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Abstract

We show that a random spanning tree formed in a general graph G
(such as a power law graph) has diameter much larger than the diameter of
G. We show, with high probability the diameter of a random spanning tree
of G is shown to be between c

√
n and c′

√
n log n, where c and c′ depend on

the spectral gap of G and the ratio of the moments of the degree sequence.
For the special case of regular graphs, this result improves the previous
lower bound by Aldous by a factor of log n.

1 Introduction

Many information networks or social networks have very small diameters, as
dictated by the so-called “small world phenomenon”. However, in a recent
paper by Liben-Nowell and Kleinberg [8], it was observed that in many social
networks, typical spanning trees often have relatively large diameter. Examples
of such spanning trees include those resulting from passing information to a
small selected number of neighbors in various scenarios such as spam or gossip.
A sparse subgraph naturally has very different behavior from its host graph. It
is of interest to understand the connections between a graph and its subgraph.
What invariants of the host graph can or cannot be translated to its subgraph?
Under what conditions, can we predict the behavior of subgraphs? In particular,
why does a random spanning tree have a large diameter while the opposite is
true for the host graph? In this paper, we would like to address of this paradox
by evaluating the diameter of random spanning sub-tree in G.

A spanning tree T of a connected graph G is a subgraph on V (G), which
is isomorphic to a tree. The number of spanning tree is determined by the
celebrated matrix-tree theorem of Kirchoff [7]. Letting A denote the adjacency
matrix and D denote the diagonal matrix of degrees, the matrix-tree theorem
∗University of California, San Diego
†University of California, San Diego
‡University of South Carolina

1



states that the number of spanning tree is equal to the absolute value of the
determinant of any n− 1× n− 1 sub-matrix of D −A.

The diameter of a subgraph is always larger than or equal to the diameter
of G. However, the diameter of a spanning tree could be much larger than the
diameter of the graph. The case that the host graph G is the complete graph
Kn is well-studied in the literature. The number of spanning trees of Kn is
nn−2 by Cayley’s theorem. Rényi and Szekeres [11] showed that the diameter
of a random spanning tree is of order

√
n, which contrasts with the fact that

the diameter of Kn is 1.
Motivated by these examples, we ask what is true story of the diameter of

random spanning trees for a general graph. Previously Aldous [1] proved that
in a regular graph G with spectral bound σ (which will be defined later), the
expected diameter of a spanning tree T of G, denoted by diam(T ) has expected
value satisfying

c(1− σ)
√
n

log n
≤ E(diam(T )) ≤ c

√
n log n√
1− σ

for some absolute constant c, where here (and throughout this paper) log refers
to the natural logarithm.

We partially improve Aldous’ result as follows:

Theorem 1. For a d-regular graph G on n vertices with spectral gap σ, a
spanning tree T of G has expected value satisfying

c
√
n ≤ E(diam(T )) ≤ c′

√
n log n√

log(1/σ)

for some absolute constants c and c′ provided that d ≥ log2 n
log2 σ

.

Theorem 1 is an immediate consequence of the following result for general
graphs.

Theorem 2. In a connected graph G on n vertices, we assume that its average
degree d, minimum degree δ, and second-order average degree d̃ =

∑
v d

2
v/
∑
u du

satisfy, for some given ε > 0,

d� log2 n

log2 σ
.

Then with probability 1 − ε, the diameter diam(T ) of a random spanning trees
T in G satisfies

diam(T ) ≥ (1− ε)
√
εnd

d̃
. (1)

and

diam(T ) ≤ c

ε

√
nd

δ log(1/σ)
log n. (2)

for some constant c ≤ 10.
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While the conditions look technical, they are derived from the proofs in
Sections 4 and 5. We note that the average degree requirement is satisfied for
any graph so long as, for instance, the average degree is Ω(log2 n) (a constant
multiple of log2 n for some constant), and σ = o(1).

For random d-regular graphs, it is known that σ is about 2√
d
. We con-

sider the random graph model G(w) for a given expected degree sequence
w = (w1, w2, . . . , wn), as introduced in [4]. The probability pij that there is
an edge between vi and vj is proportional to the product wiwj (as well as the
loop at vi with probability proportional to w2

i ). Namely,

pij =
wiwj∑
k wk

=
wiwj

vol(G)
. (3)

It has been shown in [6] that G(w) has σ = (1 + o(1)) 4√
d

provided that the
minimum of weights is Ω(log n). Theorem 2 implies the diameter of random

spanning tree is Ω(
√

d
d̃
n) if the average degree is d = Ω(( logn

log logn )2). The upper

bound is within a multiplicative factor of
√

d̃
δ log n.

It has been observed that many real-world information networks satisfy the
so-called power law. We say a graph satisfies power law with exponent β if the
degree sequence of the graph satisfies the property that the number of vertices
having degree k is asymptotically proportional to k−β . There are many models
being used to capture the behavior of such power law graphs [5], especially for
the exponent β in the range between 2 and 3. If we use the random graph model
G(w) with w satisfying the power law. In random graph model G((w)), the
maximum degree can be as large as

√
n. (In other words, if the maximum degree

exceeds
√
n, then G(w) can only be used to model the subgraph with degree no

larger than
√
n.) Also in G(w) the second average degree is of order dβ−1m3−β .

Using Theorem 2, the diameter of a random spanning tree in such random power
law graph is at least cn(β−2)/4(log n)(2−β)/2 and at most c′

√
n(log n)3/2 for some

constant c and c′.
The paper is organized as follows. In section 2, we will give definitions and

prove some useful facts on the spectrum of the Laplacian, random walks, and
spanning trees. In Section 3, we describe a method of using random walks to
generate a uniform spanning tree. In Section 4, we will prove the lower bound
for the diameter of a random spanning tree and give an upper bound in section
5.

2 Preliminaries

Suppose G is a connected (non-bipartite) graph on vertex set [n] = {1, 2, . . . , n}.
Let A = (aij) be adjacency matrix of G defined by

aij =
{

1 if ij is an edge;
0 otherwise.
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For 1 ≤ i ≤ n let di =
∑
j aij be the degree of vertex i. Let ∆ = max(d1, . . . , dn)

be the maximum degree and δ = min(d1, . . . , dn) be the minimum degree. For
each k, we define the k-th volume, closely related to the k-th moment of the
degree sequence, of G to be

volk(G) =
n∑
i=1

dki .

The volume vol(G) is simply the sum of all degrees, i.e. vol(G) = vol1(G).
We define the average degree d = 1

nvol(G) = vol1(G)
vol0(G) and the second order

average degree d̃ = vol2(G)
vol1(G) .

Let D = diag(d1, d2, . . . , dn) denote the diagonal degree matrix. The Lapla-
cian matrix is defined as

L = I −D− 1
2AD−

1
2 .

The spectrum of the Laplacian is the eigenvalues of L sorted in increasing order.

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1.

The first eigenvalue λ0 is always equal to 0. λ1 > 0 if G is connected and
λn−1 ≤ 2 with equality holding only if G is bipartite graph.

Let σ = max{1 − λ1, λn−1 − 1}. Thus σ < 1 if G is connected and non-
bipartite. Note that σ is closely related to the mixing rate of random walks on
G.

Let α0, α1, . . . , αn−1 be orthonormal eigenvectors of the Laplacian L, U =
(α0, α1, . . . , αn−1), where αi is viewed as a column vector. Also we define Λ =
diag(λ0, . . . , λn−1). We can write

L = UΛUT .

For 0 ≤ i ≤ n− 1, we define φi = αTi Dαi. Then we have

Lemma 1. The degree spectrum (φ0, φ1, . . . , φn−1) satisfies the following prop-
erties.

1. φ1 = d̃.

2. For 0 ≤ i ≤ n− 1, δ ≤ φi ≤ ∆.

3.
∑n−1
i=0 φi = vol(G).

Proof. Note α0 = (
√
d1√

vol(G)
, . . . ,

√
dn√

vol(G)
)T since Lα0 = 0. We have

φ0 = αT0 Dα0

=
n∑
i=1

√
di√

vol(G)
di

√
d1√

vol(G)

=
∑n
i=1 d

2
i

vol(G)

= d̃.
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We have

|φi −
δ + ∆

2
| = |αTi Dαi −

δ + ∆
2
|

= |αTi (D − δ + ∆
2

I)αi|

≤ ‖D − δ + ∆
2

I‖

=
∆− δ

2
.

Thus, we have
δ ≤ φi ≤ ∆.

We also have ∑
i

φi = Tr(UTDU)

= Tr(D)
= vol(G).

Lemma 2. For any integer j ≥ 1,

Tr(A(D−1A)j−1) ≤ d̃+ σj(vol(G)− d̃).

Proof. We have

Tr(A(D−1A)j−1) = Tr(D(D−1A)j)

= Tr(D(D−
1
2AD−

1
2 )j

= Tr(D(I − L)j)
= Tr(DU(I − Λ)jUT )
= Tr(UTDU(I − Λ)j)

=
n−1∑
i=0

φi(1− λi)j

= d̃+
∑
i>0

φi(1− λi)j

≤ d̃+
∑
i>0

φiσ
j

= d̃+ (vol(G)− d̃)σj .

A simple random walk on G is a sequence of vertices v0, v1, . . . , vk, . . . with

P(vk = j | vk−1 = i) = pij =
{

1
di

if ij ∈ E(G)
0 otherwise
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for all k ≥ 1.
The transition matrix P is a n×n matrices with entries pij for 1 ≤ i, j ≤ n.

We can write P = D−1A.
A probability distribution over the set of vertices is a row vector β (β′ ∈ Rn)

satisfying

1. The entries of β are non-negative.

2. The L1-norm ‖β‖1 (= β1) equal to 1 where 1 denotes a column vector
with all entries 1.

If β is a probability distribution, so is βP . The stationary distribution (if exists)
is denoted by π satisfying π = πP and

π =
1

vol(G)
(d1, d2, . . . , dn).

The eigenvalues of P are 1, 1− λ1, . . . , 1− λn−1, since P = D−
1
2 (I −L)D

1
2 . In

general, P is not symmetric unless G is regular. The following lemma concerns
the mixing rate of the random walks.

Lemma 3. For any integer t > 0, any α ∈ Rn, and any two probability distri-
butions β and γ, we have

〈(β − γ)P t, αD−1〉 ≤ σt‖(β − γ)D−1/2)‖‖αD−1/2‖. (4)

In particular,
‖(β − γ)P tD−1/2‖ ≤ σt‖(β − γ)D−1/2‖. (5)

Proof. Let ϕ0 = 1√
vol(G)

(
√
d1, . . . ,

√
dn) = vol(G)−

1
2D

1
2 1 denote the (row)

eigenvector of I − L for the eigenvalue 1. The matrix (I − L)t − ϕTϕ, which
stands for the projection of (I − L)t to the hyperspace ϕ⊥, has L2-norm σt.
Note that

(β − γ)D−
1
2ϕ =

1
vol(G)

(β − γ)1 = 0.

We have

〈(β − γ)P t, D−1α〉 = (β − γ)D−
1
2 [(I − L)t − ξξ′]D− 1

2α

≤ ‖(β − γ)D−
1
2 ‖2σt‖D−

1
2α‖2.

Now we choose α = [(β − γ)P t]T , obtain (5) as desired.

The mixing rate of the random walks on G measures how fast βP t converges
to the stationary distribution π from an initial distribution β. We can use the
above lemma to show that the distribution βP t converges to π rapidly if σ is
strictly less than 1.
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3 Random spanning trees generated by random
walks

The following so-called groundskeeper algorithm gives a method of generating
spanning trees: Start a random walk at a vertex, v. The first time a vertex is
visited, we observe the edge it was visited on and add that edge to our spanning
tree. Once the graph is covered, the resulting set of edges form a spanning tree.
This gives a map Φ from random walks to random spanning trees. Aldous [1]
and Broder [2] independently show that the groundskeeper algorithm generates
a uniform spanning tree:

Theorem 3 (Groundskeeper Algorithm). The image of Φ is uniformly dis-
tributed over all spanning trees. It is independent of the choice of initial vertex
v.

We pick up an random initial vertex with stationary distribution π. Then
at any step t, the distribution remains the same pt = π.

For an integer g ≥ 3, consider the following g-truncated random walks. We
construct a random spanning tree by collecting edges vt−1vt if vt is first visited.
We allow the backtrack step vt+1 = vt−i for some i ≤ g − 2. However, if
vt+1 = vt−i for some i > g − 2, the random walk stops.

Lemma 4. The probability that a g-truncated random walk stops before or at
time t is at most

(t− g + 3)(t− g + 2)d̃
2nd

+ (t− k)
σg

1− σ
.

Proof. When the truncated random walk stops, there exists a closed walk C =
vi, vi+1, . . . , vt, vi+k = vi of length k ≥ g for some 0 ≤ i ≤ t− k+ 1. For a fixed
i and k, the probability f(i, k) for such a closed walk is at most

f(i, k) ≤
∑

closed walk: vi,...,vi+k=vi

di
vol(G)

k∏
j=1

1
dvi+j−1

=
1

vol(G)
Tr(A(D−1A)k−1)

≤ d̃

vol(G)
+ σk(1− d̃

vol(G)
)

<
d̃

vol(G)
+ σk.

By summing up for i ≥ 0, k ≥ g, and i+ k ≤ t+ 1, we have

t−g+1∑
i=0

t−i+1∑
k=g

f(i, k) =
t−g+1∑
i=0

t−i+1∑
k=g

d̃

vol(G)
+ σk
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≤ (t− g + 3)(t− g + 2)
2

d̃

vol(G)
+
t−g+1∑
i=0

∞∑
k=g

σk

≤ (t− g + 3)(t− g + 2))
2

d̃

vol(G)
+ (t− g + 2)

σg

1− σ
.

4 Proving a diameter Lower Bound for random
spanning trees

In this section we will prove a diameter lower bound for spanning trees of G as
stated in inequality (1) of Theorem 2.

Proof of (1): Let t = (1 − ε)
√
εd
d̃
n and g = d

log

„
ε(1−σ)

√
δ

4t
√
d̃

«
log(σ) e. Note that g is

chosen so that
σg

1− σ
≤ ε

4t
.

Apply the g-truncated random walk. By Lemma 1, the g-truncated random
walk will survive up to time t with probability at least

1− (t− g + 3)(t− g + 2)d̃
2nd

− (t− g + 2)
σg

1− σ
> 1− t2d̃

2nd
− t σg

1− σ
> 1− ε

2
− ε

4

≥ 1− 3ε
4
.

For i = 1, . . . , t, we say vi−1vi is a forward step if vi 6= vj for some j < i; we say
vi−1vi is a k-backward step if vi = vi−k for some k ≤ g − 2.

Let Xi = −k if vi−1vi is a k-backward step and Xi = 1 otherwise. For all i,
we have

−(g − 2) ≤ Xi ≤ 1.

Let Y be the distance of v0vt in the random spanning tree and X =
∑t
i=1Xi

Conditioning on that the truncated random walk survives up to time t, we have
Y ≥ X. Or equivalently,

P(Y < X) <
3ε
4
.

Let Fi be the σ-algebra that v0, . . . , vi is revealed. For i = 0, . . . , t, E(X | Fi)
forms a martingale. We would like to establish a Lipschitz condition for this
martingale. For 1 ≤ i, j ≤ t, it is enough to bound |E(Xj | Fi)− E(Xj | Fi−1)|.
For j < i, Xj is completely determined by the information on v0, v1, . . . , vi. In
this case we have

E(Xj | Fi) = E(Xj | Fi−1).
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For j ≥ i, E(Xj | Fi) and E(Xj | Fi−1) are different because vi is exposed.
For i ≤ j ≤ i+ 2g − 3, we apply the trivial bound

|E(Xj | Fi)− E(Xj | Fi−1)| ≤ g − 1.

For j ≥ i+ 2g− 2, Xj only depends on vj−g+2, vj−g+3, . . . , vj+1. Note that the
random walk at step i only depends on the current position vi and is indepen-
dent of history position v0, . . . , vi−1. Thus E(Xj | vj−g+2) is independent of vi
because of i < j − g + 2. We use the mixing of our random walk to show that
information gained from knowing vi is quickly lost. Let p be the distribution of
vi giving vi−1 and q be the distribution of vi given vi (q is a singleton distribu-
tion). Let p′ be the distribution of vj−g+2 giving vi−1 and q′ be the distribution
of vj−g+2 giving vi−1. We have

‖(p′ − q′)D−1/2‖ ≤ ‖(p− q)D−1/2‖σj−g+2−i ≤ 2√
δ
σj−g+2−i.

Therefore,

|E(Xj | Fi)− E(Xj | Fi−1)| = |
n∑
u=1

(p′u − q′u)E(Xj | vj−g+2 = u)|

≤ ‖p′ − q′‖1(g − 2)

≤
√

vol(G)‖(p′ − q′)D−1/2‖(g − 2)

≤ 2(g − 2)

√
vol(G)√
δ

σj−g+2−i.

We have

|E(X | Fi)− E(X | Fi−1)| ≤
t∑

j=1

|E(Xj | Fi)− E(Xj | Fi−1)|

≤ 2(g − 1)2 +
t∑

j=i+2g−2

2(g − 2)

√
vol(G)√
δ

σj−g+2−i

≤ 2(g − 1)2 + 2(g − 2)

√
vol(G)σg√
δ(1− σ)

≤ 3g2

noting that g has been chosen so that

σg

1− σ
=

√
ε
√
δ

4(1− ε)
√

vol(G)

is sufficiently small to make the last inequality hold.
Thus we have established that E(X|Fi). By applying Azuma’s inequality

[5], we have

P(X − E(X) < −α) < e
− α2

18g4t
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Note that

E(X) =
t∑
i=1

E(Xi)

=
t∑
i=1

n∑
j=1

E(Xi | vi−1 = j)P(Vi−1 = j)

≥
t∑
i=1

n∑
j=1

(
(1− g − 1

dj
) +

g−2∑
k=1

−k
dj

)
dj

vol(G)

=
t∑
i=1

n∑
j=1

(1− g(g − 1)
2dj

)
dj

vol(G)

=
t∑
i=1

(
1− g(g − 1)n

2vol(G)

)
= (1− g(g − 1)

2d
)t.

By choosing α =
√

18g4t log 4
ε , we have

P

(
X < (1− g(g − 1)

2d
)t−

√
18g4t log

4
ε

)
<
ε

4
.

Putting all together, we have

P

(
Y < (1− g(g − 1)

2d
)t−

√
18g4t log

4
ε

)
≤ P(Y < X) + P

(
X < (1− 2

d
)t−

√
18g4t log

4
ε

)

<
3ε
4

+
ε

4
= ε.

To complete the proof, it suffices to check that our degree conditions imply
that

(1− g(g − 1)
2d

)t−
√

18g4t log
4
ε

= (1− ε− o(1))

√
ε
nd

d̃
.

In particular it suffices to check that

g√
d

= o(1),

as g4 is clearly o(t).
Since

g ≤
log
(

4
ε(1−σ)

)
+ log

(
t d̃δ

)
log(1/σ)

+ 1
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and

log

(
t
d̃

δ

)
= log((1− ε)

√
ε) +

1
2

log
(
d

δ
n

)
we have g/

√
d = o(1), since

d� log2(n)
log2(1/σ)

as hypothesized.

5 Proof of Upper Bound

For the upper bound, we follow the general strategy of Aldous in [1]. In par-
ticular we provide a (relatively straightforward) generalization of theorem 15 of
Aldous’ paper to give an upper bound in the general degree case.

Here, we let Xt denote the position of a random walk at time t. We denote
by TB the hitting time of a set B; that is

TB = min{t : Xt ∈ B}.

We denote the return time of a set B to be

T+
B = min{t ≥ 1 : Xt ∈ B}.

(Note that if the random walker does not start in B, TB = T+
B .)

When considering the probability that our random walk has some property
under some number of steps we use the notation Pρ to denote that we condi-
tion on our random walker having initial distribution ρ. Likewise, Eρ denotes
expectation conditioning on the initial distribution. If no distribution is given,
it is assumed to be starting from the stationary distribution. As a convenient
abuse of notation, for a vertex v, Pv denotes starting with the distribution that
places weight 1 on v.

The first tool is the following, rather standard, mixing lemma

Lemma 5. For all initial distributions ρ and all B ⊆ G, there exists an (abso-
lute) constant K

Pρ
(

TB > 3
log n

log(1/σ)
vol(G)
vol(B)

)
≤ 1

2

Proof. We begin by bounding |P s(ρ,B)−π(B)|; where ρ is an (arbitrary) initial
distribution and π(B) = vol(B)

vol(G) . Write

ρ′D−1/2 =
∑
i

αiϕ
′
i
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where the ϕ′i are left eigenvectors of (I−L) corresponding to eigenvalues (1−λi).
Then

α0 = 〈ρ′D−1/2,
D1/21√

volG
〉 =

1√
vol(G)

.

Thus

ρ′D−1/2 =
1′D1/2

vol(G)
+
∑
i≥1

αiϕi.

Then

|P s(ρ,B)− π(B)| =
∣∣∣∣ρ′P sχB − 1′D

vol(G)
χB

∣∣∣∣
=

∣∣∣∣(ρ′D−1/2(I − L)s − 1′D1/2

vol(G)

)
D1/2χB

∣∣∣∣
=

∣∣∣∣∣∣
1′D1/2

vol(G)
+
∑
i≥1

(1− λi)sαiϕ′i −
1′D1/2

vol(G)

D1/2χB

∣∣∣∣∣∣
≤

∑
i≥1

σs|αi||ϕ′iD1/2χB |

≤ σs
√
nvol1/2(B)

≤ σs
√
n|B|vol(B)|

where the last step follows from an application of Cauchy-Schwarz inequality.
Let

s = log

( √
vol(B)

2
√
n|B|vol(G)

)
/ log(σ)

so

σs
√
n|B|vol(B) =

vol(B)
2vol(G)

.

Fix ti = is, then

P(TB > x) ≤ P(Xt1 6∈ B,Xt2 6∈ B, . . . ,Xtx/s 6∈ B)
= P(Xt1 6∈ B)P(Xt2 6∈ B|Xt1 6∈ B) · · ·P(Xtx/s 6∈ B|Xtj 6∈ B,∀j < i)

≤
(

1− vol(B)
vol(G)

+
√
n|B|vol(B)σs

)x/s
≤

(
1− vol(B)

2vol(G)

)x/s
.

Fix x = 2 log(2)s vol(G)
vol(B) and it is easy to check that

P(TB > x) ≤ 1
2
.
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In all, we have

x = 2 log(2)
log
(

2
√
n|B|vol(G)√

vol(B)

)
vol(G)

log(1/σ)vol(B)
≤ 3

log n
log(1/σ)

vol(G)
vol(B)

The following result (and it’s proof) are due to Aldous [1]. Let B =
{v0, . . . , vc} denote a set of vertices and let PB denote the event that the path
from v0 to the root (starting location of our random walker for generating a
UST, chosen by the uniform distribution) in a uniform spanning tree starts
v0, v1, . . . , vc. Then
Lemma 6.

P(Tvc = `|PB) =
Pvc(T

+
B > `)

Evc(T
+
B)

Proof. For i < c, we denote the event Di to be

Di = {T{v0,...,vi} = Tvi , XTvi−1 = vi+1}.

In words, Di is the event that vi is hit before vj for j < i, and indeed vi is first
hit from vi−1, so

⋂
i<cDi = PB . Then:

{Tvc = `} ∩ PB = {Tvc = ` = TB}.

Note that, from the Markov property, it is clear that P (
⋂
i<cDi|Tvc = TB = `)

does not depend on ` (this is the motivation for writing PB in an obtuse way),
thus:

P(Tvc = `|PB) = αP(Tvc = TB = `)

for ` = 0, 1, . . . and for some α which (critically) does not depend on `. We have
that:

Pvc(T
+
B > `) =

∑
w

Pvc(X0 = vc, X` = w, Xi /∈ B for 1 ≤ i ≤ `)

=
1

π(vc)

∑
w

Pπ(X0 = vc, X` = w, Xi /∈ B for 1 ≤ i ≤ `)

=
1

π(vc)

∑
w

Pπ(X0 = w,X` = vc, Xi /∈ B for 1 ≤ i ≤ `)

=
1

π(vc)
Pπ(X` = vc, Xi /∈ B for 1 ≤ i ≤ `)

=
1

π(vc)
Pπ(Tvc = TB = `)

with the third to last equality following from time reversal for the stationary
Markov chain. This implies:

Pπ(Tvc = `|PB) = απ(vc)Pvc(T
+
B > `).
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Note finally, then that

1 =
∞∑
`=0

Pπ(Tvc = `|PB) =
∞∑
`=0

απ(vc)Pvc(T
+
B > `) = απ(vc)Evc(T

+
B).

so απ(vc) = Evc(T
+
B ), implying the result.

One can observe that, actually, that while the normalizing constant is easy
to compute, the exact value is unnecessary for the proof of the upper bound
itself.

We now prove the upper bound, establishing (2) in Theorem 2; whose proof
mimics that of Aldous.

Proof of (2): Let us start our random walk from the stationary distribution
(unless explicitly noted, all probabilities related with the random walk which
generates the spanning tree are taken to start with π).

We begin by fixing a path v0, v1, . . . , vc in our graph; and B be the set
{v0, . . . , vc}. As above, PB will denote the event that the path from v0 to the
root (that is, the starting location of our random walk, X0) in our uniform
spanning tree starts out along the path v0, . . . , vc. If we let

s =
⌈

3
log(1/σ)

vol(G)
(c+ 1)δ

⌉
≥ 3

log(1/σ)
vol(G)
vol(B)

log n

then, by iterating lemma 5 we have that

Pvc(T
+
B > js) ≤ 1

2j−1
Pvc(T

+
B > s).

We are now in the position to apply lemma 6 to both sides; note that the
normalizing constant will cancel and we are left with:

P(Tvc = js|PB) ≤ (1/2)j−1P(Tvc = s|PB) ≤ (1/2)j−1s−1.

where the last inequality follows from the fact that the right hand side of (6) in
lemma 6 is decreasing with l and hence the left hand side must as well. This
monotonicity property, and summing gives:

P(js ≤ Tvc ≤ (j + 1)s|PB) ≤ (1/2)j−1.

Further summing gives

P(js ≤ Tvc |PB) ≤ (1/2)j−2.

If PB occurs; then naturally we have that the distance from v0 to the root, X0,
satisfies

d(X0, v0) ≤ d(X0, vc) + c ≤ Tvc + c.

We also clearly have that if d(X0, v0) > c, then PB occurs for some unique path
v0, . . . , vc. Thus:

P(d(X0, v0) > c + js) ≤ (1/2)j−2.

14



Clearly diam(T )/2 ≤ maxv d(X0, v); so

P(diam(T)/2 > c + js) ≤ n(1/2)j−2.

This gives us

E(diam(T)) ≤ 2c + 3s log n ≤ 2c +
3vol(G)

c log(1/σ)δ
log2(n),

with the second inequality coming from the definition of S. These terms are the
same order of magnitude when setting c =

√
volG

δ log(1/σ) log n; giving the desired

bound. To establish the bound in the form stated in (2), simply apply Markov’s
inequality.

Note that by minimizing

2c+
3vol(G)

c log(1/σ)δ
log2(n)

we actually get that

E(diam(T)) ≤ 2

√
6

vol(G)
δ log(1/σ)

log n.
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