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 Abstract
In the study of the spectra of power law graphs, there are basically two competing approaches.  One is to prove analogues of Wigner’s semi-circle law while the other predicts that the eigenvalues follow a power law distributions.  Although the semi-circle law and the power law have nothing in common, we will show that both approaches are essentially correct if one considers the appropriate matrices.  We will prove that (under certain mild conditions) the eigenvalues of the (normalized) Laplacian of a random power law graph follow the semi-circle law while the spectrum of the adjacency matrix of a power law graph obeys the power law.  Our results are based on the analysis of random graphs with given expected degrees and their relations to several key invariants.  Of interest are a number of (new) values for the exponent  where phase transitions for eigenvalue distributions occur.  The spectrum distributions have direct implications to numerous graph algorithms such as randomized algorithms that involve rapidly mixing Markov chains, for example.

Introduction
Eigenvalues of graphs are useful for controlling many graph properties and consequently have numerous algorithmic applications including low rank approximations [1], information retrieval [2] and computer vision [3]. Of particular interest is the study of eigenvalues for graphs with power law degree distributions (i.e., the number of vertices of degree j is proportional to 
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 for some exponent ). It has been observed by many research groups [4, 5, 6, 7, 8, 9, 10, 11] that many realistic massive graphs including Internet graphs, telephone call graphs and various social and biological networks have power law degree distributions.

For the classical random graphs based on the Erdös-Rényi’s model, it has been proved by Füredi and Komlós that the spectrum of the adjacency matrix follows Wigner’s semi-circle law [12]. Wigner’s theorem [13] and its extensions have long been used for the stochastic treatment of complex quantum systems that lie beyond the reach of exact methods.  The semi-circle law has extensive applications in statistical physics and solid state physics [4,5].

In the 1999 paper by Faloutsos et al.  [8] on Internet topology, several power law examples of Internet topology are given and the eigenvalues of the adjacency matrices are plotted which does not follow the semi-circle law.  It is conjectured that the eigenvalues of the adjacency matrices have a power law distribution with its own exponent different from the exponent of the graph.  Farkas et.  al.  [16] looked beyond the semi-circle law and described a ‘triangular-like’ shape distribution (see [17]). Recently, Mihail and Papadimitriou (unpublished work) showed that the eigenvalues of the adjacency matrix of a power law graphs with exponent  are distributed according to a power law for 
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Here we intend to reconcile these two schools of thoughts on eigenvalue distributions.  To begin with, there are in fact several ways to associate a matrix to a graph.  The usual adjacency matrix A associated with a (simple) graph has eigenvalues quite sensitive to the maximum degree (which is a local property). The combinatorial Laplacian D - A with D denoting the diagonal degree matrix is a major tool for enumerating spanning trees and has numerous applications [18, 19]. Another matrix associated with a graph is the (normlized) Laplacian 
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 which controls the expansion/isoperimetrical properties (which are global) and essentially determines the mixing rate of a random walk on the graph.  The traditional random matrices and random graphs are regular or almost regular so the spectra of all the above three matrices are basically the same (with possibly a scaling factor or a linear shift). However, for graphs with uneven degrees, the above three matrices can have very different distributions.

In this paper, we will consider random graphs with a general given expected degree distribution and we examine the spectra for both the adjacency matrix and the Laplacian.  We will first establish bounds for eigenvalues for graphs with a general degree distribution from which the results on random power law graphs then follow.  Here is a summary of our results: 

1. The largest eigenvalue of the adjacency matrix of a random graph with a given expected degree sequence is determined by m, the maximum degree, and 
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, the weighted average of the squares of the expected degrees.  We show that the largest eigenvalue of the adjacency matrix is almost surely 
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 provided some minor conditions are satisfied. In addition, suppose that the  EQ k\s\up5(th) largest expected degree  EQ mk is significantly larger than 
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. Then the  EQ k\s\up5(th) largest eigenvalue of the adjacency matrix is almost surely 
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2.
For a random power law graph with exponent > 2.5, the largest eigenvalue of a random power law graph is almost surely 
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 where m is the maximum degree.  Moreover, the k largest eigenvalues of a random power law graph with exponent  have power law distribution with exponent 2-1 if the maximum degree is sufficiently large and k is bounded above by a function depending on , m and d, the average degree. When 2 < < 2.5, the largest eigenvalue is heavily concentrated at 
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for some constant c depending on  and the average degree.

3.
We will show that the eigenvalues of the Laplacian satisfy the semi-circle law under the condition that the minimum expected degree is relatively large (>> the square root of the expected average degree). This condition contains the basic case when all degrees are equal (the Erdös-Rényi model). If we weaken the condition on the minimum expected degree, we can still have the following strong bound for the eigenvalues of the Laplacian which implies strong expansion rates for rapidly mixing,
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where 
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 is the expected average degree, 
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is the minimum expected degree and g(n) is any slow growing function of n. 

In applications, it usually suffices to have the  EQ li’s (i > 0) bounded away from zero.  Our result shows that (under some mild conditions) these eigenvalues are actually very close to 1.

The rest of the paper has two parts.  In Section 2, we present our model and the results concerning the spectrum of the adjacency matrix.  Section 3 deals with the Laplacian.

The random graph model

The primary model for classical random graphs is the Erdos-Rényi model  EQ Gp, in which each edge is independently chosen with the probability p for some given p > 0 (see [20]). In such random graphs the degrees (the number of neighbors) of vertices all have the same expected value.  Here we consider the following extended random graph model for a general degree distribution (also see [21, 22]).

For a sequence 
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 we consider random graphs G(w) in which edges are independently assigned to each pair of vertices (i,j) with probability 
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 Notice that we allow loops in our model (for computational convenience) but their presence does not play any essential role. It is easy to verify that the expected degree of i is  EQ wi.

To this end, we assume that 
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 for all i and j. This assumption insures that the sequence  EQ wi is graphical (in the sense that it satisfies the necessary and sufficient condition for a sequence to be realized by a graph [23]) except that we do not require the  EQ wi’s to be integers). We will use  EQ di to denote the actual degree of  EQ vi in a random graph G in G(w) where the weight  EQ wi denotes the expected degree.

For a subset S of vertices, the volume Vol(S) is defined as the sum of weights in S and vol(S) is the sum of the (actual) degrees of vertices in S. That is, 
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. The induced subgraph on S is a random graph G(w') where the weight sequence is given by 
[image: image24.wmf]r

)

(

Vol

'

S

w

w

i

i

=

 for all iS. The expected average degree is 
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. The second order average degree of G(w') is 
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. The maximum expected degree is denoted by m.

The classical random graph G(n,p) can be viewed as a special case of G(w) by taking w to be (pn,pn,...,pn). In this special case, we have 
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. It is well known that the largest eigenvalue of the adjacency matrix of G(n,p) is almost surely (1+o(1))np provided that np >> log n.

The asymptotic notation is used under the assumption that n, the number of vertices, tends to infinity. All logarithms have the natural base.

The spectra of the adjacency matrix of random graphs with given degree distribution

For random graphs with given expected degrees 
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 of the adjacency matrix A, namely, 
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In [24], the present authors proved that the maximum of the above two lower bounds is essentially an upper bound.

Theorem 1  If 
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Theorem 2  If 
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If the k-th largest expected degree  EQ mk satisfies
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Theorem 3  The largest eigenvalue of a random graph in G(w) is almost surely at most
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We remark that the largest eigenvalue 
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 of the adjacency matrix of a random graph is almost surely 
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This, however, is not true as shown by a counterexample given in [24].

We also note that with a more careful analysis the factor of log n in Theorem REF BMt1 \* MERGEFORMAT  can be replaced by 
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 for any positive ε provided that n is sufficiently large.  We remark that the constant “7” in Theorem REF BMt3 \* MERGEFORMAT  can be improved.  We made no effort to get the best constant coefficient here.

The eigenvalues of the adjacency matrix of power law graphs

In this section, we consider random graphs with power law degree distribution with exponent . We want to show that the largest eigenvalue of the adjacency matrix of a random power law graph is almost surely approximately the square root of the maximum degree m if > 2.5, and is almost surely approximately 
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 if 2< <2.5. A phase transition occurs at = 2.5. This result for power law graphs is an immediate consequence of a general result for eigenvalues of random graphs with arbitrary degree sequences.

We choose the degree sequence w
[image: image55.wmf])

,...,

,

(

2

1

n

w

w

w

=

 satisfying 
[image: image56.wmf]1

1

-

-

=

b

ci

w

i

 for 
[image: image57.wmf]0

0

i

n

i

i

+

£

£

. Here c is determined by the average degree and  EQ i0 depends on the maximum degree m, namely, 
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. It is easy to verify that the number of vertices of degree k is proportional to 
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The second order average degree 
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We remark that for > 3, the second order average degree is independent of the maximum degree.  Consequently, the power law graphs with > 3 are much easier to deal with.  However, many massive graphs are power law graphs with 2 < < 3, in particular, Internet graphs [10] have exponents between 2.1 and 2.4 while the Hollywood graph [7] has exponent 
[image: image63.wmf]3

.

2

~

b

. In these cases, it is 
[image: image64.wmf]d

~

which determines the first eigenvalue.  The following theorem is a consequence of Theorems 1 and 2. When > 2.5, we have 
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for  EQ li sufficiently large.  These large eigenvalues follows the power law distribution with exponent 2-1. (The exponent is different from one in Mihail and Papadimitriou’s paper (unpublished work) because they use a different definition for power law.)

Theorem 4 
1.
For 3 and 
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For 2.5 < < 3 and 
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For 2 < < 2.5 and 
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 and > 2.5, almost surely the k largest eigenvalues of the random power law graph G with exponent  have power law distribution with exponent 2- 1, provided that m is large enough (satisfying the inequalities in 1, 2). 

The spectrum of the Laplacian
Suppose G is a graph that does not contain any isolated vertices.  The Laplacian L is defined to be the matrix 
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 where I is the identity matrix, A is the adjacency matrix of G and D denotes the diagonal degree matrix.  The eigenvalues of L are all non-negative between 0 and 2 (see [26]). We denote the eigenvalues of L by 
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. For each i, let  EQ fi denote an orthonormal eigenvectors associated with  EQ li. We can write L as 
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For any positive integer k, we have 
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Lemma 1 For any positive integer k, we have 
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The matrix M can be written as 
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where  EQ f0 is regarded as a row vector 
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,  EQ f0\s\up5(*) is the transpose of  EQ f0 and K is the all 1’s matrix.

Let W denote the diagonal matrix with the (i,i)-entry having value  EQ wi, the expected degree of the i-th vertex.  We will approximate M by 
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where  is a row vector 
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 is strongly concentrated at 0 for random graphs with given expected degree  EQ wi. C can be seen as the expectation of M and we shall consider the spectrum of C carefully.

A sharp bound for random graphs with relatively large minimum expected degree

In this section we consider the case when the minimum of the expected degrees is not too small compared to the mean.  In this case, we are able to prove a sharp bound on the largest eigenvalue of C.

Theorem 5  For a random graph with given expected degrees 
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Proof. We rely on Wigner’s high moment method.  For any positive integer k and any symmetric matrix C
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which implies
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where  EQ l1 is the eigenvalue with maximum absolute value:  
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Let us now take a closer look at 
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. In other words, each term corresponds to a closed walk of length 2k (containing 2k, not necessarily different, edges) of the complete graph  EQ Kn on {1,,n} ( EQ Kn has a loop at every vertex). On the other hand, the entries  EQ cij of C are independent random variables with mean zero.  Thus, the expectation of a term is non-zero if and only if each edge of  EQ Kn appears in the walk at least twice.  To this end, we call such a walk a good walk.  Consider a closed good walk which uses l different edges 
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In order to compute  EQ E\(cij\s\up5(m)\), let us first describe the distribution of 
[image: image103.wmf]ij

c

:  
[image: image104.wmf]r

j

w

i

w

j

w

i

w

ij

c

-

=

1

 
[image: image105.wmf]j

w

i

w

ij

q

=

with probability 
[image: image106.wmf]r

j

i

ij

w

w

p

=

 and 
[image: image107.wmf]j

w

i

w

ij

p

j

w

i

w

ij

c

-

=

-

=

r

 with probability 
[image: image108.wmf]ij

ij

p

q

-

-

=

1

. This implies that for any m2



[image: image109.wmf]2

min

1

2

/

2

/

2

/

)

(

)

(

)

(

)

(

)

(

|

)

(

|

-

-

£

=

£

-

+

£

m

m

j

i

m

j

i

ij

m

j

i

ij

m

ij

ij

m

ij

m

ij

w

w

w

w

w

p

w

w

q

p

p

q

c

E

r

r

.
(2)
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In order to bound the last sum, we need the following result of Füredi and Komlós [12].

Lemma 2  For all l<n  , 
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In order to prove our theorem, it is more convenient to use the following cleaner bound, which is a direct corollary of (4).
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Substituting (5) into (3) yields
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Now fix 
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where in the first inequality we used the simple fact that 
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By (7) and Markov’s equality
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Since k = (log n), we can find an 
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The semi-circle law.

We show that if the minimum expected degree is relatively large then the eigenvalues of C satisfy the semi-circle law with respect to the circle of radius 
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Theorem 6  For random graphs with a degree sequence satisfying 
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Remark. The assumption here is weaker than that of TheoremREF BMtheo2 \* MERGEFORMAT , due to the fact that we only need to consider moments of constant order.

Proof. As convergence in probability is entailed by the convergence of moments, to prove this theorem, we need to show that for any fixed s, the  EQ s\s\up5(th) moment of 
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  (see [13]). For s odd, the  EQ s\s\up5(th) moment of  EQ Wx is 0 by symmetry.

In order to verify Theorem REF BMtheo2 \* MERGEFORMAT , we need to show that for any fixed k
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and
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We first consider (8). Let us go back to (3). Now we need to use the more accurate estimate of  EQ |Wl\,k| give (4), instead of the weaker but cleaner one in (5). Define 
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. One can check, with a more tedious computation, that the sum  EQ  \I\su(l=0,k, )s'l\,k is still dominated by the last term, namely
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Now we turn to (9). Consider a term in 
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for some constant c. To compute the 
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Under the assumption of the theorem 
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  (
Summary
In this paper, we prove that the Laplacian spectrum of random graphs with given expected degrees follows the semi-circle law, provided some mild conditions are satisfied. We also show that the spectrum of the adjacency matrix is essentially determined by its degree distribution.  In particular, the largest k eigenvalues of the adjacency matrix of a random power law graph follow a power law distribution, provided that the largest k degrees are large in terms of the second order average degree. Here we compute the spectra of a subgraph G of a simulated random power law graph with exponent 2.2. The graph G has 588 vertices with the average degree 
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Figure2:  The Laplacian spectrum follows the Semi-Circle Law.
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Figure1: The large eigenvalues of the adjacency matrix follow the power law.





density

£

2s

20

15

) [ I 20 ) w0 s )
ecigenvalues








_1109151472.unknown

_1109151165.unknown

_1109151423.unknown

_1109151087.unknown

_1109150261.unknown

_1109150870.unknown

_1109150912.unknown

_1109150761.unknown

_1109150096.unknown

_1109150203.unknown

_1109149982.unknown

_1109149477.unknown

_1109149852.unknown

_1109149877.unknown

_1109149535.unknown

_1109149370.unknown

_1109149429.unknown

_1109149271.unknown

_1109148738.unknown

_1109148884.unknown

_1109148990.unknown

_1109149023.unknown

_1109148948.unknown

_1109148819.unknown

_1109148857.unknown

_1109148762.unknown

_1109148792.unknown

_1109148606.unknown

_1109148669.unknown

_1109148513.unknown

_1109016109.unknown

_1109020009.unknown

_1109140401.unknown

_1109141522.unknown

_1109148309.unknown

_1109148341.unknown

_1109141689.unknown

_1109142020.unknown

_1109148213.unknown

_1109141751.unknown

_1109141632.unknown

_1109140623.unknown

_1109141359.unknown

_1109140461.unknown

_1109067880.unknown

_1109072620.unknown

_1109073031.unknown

_1109137291.unknown

_1109137415.unknown

_1109137541.unknown

_1109140307.unknown

_1109138477.unknown

_1109137477.unknown

_1109137391.unknown

_1109136915.unknown

_1109137170.unknown

_1109136723.unknown

_1109136785.unknown

_1109136445.unknown

_1109072809.unknown

_1109072872.unknown

_1109073030.unknown

_1109072692.unknown

_1109068906.unknown

_1109072495.unknown

_1109072578.unknown

_1109071971.unknown

_1109068565.unknown

_1109068707.unknown

_1109068514.unknown

_1109065773.unknown

_1109066460.unknown

_1109066531.unknown

_1109066206.unknown

_1109020219.unknown

_1109020273.unknown

_1109020045.unknown

_1109018576.unknown

_1109019496.unknown

_1109019909.unknown

_1109019929.unknown

_1109019544.unknown

_1109019111.unknown

_1109019409.unknown

_1109018966.unknown

_1109017298.unknown

_1109017689.unknown

_1109017930.unknown

_1109018170.unknown

_1109017763.unknown

_1109017464.unknown

_1109017502.unknown

_1109016356.unknown

_1109014030.unknown

_1109015331.unknown

_1109015619.unknown

_1109015746.unknown

_1109015979.unknown

_1109015717.unknown

_1109015500.unknown

_1109015040.unknown

_1109015154.unknown

_1109014180.unknown

_1109013840.unknown

_1109013972.unknown

_1109014007.unknown

_1109013896.unknown

_1109012000.unknown

_1109013517.unknown

_1109013689.unknown

_1109013082.unknown

_1108985335.unknown

_1108985673.unknown

_1108985892.unknown

_1108985384.unknown

_1108984448.unknown

