ 0.

Since qi−1 ≥ 0 and p′i+2 ≥ 0 (from Lemma 3.1), we get
t′i+2

ti−1
≤ x2(ki+1−ki−1)

1 at λ = ρminn,n−e. In the
rest of the proof, all expressions are evaluated at λ = ρminn,n−e. The notation “|ρmin

n,n−e
” is omitted

for simplicity.
On the one hand, by inequality (20), we can substitute t′i+2 ≤ ti−1x

2(ki+1−ki−1)
1 into equation(19)

and get (
ti−1 −

x2ki−1
1

d2

)(
x

2(ki+1−ki−1)
1 ti−1 −

x
2ki+1−1
1

d2

)
≥ d1d2 + 1

d2
2

x
2(ki+ki+1−1)
1 .

After simplification, we have

d2t
2
i−1 − x

2ki
1 ρminn,n−eti−1 − d1x

4ki
1 ≥ 0.

Recall c̄ =
ρmin

n,n−e+
q

(ρmin
n,n−e)2+4d1d2

2 . Solving this quadratic inequality, since ti−1 > 0, we get

ti−1 ≥ c̄x2ki
1 /d2, i = 1, ..., r − 1.

By symmetry, we have
t′i+1 ≥ c̄x

2ki
1 /d2, i = 2, ..., r.

On the other hand, we substitute ti−1 ≥ t′i+2x
2(ki+1−ki−1)
2 into equation (19). By the similar

calculation, we get

t′i+2 ≤ c̄x
2(ki+1−1)
1 /d2, i = 1, ..., r − 1.

Changing the index i+ 2 to i+ 1, we have

t′i+1 ≤ c̄x
2(ki−1)
1 /d2, i = 2, ..., r.

By symmetry, we have
ti−1 ≤ c̄x2(ki−1)

1 /d2, i = 1, ..., r − 1.

18



Combining the inequalities above, we get

c̄

d2
x2ki

1 ≤ ti−1 ≤
c̄

d2
x

2(ki−1)
1 , i = 1, ..., r − 1, (21)

c̄

d2
x2ki

1 ≤ t′i+1 ≤
c̄

d2
x

2(ki−1)
1 , i = 2, ..., r. (22)

Now we apply Lemma 2.7 and get

ti−1t
′
i+1x

2(ki−1)
2 = 1. (23)

Taking product of inequalities (21), (22), and then substituting ti−1t
′
i+1 into equation (23). After

simplification, wet get inequality (17).
When i = 1 or r, we have

c̄

d2
x2ki

1 ≤ t0 = t′r+1 =
d2

d1
x2

2 ≤
c̄

d2
x

2(ki−1)
1 .

Solving for d2, we get inequality (18). The proof of this lemma is completed. �

Proof of the second part of theorem 1.1. As in the proof of Lemma 3.4, all expressions in
this proof are evaluated at λ = ρminn,n−e and “|ρmin

n,n−e
” is omitted for simplicity.

By Lemma 3.4, for 2 ≤ i ≤ r − 1, we have

cxki+1
1 ≤ d2 ≤ cxki−1

1 .

By the definition of c̄, we get

2d2x
ki+1
1 ≤ ρminn,n−e +

√
(ρminn,n−e)2 + 4d1d2 ≤ 2d2x

ki−1
1 .

After solving d2 and simplifying, we have

ρminn,n−ex
ki+1
1 + 2x2ki+3

1

1− x2(ki+2)
1

≤ d2 ≤
ρminn,n−ex

ki−1
1 + 2x2ki−1

1

1− x2ki
1

.

Since ρminn,n−e > 2 > 1 + x2
1 = ρminn,n−ex1, we observe

2xki+1
1

1− xki+2
1

<
ρminn,n−ex

ki+1
1 + 2x2ki+3

1

1− x2(ki+2)
1

and
ρminn,n−ex

ki−1
1 + 2x2ki−1

1

1− x2ki
1

<
2xki−2

1

1− xki−1
1

.

We obtain
2xki+1

1

1− xki+2
1

< d2 <
2xki−2

1

1− xki−1
1

for 2 ≤ i ≤ r − 1. (24)

From Theorem 3.1, we have
2xs1

1− xs+1
1

≤ d2 ≤
2xbsc1

1− xbsc+1
1

. (25)
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Combining inequalities (24) and (25), we get

2xki+1
1

1− xki+2
1

<
2xbsc1

1− xbsc+1
1

,

2xki−2
1

1− xki−1
1

>
2xs1

1− xs+1
1

.

Thus, bsc − 1 < ki < s+ 2. So bsc < ki ≤ dse+ 1 where i = 2, ..., r − 1.
For j = 1 or r, combining inequalities (18) and (25), we have

√
cd1

2
x
kj+1
1 ≤ x

bsc
1

1− xbsc+1
1

,

√
cd1

2
x
kj

1 ≥ xs1
1− xs+1

1

.

Note that d1 → 2x1 and c → λ0 as n approaches infinity. For sufficiently large n, we have
x0.1

2 < λ0
2 < x0.2

2 . We get

x
kj+1+0.45
1 ≤ xbsc1 and x

kj+0.4
1 > xs1.

So bsc − 1 ≤ kj ≤ bsc for n large enough.
In conclusion, we get

bsc − 1 ≤ kj ≤ bsc ≤ ki ≤ dse+ 1

for 2 ≤ i ≤ r − 1 and j = 1, r.
Now we will prove item 2. It suffices to show ki − kj ≤ 2, for 2 ≤ i ≤ r − 1 and j = 1, r.

Suppose that there exist i, j with i ∈ {2, ..., r−1} and j ∈ {1, r} so that ki ≥ kj + 3. By Lemma
3.4, we have √

cd1x
kj+1
1 ≤ d2 ≤ cx

kj+2
1 .

Since λx2
1 = (1 + x2

1)x1 < 2x1 ≤ d1 for λ ≥ λ0 and c→ λ0 as n approaches infinity, we have
cx
kj+2
1 <

√
cd1x

kj+1
1 for n large enough. Contradiction!

Now we will prove item 3. By Lemma 3.4, we have cxkj+1
1 ≤ d2 ≤ cxki−1

1 for all 2 ≤ i, j ≤
r− 1. This implies |ki − kj | ≤ 2. It is sufficient to show that there are no i, j with |ki − kj | = 2.
Otherwise, suppose there exist i, j ∈ {2, ..., r − 1} such that ki = k and kj = k + 2. Without
loss of generality, we can assume that i < j and in addition i, j are mostly close to each other.
Namely, kl = k + 1 for all integer l between i and j.

Applying inequality (17) to ki = k and kj = k + 2, we have

d2 ≥ cxki+1
1 = cxk+1

1 ,

d2 ≤ cx
kj−1
1 = cxk+1

1 .

Two inequalities above force d2 = cxk+1
1 . These equalities force ti−1 = t′i+1 = xk−1

1 , tj−1 =
t′j+1 = xk+1

1 by inequalities (21) and (22).
Consider the function f(t) = d2t−x2

x1t+d1
= fk(x2k

1 t) and let c = c̄/d2 = xk+1
2 . It is easy to check

f(c) = 1
c . We claim

tl = xk+1
1 for i ≤ l ≤ j − 1.

For l = i, we have

ti = fk(ti−1) = fk(xk−1
1 ) = f(xk+1

2 ) = f(c) =
1
c

= xk+1
1 .
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By induction on l, we have

tl = fk+1(tl−1) = fk+1(xk+1
1 ) = f(xk+1

2 ) = f(c) =
1
c

= xk+1
1 .

By Lemma 2.7, we have
tj−2t

′
jx

2k
2 = 1.

Since tj−2 = xk+1
1 , it implies t′j = xk−1

1 . However, we also have

t′j = fk+2(t′j+1) = fk+2(xk+1
1 ) = f(xk+3

2 ) 6= xk−1
1 .

Contradiction!
If n− 6 is divisible by e− 4, then s = n−6

e−2 − 4 is an integer. In this case, the only possible
sequence (k1, k2, . . . , kr) satisfying items 1-3 is (s − 1, s, . . . , s, s − 1). In particular, we have
Gminn,n−e = T(s−1,s,...,s,s−1).

The proof is completed. �

4 Proofs of Theorems 1.3 and 1.4

4.1 e=7

Let Gminn,n−7 = T(k1,k2,k3) ∈ Pn,7. Note k1 + k2 + k3 = n − 14. By Theorem 1.1, here are all the
possible graphs for Gminn,n−7.

Case 1.
3∑
i=1

ki = 3k. We have (k1, k2, k3) = (k, k, k) or (k, k + 1, k − 1).

Case 2.
3∑
i=1

ki = 3k + 1. We have (k1, k2, k3) = (k, k + 1, k).

Case 3.
3∑
i=1

ki = 3k + 2. We have (k1, k2, k3) = (k, k + 2, k) or (k, k + 1, k + 1).

21



To simplify the proof of Theorem 1.3, we introduce the following short notations. We have

p0 := p(L0,v0) =
λ2 − 1
x2 − x1

d1x1,

q0 := q(L0,v0) =
λ2 − 1
x2 − x1

d2x2,

p(k−1) := p(H(k−1),v1) =
λ2 − 1

(x2 − x1)2
(d2

1x
k
1 + d2x

k−1
2 ),

q(k−1) := q(H(k−1),v1) =
λ2 − 1

(x2 − x1)2
(d2

2x
k
2 − d1x

k−1
1 ),

p(k) := p(H(k),v1) =
λ2 − 1

(x2 − x1)2
(d2

1x
k+1
1 + d2x

k
2),

q(k) := q(H(k),v1) =
λ2 − 1

(x2 − x1)2
(d2

2x
k+1
2 − d1x

k
1),

p(k+1) := p(H(k+1),v1) =
λ2 − 1

(x2 − x1)2
(d2

1x
k+2
1 + d2x

k+1
2 ),

q(k+1) := q(H(k+1),v1) =
λ2 − 1

(x2 − x1)2
(d2

2x
k+2
2 − d1x

k+1
1 ),

p(k,k+1) := p(H(k,k+1),v2) =
λ2 − 1

(x2 − x1)3
(d3

1x
2k+2
1 + d1d2x1 + d2

2x
2k+1
2 − d1),

q(k,k+1) := q(H(k,k+1),v2) =
λ2 − 1

(x2 − x1)3
(d3

2x
2k+2
2 − d1d2x2 − d2

1x
2k+1
1 − d2).

Proof of Theorem 1.3. We will compare the spectral radius of the possible graphs listed
above in three cases separately.

Case 1.
3∑
i=1

ki = 3k.

By Lemma 2.8, we have

φT(k,k,k)
− φT(k,k+1,k−1)

= (x1 − x2)
(
p(k)q0x1 − q(k)p0x2

)
= − (λ2 − 1)2

(x2 − x1)2

[
(d2x1 + 1)d2

1x
k
1 − (d1x2 − 1)d2

2x
k
2

]
=

(d2x1 + 1)(λ2 − 1)2

(x2 − x1)2

(
d2

2x
k
2 − d2

1x
k
1

)
.

In the last step, we applied the fact d2x1 + 1 = d1x2 − 1.
By Lemma 2.10 and Remark 1, ρ(T(k,k+1,k)) (= ρk+1) satisfies d2x

k/2
2 = d1x

k/2
1 . The largest

root of φT(k,k,k)
− φT(k,k+1,k−1)

= 0 is ρk+1.

Noting that d2
2x
k
2−d2

1x
k
1 is an increasing function of λ ∈

(√
2 +
√

5, 3
2

√
2
)

for sufficiently large
k. By Lemma 2.4, we have ρk+1 = ρ(T(k,k+1,k)) < ρ(T(k,k,k)). Evaluating φT(k,k,k)

− φT(k,k+1,k−1)

at λ = ρ(T(k,k,k)), we get φT(k,k+1,k−1)
(ρ(T(k,k,k))) < 0. Thus, by Lemma 2.2, ρ(T(k,k,k)) <

ρ(T(k,k+1,k−1)) and Gminn,n−7 = T(k,k,k).

Case 2.
3∑
i=1

ki = 3k + 1. We must have Gminn,n−7 = T(k,k+1,k).

Case 3.
3∑
i=1

ki = 3k + 2.

22



Similarly by Lemma 2.8, we have

φT(k,k+1,k+1)
− φT(k,k+2,k)

=
(d2x1 + 1)(λ2 − 1)2

(x2 − x1)2

(
d2

2x
k
2 − d2

1x
k
1

)
.

Noting that d2
2x
k
2 − d2

1x
k
1 is an increasing function of λ ∈

(√
2 +
√

5, 3
2

√
2
)

for sufficiently large

k. We have φT(k,k+1,k+1)
(λ) < φT(k,k+2,k)

(λ) for any
√

2 +
√

5 ≤ λ < ρk+1. By Lemma 2.4,
we get ρ(T(k,k+2,k)) < ρ(T(k,k+1,k)) = ρk+1. Thus, φT(k,k+1,k+1)

(ρ(T(k,k+2,k))) < 0. It follows
ρ(T(k,k+1,k+1)) > ρ(T(k,k+2,k)). So Gminn,n−7 = T(k,k+2,k).

The proof of Theorem 1.3 is completed. �

4.2 e=8

Now we let Gminn,n−8 = T(k1,k2,k3,k4) ∈ Pn,8. By Theorem 1.1, all the possible graphs for Gminn,n−8

are as follows.

Case 1. If
4∑
i=1

ki = 4k, then (k1, k2, k3, k4) = (k, k, k, k), (k, k, k + 1, k − 1), (k, k + 1, k, k − 1),

or (k − 1, k + 1, k + 1, k − 1).

Case 2. If
4∑
i=1

ki = 4k + 1, then (k1, k2, k3, k4) = (k, k + 1, k, k) or (k, k + 1, k + 1, k − 1).

Case 3. If
4∑
i=1

ki = 4k + 2, then (k1, k2, k3, k4) = (k, k + 1, k + 1, k).

Case 4. If
4∑
i=1

ki = 4k + 3, then (k1, k2, k3, k4) = (k, k + 1, k + 1, k + 1) or (k, k + 1, k + 2, k).

Proof of Theorem 1.4. Similarly, we denote p(k,k) = P(H(k,k),v2), q(k,k) = q(H(k,k),v2), p(k−1,k+1) =
P(H(k−1,k+1),v2), and q(k−1,k+1) = q(H(k−1,k+1),v2).

We will compare the spectral radius of all possible graphs listed in four cases above.

Case 1.
4∑
i=1

ki = 4k.

First we prove

ρ(T(k,k,k,k)) = ρ(T(k,k,k+1,k−1)) = ρ(T(k−1,k+1,k+1,k−1)).

By Lemma 2.3, it is easy to see

ρ(T(k,k,k,k)) = ρ(T(k−1,k)) = ρ(T(k−1,k+1,k+1,k−1)).

Applying Lemma 2.7 to these graphs, we get

φT(k,k,k,k)
= p(k,k)q(k)xk−1

2 (x2 − x1)

(
q(k,k)

p(k,k)
− p(k)

q(k)
x2k−2

1

)
,

φT(k,k,k+1,k−1)
= p(k,k)q(k−1)xk2(x2 − x1)

(
q(k,k)

p(k,k)
− p(k−1)

q(k−1)
x2k

1

)
,

φT(k,k,k+1,k−1)
= p(k−1,k+1)q(k)xk−1

2 (x2 − x1)

(
q(k−1,k+1)

p(k−1,k+1)
− p(k)

q(k)
x2k−2

1

)
,

φT(k−1,k+1,k+1,k−1)
= p(k−1,k+1)q(k−1)xk2(x2 − x1)

(
q(k−1,k+1)

p(k−1,k+1)
− p(k−1)

q(k−1)
x2k

1

)
.
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Let ρ = ρ(T(k,k,k,k)) = ρ(T(k−1,k+1,k+1,k−1)) and ρ′ = ρ(T(k,k,k+1,k−1)). Write J(λ) =
p(k,k)q(k−1)xk2(x2 − x1) and K(λ) = p(k−1,k+1)q(k)xk−1

2 (x2 − x1). By Lemma 3.1, J(ρ) > 0
and K(ρ) > 0.

Note that ρ is the root of both equations

q(k,k)

p(k,k)
=
p(k)

q(k)
x2k−2

1 and
q(k−1,k+1)

p(k−1,k+1)
=
p(k−1)

q(k−1)
x2k

1 . (26)

Note that ρ′ is the root of both equations

q(k,k)

p(k,k)
=
p(k−1)

q(k−1)
x2k

1 and
q(k−1,k+1)

p(k−1,k+1)
=
p(k)

q(k)
x2k−2

1 . (27)

We have

φT(k,k,k+1,k−1)
(ρ) = J(ρ)

(
p(k)

q(k)
x2k−2

1 − p(k−1)

q(k−1)
x2k

1

)∣∣∣∣∣
ρ

= K(ρ)

(
p(k−1)

q(k−1)
x2k

1 −
p(k)

q(k)
x2k−2

1

)∣∣∣∣∣
ρ

.

Thus, φT(k,k,k+1,k−1)
(ρ)2 = −J(ρ)K(ρ)

(
x2k−2

1
p(k)

q(k) − p(k−1)

q(k−1)x
2k
1

)2 ∣∣∣
ρ
≤ 0. We get φT(k,k,k+1,k−1)

(ρ) =

0. Similarly, we can prove φT(k,k,k,k)
(ρ′) = 0. Hence, we get ρ = ρ′.

Now we prove ρ(T(k,k,k+1,k−1)) < ρ(T(k,k+1,k,k−1)). By Lemma 2.8, we have

φT(k,k,k+1,k−1)
− φT(k,k+1,k,k−1)

= (x1 − x2)
(
p(k)q(k−1) − q(k)p(k−1)

)
= d1d2λ

2(λ2 − 1)2 > 0

for any λ > λ0. So ρ(T(k,k,k+1,k−1)) < ρ(T(k,k+1,k,k−1)). We are done in this case.

Case 2.
4∑
i=1

ki = 4k + 1.

Similarly, by Lemma 2.8, we have

φT(k,k+1,k,k)
− φT(k,k+1,k+1,k−1)

= (x1 − x2)
(
p(k,k+1)q0 − q(k,k+1)p0

)
=

(d2x1 + 1)(λ2 − 1)2x2k+1
2

(x2 − x1)3

(
d3

2 − 2d1d2x
2k+1
1 − d3

1x
4k+2
1

)
.

Here we use proof by contradiction. Suppose Gminn,n−8 = T(k,k+1,k+1,k−1). By Lemma 3.4,
d2 =

√
cd1x

k
1 at λ = ρ(T(k,k+1,k+1,k−1)). Note c → λ0 as n → ∞. When n is large enough, we

will get c > (2 + ε)x1 for some constant ε > 0. Thus, we get

d2
2 = cd1x

2k
1 > (2 + ε)d1x

2k+1
1 .

For n large enough, we have φT(k,k+1,k,k)
−φT(k,k+1,k+1,k−1)

> 0 at λ = ρ(T(k,k+1,k+1,k−1)). Equiva-
lently φT(k,k+1,k,k)

(ρ(T(k,k+1,k+1,k−1))) > 0. By Lemma 2.9, we get ρ(Tk,k+1,k,k) < ρ(Tk,k+1,k+1,k−1).
Contradiction! Hence, we have Gminn,n−8 = Tk,k+1,k,k.

Case 3.
4∑
i=1

ki = 4k + 2. There is only one possible graph T(k,k+1,k+1,k).

Case 4.
4∑
i=1

ki = 4k + 3.
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Similarly by Lemma 2.8, we have

φT(k,k+1,k+1,k+1)
− φT(k,k+1,k+2,k)

= (x1 − x2)
(
p(k,k+1)q0 − q(k,k+1)p0

)
=

(d2x1 + 1)(λ2 − 1)2x2k+1
2

(x2 − x1)3

(
d3

2 − 2d1d2x
2k+1
1 − d3

1x
4k+2
1

)
<

(d2x1 + 1)(λ2 − 1)2x2k+1
2

(x2 − x1)3

(
d3

2 − 2d1d2x
2k+1
1

)
=

d2(d2x1 + 1)(λ2 − 1)2x2k+1
2

(x2 − x1)3

(
d2

2 − 2d1x
2k+1
1

)
.

We now suppose Gminn,n−8 = T(k,k+1,k+1,k+1) in this case. By Lemma 3.4, d2 =
√
cd1x

k+1
1 at

λ = ρ(T(k,k+1,k+1,k+1)). Recall that c→ λ0 as n→∞. When n is large enough, we get c < 2x2.
Thus d2 =

√
cd1x

k+1
1 <

√
2d1x2x

k+1
1 . We get φT(k,k+1,k+2,k)

(ρ(T(k,k+1,k+1,k+1))) > 0. Apply-
ing Lemma 2.9 with G2 = T(k,k+1,k+2,k) and G1 = T(k,k+1,k+1,k+1), we have ρ(Tk,k+1,k+2,k) <
ρ(Tk,k+1,k+1,k+1). Contradiction! Hence Gminn,n−8 = Tk,k+1,k+2,k. The proof is completed. �
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