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a b s t r a c t

The Randić index R(G) of a graph G is defined as the sum of 1
√
dudv

over all edges uv of G,
where du and dv are the degrees of vertices u and v, respectively. Let D(G) be the diameter
of Gwhen G is connected. Aouchiche et al. (2007) [1] conjectured that among all connected
graphs G on n vertices the path Pn achieves the minimum values for both R(G)/D(G) and
R(G) − D(G). We prove this conjecture completely. In fact, we prove a stronger theorem:
If G is a connected graph, then R(G) −

1
2D(G) ≥

√
2 − 1, with equality if and only if G is a

path with at least three vertices.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In 1975, the chemist Milan Randić [13] proposed a topological index R under the name ‘‘branching index’’, suitable
for measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. The branching index was
renamed the molecular connectivity index and is often referred to as the Randić index.

There is a good correlation between the Randić index and several physico-chemical properties of alkanes: boiling points,
enthalpies of formation, chromatographic retention times, etc. [7–9].

The Randić index R(G) of a graph G = (V , E) is defined as follows:

R(G) =

−
uv∈E

1
√
dudv

.

Here du and dv are the degrees of vertices u and v, respectively.
From a mathematical point of view, the first question to be asked is what are the minimum and maximum values of

the Randić index in various classes of graphs, and which graphs in these classes of graphs have an extremal (minimum or
maximum) Randić index. Erdős and Bollobás [4] first considered such problems. They proved that the star minimizes the
Randić index among all the graphs without isolated vertices on fixed number of vertices. After that a lot of extremal results
on the Randić index were published.

It turns out that the Randić index is also related to some typical graph parameters such as: diameter, radius, average
distance, girth, chromatic number, and eigenvalues of the adjacent matrices [2,3,12]. Some conjectures on them are still
open [1,5,6,10].

Aouchiche et al. [1] posed the following conjecture on the diameter and the Randić index.

Conjecture 1. If G is a connected graph of order n ≥ 3, then the Randić index R(G) and the diameter D(G) satisfy

R(G) − D(G) ≥
√
2 −

n + 1
2
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and

R(G)

D(G)
≥

n − 3 + 2
√
2

2n − 2
,

with equalities if and only if G ∼= Pn.

Li and Shi [11] proved this conjecture in some special cases. Namely, if G is a connected graph of order nwith minimum
degree at least 5, then

R(G) − D(G) ≥
√
2 −

n + 1
2

.

If δ(G) ≥
n
5 , then

R(G)

D(G)
≥

n − 3 + 2
√
2

2n − 2
.

In this paper we settle the conjecture completely. In fact, we prove the following stronger theorem.

Theorem 1. If G is a connected graph with at least three vertices, then we have

R(G) −
1
2
D(G) ≥

√
2 − 1.

Equality holds if and only if G ∼= Pn for n ≥ 3.

Corollary 1. If G is a connected graph of order n ≥ 3, then the Randić index R(G) and the diameter D(G) satisfy

R(G) − D(G) ≥
√
2 −

n + 1
2

and

R(G)

D(G)
≥

n − 3 + 2
√
2

2n − 2
,

with equalities if and only if G ∼= Pn.

Proof. Noticing that D(G) ≤ n − 1, we have

R(G) − D(G) = R(G) −
D(G)

2
−

D(G)

2
≥

√
2 − 1 −

n − 1
2

=
√
2 −

n + 1
2

and

R(G) −
D(G)

2
≥

√
2 − 1 ⇒

R(G)

D(G)
≥

1
2

+

√
2 − 1
D(G)

≥
n − 3 + 2

√
2

2n − 2
. �

The paper is organized as follows. In Section 2, we prove several useful lemmas. Our main idea is to capture the change
of the Randić index when we simplify a graph. The proof of the main theorem is presented in Section 3.

2. Lemmas on vertex deletion and edge deletion

For any vertex v, let Γ (v) denote the set of all neighbors of v and Γ ∗(v) denote the set of all non-leaf neighbors of v, i.e.,

Γ (v) = {u : uv ∈ E(G)} and Γ ∗(v) = {u : uv ∈ E(G) and du ≥ 2}.

We also let N(v) = Γ (v) ∪ {v} and N∗(v) = Γ ∗(v) ∪ {v}. Throughout du will be the degree with respect to G, unless other
graphs are considered.

We have the following Lemma.

Lemma 1. If G is a connected graph on the vertex set {1, 2, . . . , n}, then we have

R(G) ≥

n∑
i=1

√
di

2
√

∆
.

Here d1, . . . , dn are degrees of G and ∆ is the maximum degree.
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Proof. We have

R(G) =

−
ij∈E(G)

1
didj

=
1
2

n−
i=1

−
j∈Γ (i)

1
didj

≥
1
2

n−
i=1

−
j∈Γ (i)

1
√
di∆

≥
1
2

n−
i=1

di
√
di∆

=

n∑
i=1

√
di

2
√

∆
.

The proof of this lemma is finished. �

LetG−v be the induced subgraph obtained by deleting the vertex v fromG. LetG−uv be the spanning subgraph obtained
by deleting the edge uv from G.

If G is connected, then D(G) is the diameter of G as defined earlier. We extend the function D(G) to disconnected graphs
as follows. If G is disconnected, then D(G) is defined to be the maximum among diameters of all the connected components
of G. A vertex v is said to be essential (to D(G)) if D(G − v) < D(G); it is not essential otherwise. Thus a vertex v is essential
if and only if every shortest path between any two vertices at distance D(G) passes through v.

An edge is essential if its two endpoints are essential. A path is essential if all edges of this path are essential.
In general, Γ (v) is not an independent set. Let G|Γ (v) be the induced subgraph of G on Γ (v). We have the following

lemma.

Lemma 2. Given an orientation of the edges of G|Γ (v), for any two vertices u and x in G, we define

ϵu
x =


1, if −→ux is a directed edge of G|Γ (v);

0, otherwise.

If forany u ∈ Γ ∗(v),

1
du − 1

−
x∈Γ (u)\{v}

1
dx − ϵu

x

≤
2

√
dv

, (1)

then we have

R(G) > R(G − v).

Proof. When the vertex v is deleted, all edges incident to v are also deleted. For any vertex u, if u ∈ Γ (v), the degree of u
decreases by one; if u ∉ N(v), the degree of u remains the same.

Let us consider R(G) − R(G − v). For most edges xy in G, the contribution of 1√
dxdy

to R(G) − R(G − v) is canceled out

unless one of x and y is in N(v). There are three types of edges.
Type I: x = v and y = u ∈ Γ (v). The contribution of this type of edge to R(G) − R(G − v) is−

u∈Γ (v)

1
√
dvdu

≥

−
u∈Γ ∗(v)

1
√
dvdu

.

Type II: y = u ∈ Γ ∗(v) and x ∈ Γ (u) \ N(v). The contribution of this type of edge to R(G) − R(G − v) is−
u∈Γ ∗(v)


1

√
du

−
1

√
du − 1

 −
x∈Γ (u)\N(v)

1
√
dx

=

−
u∈Γ ∗(v)


1

√
du

−
1

√
du − 1

 −
x∈Γ (u)\N(v)

1
dx − ϵu

x

since ϵu
x = 0 in this case.

Type III: y = u ∈ Γ ∗(v), x ∈ Γ ∗(v), and −→ux is a directed edge of G|Γ (v). Note that

1
√
dudx

−
1

√
(du − 1)(dx − 1)

=
1

√
du


1

√
dx

−
1

√
dx − 1


+

1
√
dx − 1


1

√
du

−
1

√
du − 1


=

1
du − ϵx

u


1

√
dx

−
1

√
dx − 1


+

1
dx − ϵu

x


1

√
du

−
1

√
du − 1


,
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since ϵx
u = 0 and ϵu

x = 1. The above expression is symmetric with respect to u and x. Thus, the contribution of this type of
edge to R(G) − R(G − v) is

1
2

−
u∈Γ ∗(v),x∈Γ (u)∩Γ (v)

1
du − ϵx

u


1

√
dx

−
1

√
dx − 1


+

1
dx − ϵu

x


1

√
du

−
1

√
du − 1


=

−
u∈Γ ∗(v),x∈Γ (u)∩Γ (v)

1
dx − ϵu

x


1

√
du

−
1

√
du − 1


=

−
u∈Γ ∗(v)


1

√
du

−
1

√
du − 1

 −
x∈Γ (u)∩Γ (v)

1
dx − ϵu

x

.

Summing up the contribution of three types of edges, we have

R(G) − R(G − v) ≥

−
u∈Γ ∗(v)

1
√
dvdu

+

−
u∈Γ ∗(v)


1

√
du

−
1

√
du − 1

 −
x∈Γ (u)\N(v)

1
dx − ϵu

x

+

−
u∈Γ ∗(v)


1

√
du

−
1

√
du − 1

 −
x∈Γ (u)∩Γ (v)

1
dx − ϵu

x

=

−
u∈Γ ∗(v)


1

√
dvdu

−


1

√
du − 1

−
1

√
du

 −
x∈Γ (u)\{v}

1
dx − ϵu

x


.

Now we apply the assumption (1).

R(G) − R(G − v) ≥

−
u∈Γ ∗(v)

[
1

√
dvdu

−


1

√
du − 1

−
1

√
du


2(du − 1)

√
dv

]

=

−
u∈Γ ∗(v)

1
√
dvdu


1 −

2
√
du − 1

√
du +

√
du − 1



=

−
u∈Γ ∗(v)

(
√
du −

√
du − 1)2

√
dvdu

> 0. �

Inequality (1) is called the deletion condition for the vertex v. To check the deletion condition, we need to specify an
orientation of the edges of G|Γ (v). We can relax this condition as follows.

Let d∗
x = dx − 1 if dx ≥ 2 and d∗

x = dx if dx = 1. Note for any orientation of the edges of G|Γ (v)

dx − ϵu
x ≥ d∗

x .

We have the following corollary.

Corollary 2. If for any u ∈ Γ ∗(v),

1
du − 1

−
x∈Γ (u)\{v}

1
d∗
x

≤
2

√
dv

, (2)

then we have

R(G) > R(G − v).

Inequality (2) is called the weak deletion condition for the vertex v.

Corollary 3. If dv ≤ 4, then we have

R(G) > R(G − v).

Proof. It suffices to show that v satisfies the weak deletion condition. If Γ ∗(v) = ∅, then the weak deletion condition is
satisfied automatically. If u ∈ Γ ∗(v) and x ∈ Γ (u) \ {v}, then we have

d∗

x ≥ 1.

Thus,
1

du − 1

−
x∈Γ ∗(u)\{v}

1
d∗
x

≤
1

du − 1

−
x∈Γ ∗(u)\{v}

1 ≤ 1 ≤
2

√
dv

.
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Applying Corollary 2, we get

R(G) > R(G − v). �

Lemma 3. If G is a connected graph, then there exists an induced connected subgraph G′ satisfying the following conditions.

1. R(G) ≥ R(G′).
2. D(G) ≤ D(G′).
3. Every non-essential vertex in G′ has degree at least 9.
4. R(G′) = R(G) holds if and only if G′

= G and every non-essential vertex in G has degree at least 9.

Proof. Suppose that G contains a vertex v with dv ≤ 4. If v is not essential, then we can remove v from G and consider
G − v instead (by Corollary 3). Repeatedly find a non-essential vertex v with degree at most 4 and delete it until no such v
is found.

From now on, we assume that every non-essential vertex has degree at least 5. Let v be a non-essential vertex with
minimum degree δ ≤ 8. We claim

R(G) > R(G − v).

There are five cases.

Case I: The vertex v has one neighbor u1 with degree 1, and u1 is essential. Any path containing u1 contains v. This contradicts
with the assumption that v is not essential.

Case II: The vertex v has two neighbors u1 and u2 with degrees 2, and both u1 and u2 are essential vertices. Since v is not
essential, there exists a shortest path P (of length D(G)) which does not contain v. The path P passes through u1 and u2.
The degrees of u1 and u2 in P are at most 1. So u1 and u2 must be the two endpoints of P . In this case, we must have
D(G) = d(u1, u2) ≤ 2.

If D(G) = 1, then G is a complete graph. We have R(G) = R(G − v) +
1
2 > R(G − v).

Now assume D(G) = 2. Since dv = δ ≥ 5, Γ (v) contains a vertex uwhich is not on the path P . We have d(u, ui) = 2 for
i = 1, 2. We can delete u1 or u2 without decreasing D(G). Contradiction!

Case III: Every neighbor of v has degree at least 3, and no leaf lies within the distance 2 from v. For any u ∈ Γ (v)with degree
at least 3 and x ∈ Γ (u) \ {v}, we have

d∗

x ≥ 2.

We have

1
du − 1

−
x∈Γ (u)\{v}

1
d∗
x

≤
1

√
2

≤
2

√
dv

,

which holds for dv ≤ 8. The weak deletion condition (2) is satisfied. By Corollary 2, we have

R(G) > R(G − v).

Case IV: All neighbors of v except u1 have degree at least 3 while u1 has degree 2; no leaf lies within the distance 2 from v.
In this case, we verify the deletion condition (1). Orient the edges of G|Γ ∗(v) so that the edge incidents to u1 leave u1. For any
u ∈ Γ (v) and x ∈ Γ ∗(u) \ {v}, it is clear that

dx − ϵu
x ≥ 2.

Similarly, the condition (1) is satisfied. By Lemma 2, we have

R(G) > R(G − v).

Case V: There is a leaf x with d(v, x) = 2, and x is essential. Let u be the only neighbor of x. Clearly, u ∈ Γ ∗(v). Since x is
essential, then umust be essential as well. We verify the weak deletion condition (2) for u.

If du = 2, then v is also essential. Contradiction! Suppose that u has a neighbor w with dw < δ (w ≠ x). The vertex w
must be essential. Since dv = δ > dw , there is a vertex y ∈ Γ (v) \ Γ (w). Suppose that P is a shortest path of length D(G)
containing x, u, w. Replace the segment x − u − w by the shortest path from y to w. Call this path P ′. The path P ′ is also a
shortest path with length at least D(G), and P ′ does not contain x. This contradicts with the assumption that x is essential.

Suppose du ≥ 3, and every neighbor w of u other than x satisfies dw ≥ δ.
We have
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1
du − 1

−
x∈Γ ∗(u)\{v}

1
d∗
x

≤
1

du − 1


1 + (du − 2)

1
√

δ − 1


=

1
√

δ − 1
+

1
du − 1


1 −

1
√

δ − 1


≤

1
√

δ − 1
+

1
2


1 −

1
√

δ − 1


≤

1
2


1 +

1
√

δ − 1


<

2
√

δ
.

The last inequality holds for δ ≤ 8. Thus R(G) ≥ R(G − v).
For all five cases, we can delete a non-essential vertex v with dv ≤ 8 such that

R(G) > R(G − v).

Repeat this process until every non-essential vertex has degree at least 9. �

A vertex v is a local-minimum-vertex if the following two conditions are satisfied.

1. The vertex v is not essential for G.
2. If u is a non-essential vertex with d(u, v) ≤ 2, then du ≥ dv .

Lemma 4. Suppose v is a local-minimum-vertex with degree dv ≥ 3. If R(G) ≤ R(G − v), then there exist two vertices w and y
satisfying

1. vw and wy are edges of G.
2. dw < dv and dy < dv . Consequently, wy is an essential edge of G.

Proof. For any u ∈ Γ (v) with du ≥ dv , we claim that Γ (u) can contain at most two essential vertices.
Otherwise, say that Γ (u) contains three essential vertices x, y, and z. Choose a shortest path P connecting two vertices

of distance D(G). By the definition of essential vertices, all x, y, and z are on the path P . Since x, y, z ∈ Γ (u), x, y, and z must
be adjacent on P . Without loss of generality, we assume d(x, z) = 2. We can replace y by u and obtain a new path P ′ from P .
This contradicts with the assumption that y is also essential.

Since R(G) ≤ R(G − v), the weak deletion condition (2) is violated for some u. There are three cases.

Case I: For any x ∈ Γ (u) \ {v}, dx ≥ dv . In this case, we have

d∗

x = dx − 1 ≥ dv − 1.

Thus,

1
du − 1

−
x∈Γ (u)\{v}

1
d∗
x

≤
1

du − 1

−
x∈Γ (u)\{v}

1
√
dv − 1

≤
1

√
dv − 1

<
2

√
dv

,

where the lase step holds for dv ≥ 2. The weak deletion condition (2) is satisfied. Contradiction!

Case II: du < dv . By Case I, we have a vertex x ∈ Γ (u) \ {v}, dx < dv . Choose w = u and y = x. We are done.

Case III: du ≥ dv . Note that Γ (u) can contain at most 2 essential vertices. Let y1 and y2 be the possible two essential vertices.
If x ∈ Γ (u) \ {v, y1, y2}, then by the definition of local-minimum-vertex, we have

d∗

x = dx − 1 ≥ dv − 1.

We bound d∗
y1 and d∗

y1 by 2. We get
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1
du − 1

−
x∈Γ (u)\{v}

1
d∗
x

≤
1

du − 1

[
2 +

du − 3
√
dv − 1

]

≤
1

√
dv − 1

+

2 −
2

√
dv−1

du − 1

≤
1

√
dv − 1

+

2 −
2

√
dv−1

dv − 1

<
2

√
dv

,

where the last step holds for dv ≥ 3. Contradiction!
Only Case II is possible. There are two essential vertices y and w satisfying all the conditions. �

Lemma 5. If uv is a non-leaf edge, then we have

R(G) > R(G − uv) −
1
2
.

Proof. We have

R(G) − R(G − uv) =
1

√
dudv

−

−
x∈Γ (u)\{v}

1
√
dx


1

√
du − 1

−
1

√
du


−

−
y∈Γ (v)\{u}

1
dy


1

√
dv − 1

−
1

√
dv


≥

1
√
dudv

− (du − 1)


1
√
du − 1

−
1

√
du


− (dv − 1)


1

√
dv − 1

−
1

√
dv


=

1
√
dudv

−

√
du − 1

√
du(

√
du +

√
du − 1)

−

√
dv − 1

√
dv(

√
dv +

√
dv − 1)

>
1

√
dudv

−
1

2
√
du

−
1

2
√
dv

=
1

√
2dudv

+
1
2


1 −

1
√
du


1 −

1
√
dv


−

1
2

> −
1
2
. �

Corollary 4. Suppose that uv is not a cut edge of G. If both u and v are essential, then

R(G) −
1
2
D(G) > R(G − uv) −

1
2
D(G − uv).

Lemma 6. Let u be a cut vertex of G. Suppose that G has a decomposition G = G1 ∪ G2 satisfying G1 ∩ G2 = {u}, |G2| ≥ 8, and
|Γu ∩ V (G1)| = 2 (see Fig. 1). If u reaches the minimum degree in G2, then we have

R(G) > R(G1).

Proof. Let u1 and u2 be the two adjacent vertices of u in G1 and v1, . . . , vk be the adjacent vertices of u in G2. Let N(vi) be
the set of neighbors of vi in G2. We have

R(G) ≥ R(G1) + R(G2) −


1

√
2

−
1

√
k + 2


1
du1

+
1
du2


−

k−
i=1


1
dvi

−
1

dvi + 1

 −
x∈N(vi)

1
√
dx

≥ R(G1) + R(G2) −
1

√
2


1
du1

+
1
du2


−

k−
i=1

1
(

dvi +


dvi + 1)


dvi


dvi + 1

·
dvi
√
k

> R(G1) + R(G2) −
1

√
2


1
du1

+
1
du2


−

k−
i=1

1

2
√
k

dvi

≥ R(G1) + R(G2) −
1

√
2


1

√
1

+
1

√
1


−

k

2
√
k
√
k

≥ R(G1) + R(G2) −
√
2 −

1
2

> R(G1),

where the last inequality hold for R(G2) ≥
√

|G2| − 1 ≥
√
7. �
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Fig. 1. G = G1 ∪ G2 .

Fig. 2. The structure of G.

Lemma 7. For any edge uv of G, let Gu·v be the graph obtained by subdividing the edge uv (i.e., by replacing the edge uv by a
path of length 2). We have the following statements.

1. If du = 2 or dv = 2, then R(Gu·v) = R(G) +
1
2 .

2. If du > 2 and dv > 2, then R(Gu·v) < R(G) +
1
2 .

3. If du = 1 and dv > 2, then R(Gu·v) > R(G) +
1
2 .

4. If du > 2 and dv = 1, then R(Gu·v) > R(G) +
1
2 .

Proof. We have

R(Gu·v) − R(G) =
1

√
2du

+
1

√
2dv

−
1

√
dudv

=
1
2

−


1

√
2

−
1

√
du


1

√
2

−
1

√
dv


.

It is easy to verify all cases. �

3. Proof of main theorem

Proof of Theorem 1. For any graph G, we define f (G) = R(G) −
D(G)

2 . Note that f (Pn) =
√
2 − 1 for n ≥ 3. We need show

that

f (G) >
√
2 − 1 (3)

for any connected graph G ≠ Pn (n ≥ 3).
Suppose that there is such a graph G (≠Pn) satisfying

f (G) ≤
√
2 − 1.

Let G be such a graph with the smallest number of vertices. (If there are several such graphs with the same number of
vertices, pick the one with minimum number of edges.) It is easy to check that G is connected and has at least 3 vertices.

By Lemma 3, every non-essential vertex of G has degree at least 9. By Corollary 4, every essential edge is an edge-cut of
G. By Lemma 6, if there are two essential edges uv and vw, then dv = 2. Therefore G is the graph consisting of several blocks
which are linked by essential paths (see Fig. 2). A block B is an induced connected subgraph of Gwhich contains no essential
edges of G. By Lemma 7, the length of each essential path is either 1 or 2.

We classify G according to the number of blocks. If there is no block in G, then G = Pn. Contradiction!
Suppose that there are at least two blocks in G. In this case, take an essential path which links two blocks. If this essential

path has length 1, we consider G′ obtained by subdividing this essential edge. If this essential path has length 2, let G′
= G.

Let u − v − w be this essential path. Let G1 and G2 be two induced subgraphs of G so that G = G1 ∪ G2 and G1 ∩ G2 = v.
Note that each block contains at least one non-essential vertex, which has degree at least 9. We have

|G1| ≥ 9 and |G2| ≥ 9.
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Fig. 3. G contains exactly one block with optional essential edges attached at the end.

Since |G1| + |G2| = |G′
| + 1 ≤ |G| + 2, we have

|G1| < |G| and |G2| < |G|.

By the minimality of G, we have for i = 1, 2,

f (Gi) >
√
2 − 1.

Note D(G′) ≤ D(G1) + D(G2).

R(G′) − R(G1) − R(G2) =
1

√
2du

+
1

√
2dw

−
1

√
du

−
1

√
dw

= −


1 −

1
√
2


1

√
du

+
1

√
dw


> −


1 −

1
√
2


1

√
2

+
1

√
2


= 1 −

√
2.

By Lemma 7, we have

f (G) ≥ f (G′)

= R(G′) −
1
2
D(G′)

= f (G1) + f (G2) + R(G′) − R(G1) − R(G2)

> f (G1) + f (G2) + 1 −
√
2

>
√
2 − 1 +

√
2 − 1 + 1 −

√
2

=
√
2 − 1.

Contradiction!
Nowwe consider the remaining case: there is exactly one block in Gwith possible essential edges attached at one or both

ends. (See Fig. 3.)
Assume themaximumdegree∆ is achieved at vertex v. Note that the neighborhood of v can contain atmost two essential

vertices. An essential vertex has degree at least 2 while a non-essiential vertex has degree at least 9. Applying Lemma 1, we
have

R(G) ≥

n∑
i=1

√
di

2
√

∆

≥

√
dv +

∑
u∈Γ (v)

√
du

2
√

∆

≥
1
2

+
(∆ − 2)

√
9 + 2

√
2

2
√

∆

=
3
2

√
∆ −

3 −
√
2

√
∆

+
1
2
.

Let h(x) =
3
2

√
x− 3−

√
2

√
x +

1
2 . Note that h(x) is an increasing function on (0, ∞). SinceG contains at least one non-essential

vertex, we have ∆ ≥ 9.
If D(G) ≤ 8, then we have

R(G) ≥ h(9) = 4 +

√
2
3

>
D(G)

2
+

√
2 − 1.
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It remains to show the case D(G) ≥ 9. In fact, we show the maximum degree ∆ grows exponentially as a function of
D(G).

Pick any path Q (in G) of length D(G). Any optional essential edge(s) is located at the end(s) of Q . Let P be the remaining
path after deleting essential edges from Q . Let k be the length of P , which is called the length of the block B. Since D(G) ≥ 9,
we have

k ≥ D(G) − 2 ≥ 7.

Let z be an end vertex of P . For 0 ≤ i ≤ k, let Ai be the set of vertices in B of distance i to the vertex z (see Fig. 3). Let ai
be the minimum degree of nonessential vertices in Ai. If Ai is a single essential vertex, then define ai to be infinite. We have
the following two claims.

Claim A. If 3 ≤ i ≤ k − 3, then we have

ai ≥ 2.9(min{ai−2, ai−1, ai+1, ai+2} − 1). (4)

Claim B. We have ∆ ≥ 1.5 + 7.4 · 2.9⌈(k−6)/4⌉ for k ≥ 7.

The proofs of these two claims are quite long. We leave these proofs to the end of this section. Now we use these claims
to prove f (G) >

√
2 − 1. For k ≥ 7, we have

f (G) = R(G) −
D(G)

2

≥ h(∆) −
k + 2
2

≥ h(1.5 + 7.4 · 2.9⌈(k−6)/4⌉) −
k + 2
2

>
√
2 − 1.

The inequality in last step can be easily verified by Calculus. The proof of theorem is finished. �

It remains to prove the two claims.

Proof of Claim A. Obviously, (4) holds if ai is infinite. Suppose there exists i such that

ai < 2.9(min{ai−2, ai−1, ai+1, ai+2} − 1).

Let v be the non-essential vertex with degree ai in Ai. Let δ = min{ai−2, ai−1, ai+1, ai+2}. The above inequality implies

dv < 2.9(δ − 1). (5)

We need show R(G) > R(G− v) to derive the contradiction. It suffices to show that for any u ∈ Γ ∗(v) the weak deletion
condition holds.

If u is essential, then u is not connected with any other essential vertex. We have

1
du − 1

−
x∈Γ (u)\{v}

1
d∗
x

≤
1

du − 1

−
x∈Γ (u)\{v}

1
√

δv − 1

=
1

√
δv − 1

<
2

√
dv

.

At the last step, we applied inequality (5).
Otherwise, u can only be adjacent to at most two essential vertices. Since no two essential vertices are connected, each

non-leaf essential vertex has a degree at least 3. Let y1 and y2 be two possible essential vertices. Noticing that essential
vertices are not adjacent, we can orient the edges of G|Γ (u) such that directed edges always leave essential vertices. For
i ∈ {1, 2}, we have

dyi − ϵu
yi = dyi ≥ 3.

For x ∈ Γ (u) \ {v, y1, y2}, we apply the bound

dx − ϵu
x ≥ dx − 1 ≥ δ − 1.
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We have
1

du − 1

−
x∈Γ (u)\{v}

1
dx − ϵu

x

≤
1

√
δ − 1

+
2

δ − 1


1

√
3

−
1

√
δ − 1


.

Let f (x) =
1

√
x +

2
x (

1
√
3

−
1

√
x ). Note that f (x) is decreasing on (2.5, ∞). Since dv ≥ 9, we have 2.5 < dv

2.9 < δ − 1. Thus,

f (δ − 1) ≤ f ( dv

2.9 ). We have

1
du − 1

−
x∈Γ (u)\{v}

1
dx − ϵu

x

≤ f (δ − 1)

< f


dv

2.9


<

2
√
dv

.

The last step can be easily verified by Calculus. �

Proof of Claims B. Let {bi} be the sequence such that bi = 2.9(bi−1 − 1) and b0 = 9. Solving the recurrence equation of the
sequence {bi}, we have

bi =
29
19

+
142
19

· 2.9i

> 1.5 + 7.4 · 2.9i.

Since ai ≥ 9 = b0 for 0 ≤ i ≤ k, we get ai ≥ b1 for 3 ≤ i ≤ k − 3 by applying inequality (4). Applying inequality (4)
again, we obtain ai ≥ b2 for 5 ≤ i ≤ k − 5. Repeatedly apply inequality (4). For each j in {1, 2, . . . , ⌈(k − 6)/4⌉} and each i
satisfying 2j + 1 ≤ i ≤ k − 2j − 1, we have ai > bj. Let j0 = ⌈(k − 6)/4⌉. Note k − 4j0 − 2 ≥ 1. Thus, both a2j0+1 and a2j0+2
are greater than or equal to bj0 . Note that there is no essential edge in the block B. We have

∆ ≥ min{a2j0+1, a2j0+2} ≥ bj0 > 1.5 + 7.4 · 2.9⌈(k−6/)4⌉. �

Acknowledgements

The first author was supported in part by NSF grant DMS 0701111.
The second author was supported in part by NSF grant DMS 0701111 and DMS 1000475.

References

[1] M. Aouchiche, P. Hansen, M. Zheng, Variable neighborhood search for extremal graphs 19: further conjectures and results about the Randić index,
MATCH Commun. Math. Comput. Chem. 58 (2007).

[2] O. Araujo, J.A. de la Peña, The connectivity index of a weighted graph, Linear Algebra Appl. 283 (1998) 171–177.
[3] O. Araujo, J.A. de la Peña, Some bounds for the connectivity index of a chemical graph, J. Chem. Inf. Comput. Sci. 38 (1998) 827–831.
[4] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998) 225–233.
[5] G. Caporossi, P. Hansen, variable neighborhood search for extremal graphs 1: the autographix system, Discrete Math. 212 (2000) 29–44.
[6] S. Fajtlowicz, On conjectures of graffiti, Discrete Math. 72 (1988) 113–118.
[7] L.H. Hall, L.B. Kier, W.J. Murray, Molecular connectivity. II. Relationship to water solubility and boiling point, J. Pharm. Sci. 64 (1975) 1974–1977.
[8] L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, San Francisco, 1976.
[9] L.B. Kier, L.H. Hall, W.J. Murray, M. Randić, Molecular connectivity. I. Relationship to nonspecific local anesthesia, J. Pharm. Sci. 64 (1975) 1971–1974.

[10] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008) 127–156.
[11] X. Li, Y. Shi, Randic index, diameter and average distance, MATCH Commun. Math. Comput. Chem. 64 (2) (2010) 425–431.
[12] X. Li, Y. Shi, L. Wang, An updated survey on the Randić index, Math. Chem. Monogr. (6) (2008) 9–47.
[13] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.


	The Randić index and the diameter of graphs
	Introduction
	Lemmas on vertex deletion and edge deletion
	Proof of main theorem
	Acknowledgements
	References


