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Abstract

Our previous paper [14] applied a lopsided version of the Lovász Lo-
cal Lemma that allows negative dependency graphs [11] to the space of
random injections from an m-element set to an n-element set. (Equiva-
lently, the same story can be told about the space of random matchings in
Kn,m.) In this paper we show how the lopsided version of the Lovász Local
Lemma applies to the space of random matchings in K2n. We also prove
tight upper bounds that asymptotically match the lower bound given by
the Lovász Local Lemma. As a consequence, we give new proofs to a
number of results on the enumeration of permutations, Latin rectangles,
and regular graphs. The strength of the method is shown by a new result:
enumeration of graphs by degree sequence or bipartite degree sequence
and girth. As another application, we provide a new proof to the classical
probabilistic result of Erdős [8] that showed the existence of graphs with
arbitrary large girth and chromatic number. If the degree sequence sat-
isfies some mild conditions, almost all graphs with this degree sequence
and prescribed girth have high chromatic number.

1 Lovász Local Lemma with negative dependency

graphs

This is a sequel to our previous paper [14] and we use the same notations. Let
A1, A2, . . . , An be events in a probability space.

A negative dependency graph forA1, . . . , An is a simple graph on [n] satisfying

Pr(Ai| ∧j∈S Aj) ≤ Pr(Ai), (1)

∗This researcher was supported in part by the NSF DMS contracts Nos. 0701111 and

1000475.
†This researcher was supported in part by the NSF DMS contracts Nos. 0701111 and

1000475, and by the Alexander von Humboldt Foundation at the Rheinische Friedrich-

Wilhelms Universität, Bonn.

1

http://arxiv.org/abs/0905.3983v2


for any index i and any subset S ⊆ {j | ij 6∈ E(G)}, whenever the conditional
probability Pr(Ai | ∧j∈SAj) is well-defined, i.e. Pr(∧j∈SAj) > 0. We will make
use of the fact that inequality (1) trivially holds when Pr(Ai) = 0, otherwise
the following inequality is equivalent to inequality (1):

Pr(∧j∈SAj | Ai) ≤ Pr(∧j∈SAj). (2)

For variants of the Lovász Local Lemma with increasing strength, see [10, 21,
11, 13]:

Lemma 1 [Lovász Local Lemma.] Let A1, . . . , An be events with a negative
dependency graph G. If there exist numbers x1, . . . , xn ∈ [0, 1) such that

Pr(Ai) ≤ xi

∏

ij∈E(G)

(1− xj) (3)

for all i, then

Pr(∧n
i=1Ai) ≥

n
∏

i=1

(1 − xi). (4)

The main obstacle for using Lemma 1 is the difficulty to define a useful
negative dependency graph other than a dependency graph. In [14], we de-
scribed a general way to create negative dependency graphs in the space of
random functions U → V equipped with uniform distribution. Namely, let
the events be the set of all extensions of some particular partial functions to
functions; and create an edge for the negative dependency graph, if the partial
functions have common elements in their domains or ranges, other than the
agreement of the partial functions. These events also can be thought of as all
extensions of (partial) matchings in the complete bipartite graph with classes
U, V , where an edge of the negative dependency graph comes from two event-
defining (partial) matchings whose union is no longer a (partial) matching after
suppressing multiple edges. In [14], we used this technique to prove a new re-
sult on the Turán hypergraph problem, and we found surprising applications as
proving lower bounds (matching certain asymptotic formulas) for permutation
and Latin rectangle enumeration problems.

In this paper, we show an analogous construction of a negative dependency
graph for events, which live in the space of random matchings of a complete
graph. We require that the events are the set of all extensions of (partial)
matchings in a complete graph to perfect matchings, and two event-defining
partial matchings make an edge, if their union is no longer a (partial) matching
after suppressing multiple edges. (Although our construction fails for extensions
of partial matchings of arbitrary graphs, there might be some other graph classes
providing interesting results.)

We move one step further and show some general and some specific upper
bounds for the event estimated by the Lovász Local Lemma, and show that for
large classes of problems the upper bound is asymptotically equal to the lower
bound. These results apply to the permutation enumeration problems in [14],
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and to enumeration problems of regular graphs. Many asymptotic enumeration
results that we prove are not new and typically do not give the largest known
valid range of the asymptotic formula, but are nontrivial results and often more
recent than the Lovász Local Lemma itself. They come out from our framework
elementarily, and even easily.

The strength of the framework is shown by a new result: enumeration of
graphs by degree sequence and girth, under mild condititions for the degree
sequence. We also provide an analogous enumeration result for bipartite degree
sequence and girth.

There is literature on some improvements on the Lovász Local Lemma using
methods of statistical physics, e.g. [20], [18], that we do not touch upon this
paper, as they are difficult to use and the improvement would be tiny, if present
at all, in a resulting asymptotic formula.

In a forthcoming paper we will extend our negative dependency graph con-
struction to matchings in complete r-uniform hypergraphs and will apply this
result to hypergraph enumeration.

As another application, we revisit a classic of the probabilistic method:
Erdős’ proof to the existence of graphs with arbitrary large girth and chro-
matic number [8]. We show that if the degree sequence satisfies some mild
conditions, almost all graphs with this degree sequence and prescribed girth
have high chromatic number.

In a scenario of the Poisson paradigm, we estimate the probability that none
of a set of rare events occur. Let X be the sum of the indicator variables of
these events and µ = E(X). If the dependency among these events is rare,
then one would expect that X has a Poisson distribution with mean µ. In
particular, Pr(X = 0) ≈ e−µ. The Janson inequality and Brun’s sieve method
[1] are often the good choice to solve these kind of problems. Now we offer
an alternative approach—using Lovász Local Lemma. Our approach can be
considered as an analogue of the Janson inequality in another setting that offers
plenty of applications. It is curious that the proof of Boppana and Spencer [5]
for the Janson inequality (see also in [1]) uses conditional probabilities somewhat
similarly to the proof of the Lovász Local Lemma. There is an inherent reason
why we do not get the ”second term” in asymptotic enumeration, like in (37)
or (40), which extends the range of the asymptotic formula: e−µ is between
our lower and upper bounds (see Theorem 5), and therefore we cannot add a
correction term to −µ in the exponent.

For further research, it would be interesting to get asymptotics for further
terms from the Poisson distribution, i.e. for the probability of exactly k events
holding, for any fixed k. Lots of further applications of our framework are
possible, this paper gives just a sampler of applications.
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2 Some general results on negative and near-

positive dependency graphs

These lower and upper bounds are general in the sense that there is no assump-
tion on the events being defined through matchings.

All over this paper, we will be using a useful function, which cannot be
expressed in a closed form. In the following lemma we summarize the properties
that we will need.

Lemma 2 (i) For 0 ≤ γ ≤ 1/4, the equation

1 = ye−γy (5)

has a unique solution in 1 ≤ y ≤ 2, and defines a function y(γ).

(ii) y(γ) = −LambertW(−γ)/γ, where LambertW is the compositional inverse
of xe−x.

(iii) As the Taylor series of LambertW(γ) is convergent for |γ| < 1/e, so does
the Taylor series of y(γ).

(iv) y(γ) is strictly increasing on [0, 1/4].

(v) For γ → 0,

y(γ) = 1 + γ +
3

2
γ2 +

8

3
γ3 +

125

24
γ4 +

54

5
γ5 +O(γ6). (6)

(vi) For 0 ≤ γ ≤ 1/4,

1 + γ +
3

2
γ2 ≤ y(γ) ≤ 1 + γ +

3

2
γ2 + 66γ3. (7)

Proof: (ii) and (iv) can be obtained with Maple. As the RHS of (5) < 1 at
y = 1 and > 1 at y = 2, there is a solution in between for (5). Using implicit
differentiation, y′(γ) > 0 in [0, 1/4], proving (iii) and the uniqueness claim in
(i). Finally, for (v), estimates for y′′′(γ) were obtained with Maple. �

In many applications we have a sequence of problems, where Pr(Ai) and
∑

ij∈E(G) Pr(Aj) are so small that one can set xi =: (1 + o(1))Pr(Ai) to use
Lemma 1.

Theorem 1 Let A1, . . . , An be events with negative dependency graph G. Let
us be given any ǫ with 0 < ǫ < 1/4. If

Pr(Ai) < ǫ and
∑

j:ij∈E(G)

Pr(Aj) + 2Pr2(Aj) < ǫ (8)

for every 1 ≤ i ≤ n, then
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(i) for any S, T ⊆ V (G) with S ∩ T = ∅, we have

Pr(∧i∈SAi | ∧j∈TAj) ≥
∏

i∈S

(

1− Pr(Ai)y(ǫ)
)

; (9)

(ii) in particular, we have

Pr(∧n
i=1Ai) ≥ exp

(

−
n
∑

i=1

Pr(Ai)y(ǫ)−
n
∑

i=1

Pr2(Ai)y
2(ǫ)

)

. (10)

Proof: Set xi = Pr(Ai)y(ǫ). It is clear that 0 ≤ xi < 1/2. Observe that for

0 ≤ x ≤ 1/2 we have 1− x ≥ e−x−x2

. To use Lemma 1, we need the condition
(3). Indeed, Pr(Ai) = xi/y(ǫ) = xie

−ǫy(ǫ) ≤ xi exp
(

−∑j:ij∈E(G)(xj + x2
j )
)

≤
xi

∏

j:ij∈E(G)(1−xj). To prove (i), we recall not the conclusion of Lovász Local

Lemma, but a crucial step in the proof (see [21], [13]): for any T ⊆ V (G) with
i /∈ T , we have Pr(Ai | ∧j∈T ,j 6=iAj) ≤ xi, which in our case yields for any i ∈ S

Pr(Ai | ∧j′∈TAj′ ) ≤ xi = Pr(Ai)y(ǫ).

Assume that S = {m1,m2, ...,ms}. We have

Pr(Am1 ∧ Am2 ∧ .... ∧Ams | ∧j∈TAj) =

s
∏

ℓ=1

[

Pr

(

Amℓ
| Am1 ∧ Am2 ∧ .... ∧ Amℓ−1

∧ (∧j∈TAj)

)

]

=

s
∏

ℓ=1

[

1− Pr

(

Amℓ
| Am1 ∧ Am2 ∧ .... ∧ Amℓ−1

∧ (∧j∈TAj)

)

]

≥
s
∏

ℓ=1

(1 − xmℓ
).

The conclusion of (ii) is implied by (i) with T = ∅ or by Lemma 1: Pr(∧n
i=1Ai) ≥

∏

i(1−xi) =
∏

i

(

1−Pr(Ai)y(ǫ)
)

≥ exp
(

−∑n
i=1 Pr(Ai)y(ǫ)−

∑n
i=1 Pr

2(Ai)y
2(ǫ)

)

.

�

Theorem 1 provided logarithmic asymptotics for the expected Poisson type lower
bound when ǫ → 0 for a sequence of problems and estimations. However, we
want asymptotics, and obtain it with slightly more assumptions:

Corollary 1 Set µ =
∑

i Pr(Ai). If for a sequence of problems ǫµ → 0, then

Pr(∧n
i=1Ai) ≥ (1 − o(1))e−µ. (11)

This holds, in particular, when µ is bounded and ǫ → 0.

We comment here that this result does not allow a good generalization with
different bounds on Pr(Ai) and

∑

j:ij∈E(G) Pr(Aj).
Next we give a crucial new definition. For the events A1, . . . , An in a proba-

bility space Ω, and an ǫ with 1 > ǫ > 0, we define an ǫ-near-positive dependency
graph to be a graph G on V (G) = [n] satisfying
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(i) Pr(Ai ∧ Aj) = 0 if ij ∈ E(G).

(ii) For any index i and any subset i /∈ T ⊆ {j | ij 6∈ E(G)},

Pr(Ai | ∧j∈TAj) ≥ (1− ǫ)Pr(Ai),

whenever the conditional probability is well-defined.

Theorem 2 Let A1, . . . , An be events with an ǫ-near-positive dependency graph
G. Then we have

Pr(∧n
i=1Ai) ≤

n
∏

i=1

[1− (1− ǫ)Pr(Ai)].

Proof: If Pr(∧n
i=1Ai) = 0, then the conclusion holds. So we may assume

without loss of generality that Pr(∧n
i=1Ai) > 0. Now we would like to show that

for any i and any subset S ⊆ V (G) with i /∈ S,

Pr(Ai | ∧j∈SAj) ≥ (1− ǫ)Pr(Ai),

as the conditional probability above is well-defined by our assumption. Write
S = S1 ∪ S2, where S1 = S ∩NG(i) and S2 = S \ S1. We have

Pr(Ai | ∧j∈SAj) =
Pr(Ai ∧ (∧k∈S1Ak) | ∧j∈S2Aj)

Pr(∧k∈S1Ak | ∧j∈S2Aj)

=
Pr(Ai | ∧j∈S2Aj)

Pr(∧k∈S1Ak | ∧j∈S2Aj)

≥ Pr(Ai | ∧j∈S2Aj)

≥ (1− ǫ)Pr(Ai).

(The first part of the definition of the ǫ-near-positive dependency graph, Pr(Ai∧
Aj) = 0 for ij edges, allowed the elimination of the ∧k∈S1Ak term.) Hence, we
have

Pr(∧n
i=1Ai) =

n
∏

i=1

Pr(Ai | ∧n
k=i+1Ak) =

n
∏

i=1

[1− Pr(Ai | ∧n
k=i+1Ak)] ≤

n
∏

i=1

(1− (1 − ǫ)Pr(Ai)). �

3 Instances for negative dependency graphs: The

space of random matchings of KN and KN,N ′

Let Ω denote the probability space of perfect matchings of the complete bipartite
graph KN,N ′ (N ≤ N ′) or the probability space of the complete graph KN for
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an even integer N ; equipped with the uniform distribution. We are going to
apply the Lovász Local Lemma (Lemma 1) in Ω by identifying a class of negative
dependency graphs. For any (not necessary perfect) matching M , let AM be
the set of perfect matchings extending M :

AM = {F ∈ Ω | M ⊆ F}. (12)

We will term an event AM in (12), with M 6= ∅, a canonical event. We will say
that two matchings, M1 and M2, are in conflict, if M1 ∪M2 is not a matching
after suppressing multiple edges. For a matching M , we will denote by supp(M)
the support set of the matching, i.e. the 2|M | vertices that its edges cover. We
leave the following easy lemma to the reader:

Lemma 3 (i)

ω ∈ AM iff ∃e ∈ ω ∃f ∈ M with |e ∩ f | = 1. (13)

(ii) Matchings M1 and M2 are in conflict iff AM1 ∧ AM2 = ∅.

(iii) If the matchings F and M are not in conflict, then

AM\F ⊆ AM and AM ∧ AF = AM\F ∧ AF . (14)

Theorem 3 Let M be a collection of matchings in KN or KN,N ′. The graph
G = G(M) described below is a negative dependency graph for the canonical
events {AM | M ∈ M}:

• V (G) = M,

• E(G) =
{

{M1,M2} | M1 ∈ M and M2 ∈ M are in conflict
}

.

Proof: For complete bipartite graphs we proved this theorem in [14], and there-
fore we have to prove it now for KN . We will prove the theorem by induction
on N . The base case N = 2 is trivial. Throughout this paper, we always as-
sume that the vertex set of KN is [N ] = {1, 2, . . . , N}. There is a canonical
injection from [N ] to [N + s], and consequently from V (KN ) to V (KN+s) and
from E(KN ) to E(KN+s). Through this canonical injection, every matching of
KN can be viewed as a matching of KN+s. (Note that a perfect matching in
KN will not be perfect in KN+s for s > 0.) To emphasize the difference in the
size of the vertex set, we use AN

M to denote the event induced by the matching
M among the matchings of an N -vertex complete graph.

Lemma 4 For any collection M of matchings in KN , we have

Pr(∧M∈MAN
M ) ≤ Pr(∧M∈MAN+2

M ).
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Proof: We partition the space of ΩN+2 into N + 1 sets as follows: for 1 ≤ i ≤
N + 1, let Ci be the set of perfect matchings containing the edge i(N + 2). We
have

Pr(∧M∈MAN+2
M ) =

N+1
∑

i=1

Pr(∧M∈MAN+2
M ∧ Ci).

We observe that Ci ⊆ AN+2
M if and only if M conflicts i(N + 2), a one-edge

matching. Let Bi be the subset of M, whose elements are not in conflict with
the edge i(N + 2). (In particular, BN+1 = M.) We have

∧M∈M AN+2
M ∧ Ci = ∧M∈BiA

N+2
M ∧ Ci.

Let φi be the transposition i ↔ N + 1 acting on the set {1, 2, ..., N + 2}. Note
that φi stabilizes Bi, interchanges Ci and CN+1, and maps ∧M∈BiA

N+2
M ∧ Ci to

∧M∈BiA
N+2
M ∧ CN+1. We have

Pr(∧M∈MAN+2
M ) =

N+1
∑

i=1

Pr(∧M∈MAN+2
M ∧ Ci) (15)

=

N+1
∑

i=1

Pr(∧M∈BiA
N+2
M ∧ Ci)

=

N+1
∑

i=1

Pr(∧M∈BiA
N+2
M ∧ CN+1)

=

N+1
∑

i=1

Pr(∧M∈BiA
N+2
M | CN+1)Pr(CN+1)

=
1

N + 1

N+1
∑

i=1

Pr(∧M∈BiA
N
M ), (16)

and estimating further

≥ (N + 1)Pr(∧M∈MAN
M )

1

N + 1

= Pr(∧M∈MAN
M ).

The proof of Lemma 4 is finished. �

We are back to the proof of Theorem 3: For any fixed matching M ∈ M, and a
subset J ⊆ M satisfying that for every M ′ ∈ J , M ′ is not in conflict with M ,
by (2) it suffices to show that

Pr(∧M ′∈JAM ′ | AM ) ≤ Pr(∧M ′∈JAM ′). (17)

Let J ′ = {M ′ \M | M ′ ∈ J }. Assume first that ∅ /∈ J ′. Since every matching
M ′ in J is not in conflict with M , the vertex set V (M ′ \ M) of M ′ \ M is
disjoint from the vertex set V (M) of M . Let T = V (M) be the set of vertices
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covered by the matching M and U be the set of vertices covered by at least
one matching F ∈ J ′. We have T ∩ U = ∅. Let π be a permutation of [N ]
mapping T to {N − |T | + 1, N − |T | + 2, . . . , N}. We have π(U) ∩ π(T ) = ∅.
Thus, π(U) ⊆ [N − |T |]. Let π(J ′) = {π(F ) | F ∈ J ′} and F ′ = π(F ). Each
matching in π(J ′) is a matching in KN−|T |. We obtain (17) using Lemma 4
repeatedly:

Pr(∧M ′∈JAM ′ | AM ) =
Pr(∧M ′∈JAM ′ ∧ AM )

Pr(AM )

=
Pr(∧M ′∈JAM ′\M ∧AM )

Pr(AM )
by Lemma 3

=
Pr(∧F∈J ′AF ∧AM )

Pr(AM )

= Pr(∧F∈J ′AF | AM )

= Pr(∧F ′∈π(J ′)A
N
F ′ | Aπ(M))

= Pr(∧F ′∈π(J ′)A
N−|T |
F ′ )

≤ Pr(∧F ′∈π(J ′)A
N
F ′) by Lemma 4

= Pr(∧F∈J ′AN
F )

= Pr(∧M ′∈JAN
M ′\M )

≤ Pr(∧M ′∈JAN
M ′ ).

If ∅ ∈ J ′, then the LHS of the estimate above is zero, and therefore we have
nothing to do. �

The following example shows that in Theorem 3 one cannot have an arbitrary
graph in the place ofKN orKN,N ′. ConsiderG = C6, this graph has two perfect
matchings. Let e and f denote two opposite edges of C6. Consider the following
two partial matchings: {e} and {f}. We have Pr(A{e}) = Pr(A{f}) = 1/2.
However, we have

Pr(A{e} | A{f}) =
Pr(A{e} ∧A{f})

Pr(A{f})
6≤ Pr(A{e}).

Next, we prove a partial converse of Lemma 4.

Lemma 5 Consider a collection M of matchings in KN , so that their canonical
events satisfy condition (8) for an ǫ < 1/4, and in addition, for any uv ∈ E(KN )

∑

M :uv∈M∈M

Pr(AM ) + 2Pr2(AM ) < ǫ. (18)

Then we have
Pr(∧M∈MAN+2

M ) ≤ y2(ǫ)Pr(∧M∈MAN
M ).

9



Proof: Partition ΩN+2, introduce Ci and Bi as in the proof of Lemma 4, and
use the fact derived there between (15) and (16) that

Pr(∧M∈MAN+2
M ) =

1

N + 1

N+1
∑

i=1

Pr(∧M∈BiA
N
M ). (19)

We are going to apply Theorem 1 part (i) with S = M\Bi and T = Bi. T = Bi

contains those matchings form M, whose support do not contain i, while S
contains those matchings whose support do contain i. We are going to show

Pr(∧M∈MAN
M )

Pr(∧M∈BiA
N
M )

= Pr(∧M∈M\Bi
AN

M | ∧M∈BiA
N
M ) ≥ y(ǫ)−2. (20)

We have from (9)

Pr(∧M∈M\Bi
AN

M | ∧M∈BiA
N
M ) ≥

∏

M∈M:i∈supp(M)

(

1− Pr(AM )y(ǫ)
)

. (21)

If the product in (21) is empty, then we have nothing to prove. If there are
u 6= v such that iu ∈ M1 and iv ∈ M2, then {M ∈ M|i ∈ supp(M)} ⊆
NG(M1)∪NG(M2), and the RHS of (21) has a lower bound of

∏

M∈NG(M1)

(

1−
Pr(AM )y(ǫ)

)

∏

M∈NG(M2)

(

1−Pr(AM )y(ǫ)
)

≥ e−2ǫy(ǫ) = y(ǫ)−2, like in the proof

of Theorem 1(ii). If there is an ij edge, such that i ∈ supp(M) for M ∈ M
implies ij ∈ M , then condition (18) gives a lower bound of y(ǫ)−1 in a similar
way for the RHS of (21). We have from (19) and the estimate above:

Pr(∧M∈MAN+2
M ) =

1

N + 1

N+1
∑

i=1

Pr(∧M∈BiA
N
M )

≤ 1

N + 1

N+1
∑

i=1

Pr(∧M∈MAN
M )y2(ǫ)

= y2(ǫ)Pr(∧M∈MAN
M ).

The proof of Lemma 5 is finished. �

4 Upper bounds in the matching models

Now we consider Ω, the uniform probability space of perfect matchings in KN

(N even) or KN,N ′ (with N ≤ N ′). Let M be a collection of partial matchings.
For any F ∈ M, let

MF = {M \ F | M ∈ M,M 6= F,M ∩ F 6= ∅, F is not in conflict to M}.

We say that a matching M is δ-sparse if

10



1. No matching from M is a subset of another matching from M.

2. M satisfies (8) and (18) with δ instead of ǫ.

3. For any F ∈ M,

∑

H:H∈MF

PrN−2|F |(AH) + PrN−2|F |(AH)2 < δ, (22)

where PrN−2|F | indicates that vertices of F has been removed from the
underlying vertex set [N ] when creating Ω.

For a positive integer r, we say that M is r-bounded, if for all M ∈ M, |M | ≤ r.
The main result of this section is the following theorem.

Theorem 4 Let M be a collection of matchings in KN or KN,N ′. If M is
δ-sparse and r-bounded, then the negative dependency graph is also an ǫ-near-
positive dependency graph with

ǫ = 1− e−δy(2δ)−δ2y2(2δ)y−2r(2δ) (23)

and therefore

Pr(∧M∈MAM ) ≤
∏

M∈M

(

1− Pr(AM )e−δy(2δ)−δ2y2(2δ)y−2r(2δ)

)

. (24)

We are going to prove Theorem 4 for KN , and leave the proof for KN,N ′, which
requires only negligible changes, to the Reader.
Proof of Theorem 4: We are going to show that the negative dependency
graphG defined for matchings ofKN inM is also an ǫ-near-positive dependency
graph with ǫ as in (23); and then Theorem 2 together with (23) will finish the
proof of (24) and Theorem 4. The first part of the definition, Pr(Ai ∧Aj) = 0
for ij edges comes for free. We focus on the second part.

For any F ∈ M and a subset S ⊆ NG(F ), we need to prove

Pr(AF | ∧M∈SAM ) ≥ (1 − ǫ)Pr(AF ),

or equivalently,

Pr(∧M∈SAM | AF ) ≥ (1 − ǫ)Pr(∧M∈SAM ).

Let SF = {M \ F | M ∈ S}. Observe that ∅ /∈ SF . Note that

Pr(∧M∈SAM | AF ) =
Pr(∧M∈SAM ∧AF )

Pr(AF )
(25)

=
Pr(∧M∈SAM\F ∧AF )

Pr(AF )

= Pr(∧M∈SF AM | AF ). (26)

11



We have

Pr(∧M∈SF AM | AF ) = Pr(∧M∈SF A
N−2i
M ) (27)

= Pr(∧M∈SF A
N
M )

|F |
∏

j=1

Pr(∧M∈SF A
N−2j
M )

Pr(∧M∈SF A
N−2j+2
M )

(by Lemma 5) ≥ Pr(∧M∈SF A
N
M )

|F |−1
∏

ℓ=0

y−2(2δ)

≥ Pr(∧M∈SF A
N
M )y−2r(2δ). (28)

(Note that condition (18) is implied by assumption 3.) For any M , which does
not conflict to F , we have AM\F ⊂ AM . We have with SF = {M \ F | M ∈ S}
that

Pr(∧M∈SF A
N
M )

Pr(∧M∈SAN
M )

=
Pr(∧M∈SAN

M\F )

Pr(∧M∈SAN
M )

(29)

=
Pr(∧M∈SAN

M\F ∧ AN
M )

Pr(∧M∈SAN
M )

=
Pr([∧M∈S,M∩F 6=∅A

N
M\F ] ∧ [∧M∈SAN

M ])

Pr(∧M∈SAN
M )

= Pr(∧M∈SF \SA
N
M | ∧M∈SAN

M ). (30)

Note that SF \ S = SF by assumption 1. Now apply Theorem 1 part (i) to SF ,
S and S ∪ SF instead of S, T and M:

Pr
(

∧M∈SF A
N
M | ∧M∈SAN

M

)

≥
∏

M∈SF

(

1− Pr(AN
M )y(2δ)

)

≥ exp
(

−
∑

M∈SF

Pr(AN
M )y(2δ)−

∑

M∈SF

Pr(AN
M )2y2(2δ)

)

≥ e−δy(2δ)−δ2y2(2δ). (31)

Finally, we have

Pr(∧M∈SAM | AF )

by (25-26) = Pr(∧M∈SF AM | AF )

by (27-28) ≥ Pr(∧M∈SF A
N
M )y−2r(2δ)

by (29-30) = Pr(∧M∈SAN
M )Pr(∧M∈S′\SA

N
M | ∧M∈SAN

M )y−2r(2δ)

by (31) ≥ Pr(∧M∈SAN
M )e−δy(2δ)−δ2y2(2δ)y−2r(2δ).

Thus, the negative dependency graph G is also a ǫ-positive dependency graph.
The proof is finished by Theorem 2. �
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Theorem 1 provides a lower bound on Pr(∧M∈MAM ) while Theorem 4 pro-
vides an upper bound on Pr(∧M∈MAM ). Under proper conditions, the com-
bination of the two theorems give asymptotics for Pr(∧M∈MAM ), like in the
following theorem.

Theorem 5 Let Ω be the uniform probability space of perfect matchings in KN

(N even) or KN,N ′ (with N ≤ N ′). Let r = r(N) be a positive integer and
1/16 > ǫ = ǫ(N) > 0 as N approaches the infinity. Let M = M(N) be a
collection of matchings in KN or KN,N ′, respectively, such that none of these
matchings is a subset of another. For any M ∈ M, let AM be the event con-
sisting of perfect matchings extending M . Set µ = µ(N) =

∑

M∈M Pr(AM ).
Suppose that M satisfies

1. |M | ≤ r, for each M ∈ M.

2. Pr(AM ) < ǫ for each M ∈ M.

3.
∑

M ′:AM′∩AM=∅ Pr(AM ′) < ǫ for each M ∈ M.

4.
∑

M :uv∈M∈M Pr(AM ) < ǫ for each single edge uv.

5.
∑

H∈MF
PrN−2r(AH) < ǫ for each F ∈ M.

Then we have
Pr(∧M∈MAM ) = e−µ+O(rǫµ), (32)

furthermore, if rǫµ = o(1), then

Pr(∧M∈MAM ) =
(

1 +O(rǫµ)
)

e−µ. (33)

Proof: Let G be the graph defined in Theorem 3. By Theorem 3, the graph G
is a negative dependency graph for the family of canonical events {AM}M∈M.
Note that the condition (8) in Theorem 1 is satisfied with 2ǫ, where ǫ is from
the conditions of Theorem 5, instead of ǫ. Applying Theorem 3, we have

Pr(∧M∈MAM ) ≥ exp

(

−
∑

M∈M

Pr(AM )y(2ǫ)−
∑

M∈M

Pr2(AM )y2(2ǫ)

)

> exp

(

−
∑

M∈M

Pr(AM )y(2ǫ)−
∑

M∈M

Pr(AM )ǫy2(2ǫ)

)

= exp
(

−µ
(

1 + 3ǫ+O(ǫ2)
)

)

.

Now we consider the upper bound. Note that M is 2ǫ-sparse and r-bounded.
By Theorem 4, we have

Pr(∧M∈MAM ) ≤
∏

M∈M

(

1− Pr(AM )e−2ǫy(4ǫ)−(2ǫ)2y2(4ǫ)y−2r(4ǫ)
)

≤ exp

(

−
∑

M∈M

Pr(AM )e−2ǫy(4ǫ)−(2ǫ)2y2(4ǫ)y−2r(4ǫ)

)

= exp
(

−µ
(

1− (8r + 2)ǫ+O(rǫ2)
)

)

.
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Combining the lower bound and the upper bound above, we obtain equation
(32). �

5 Asymptotic results in the matching models

5.1 Applications I: Counting k-cycle free permutations and

Latin rectangles

It is known and easy that for any fixed k, the probability of a random permuta-
tion not having any k-cycle is asymptotically e−1/k, see [25] or [6]. In our earlier
paper, [14], we obtained an (1−o(1))e−1/k lower bound for this probability from
Lovász Local Lemma. Now we show that the machinery that we developed in
this paper actually yields the very same asymptotic formula whenever k = o(N).

Let us be given twoN -element sets with elements {1, 2, ..., N} and {1′, 2′, ..., N ′}.
Let us identify a permutation of the first set, π, with a matching between the two
sets, such that i is joined to π(i)′. A k-cycle in the permutation can be identified
with a matching between K ⊂ {1, 2, ..., N} (with |K| = k) and {ℓ′ : ℓ ∈ K},
which does not have a proper non-empty subsetK1 ⊂ K, such that the matching
also matches K1 to {ℓ′ : ℓ ∈ K1}. The bad events for the negative dependency
graph are these k-element matchings; there are

(

N
k

)

(k − 1)! of them. We have

|M| =
(

N
k

)

(k − 1)!. For each M ∈ M, we have Pr(AM ) = 1

(Nk)k!
. Two match-

ings, M,M ′ ∈ M, M 6= M ′, conflict each other if and only if the two cycles
have non-empty intersection, i.e. have common elements.

Let r = k and ǫ = k
N−k+1 . Now we will verify the conditions of Theorem 5.

Items 1 and 2 are satisfied by our choice of r and ǫ. For item 3, we have

∑

M ′:AM′∩AM=∅

Pr(AM ′ ) =

((

N

k

)

(k − 1)!−
(

N − k

k

)

(k − 1)!

)

1
(

N
k

)

k!

=
1

k

(

1−
k
∏

i=1

N − k − i+ 1

N − i+ 1

)

=
1

k

(

1−
k
∏

i=1

(

1− k

N − i+ 1

)

)

<
1

k

k
∑

i=1

k

N − i+ 1
≤ k

N − k + 1
= ǫ. (34)

Now we verify item 4. For any uv ∈ M ∈ M, a k-matching M contains a given
edge uv, if and only if v = π(u)′ for some k-cycle permutation π. The number
of such k-cycles is

(

N
k−2

)

(k − 2)!. We have

∑

M :uv∈M∈M

Pr(AM ) =

(

N

k − 2

)

(k − 2)!
1

(

N
k

)

k!

=
1

(N − k + 2)(N − k + 1)
< ǫ.
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For any F ∈ M, now MF is empty in our special setting, hence item 5 holds
trivially. All conditions of Theorem 5 are verified. Observe

µ =
∑

M∈M

Pr(AM ) =

(

N

k

)

(k − 1)!
1

(

N
k

)

k!
=

1

k
. (35)

Therefore Theorem 5 applies, and the number of k-cycle-free permutations is
(1 + O(k/N))e−1/k. [25] goes further than this, and gives asymptotic formula
for the number of permutations without cycles of length r or less, for fixed r.
Simple generating function arguments would not allow k (or r) to be variables.
However, our method allows the following result, which perhaps first occured in
[2]:

Theorem 6 Let us be given a K ⊂ {1, 2, ..., N} and set r = maxK. Assume
that

R = r2
(

∑

k∈K

1

k

)(

∑

k∈K

1

N − k + 1

)

→ 0.

Then, the probability that a random permutation of N elements do not contain

any cycle, whose length belongs to K, is
(

1 +O(R)
)

exp
(

−
∑

k∈K

1

k

)

.

Proof: The proof above goes through with minor modifications. Set ǫ =
r
∑

k∈K
1

N−k+1 , change (35) to µ =
∑

k∈K

(

N
k

)

(k − 1)! 1

(Nk)k!
=
∑

k∈K
1
k , and

for a matching M corresponding to an ℓ-cycle, change (34) for the estima-

tion of
∑

M ′:AM′∩AM=∅ Pr(AM ′ ) to
∑

k∈K

(

(

N
k

)

(k − 1)!−
(

N−k
k

)

(k − 1)!
)

1

(Nk)k!

=
∑

k∈K
1
k

(

1−∏k
i=1

N−ℓ−i+1
N−i+1

)

=
∑

k∈K
1
k

(

1−∏k
i=1

(

1− ℓ
N−i+1

))

<
∑

k∈K
1
k

∑k
i=1

ℓ
N−i+1 ≤∑k∈K

ℓ
N−k+1 ≤ ǫ. �

Let us turn now to the enumeration of Latin rectangles. A k × n Latin
rectangle is a sequence of k permutations of {1, 2, ..., n}written in a matrix form,
such that no column has any repeated entries. Let L(k, n) denote the number
of k × n Latin rectangles. L(2, n) is just n! times the number of derangements,
i.e. (n!)2e−1. In 1944, Riordan [19] showed that L(3, n) ∼ (n!)3e−3. In 1946,
Erdős and Kaplansky [9] showed

L(k, n) ∼ (n!)ke−(
k
2) (36)

for k = o((log n)3/2. In 1951, Yamamoto [24] extended this asymptotic formula
for k = o(n1/3). In 1978, Stein [23] refined the asymptotic formula to

L(k, n) ∼ (n!)ke−(
k
2)−

k3

6n (37)

using the Chen-Stein method [7], and extended the range to k = o(n1/2). The
current best asymptotic formula is due to Godsil and McKay [12], whose further

refined formula, L(k, n) ∼ (n!)k
(

(n)k
nk

)n(

1− k
n

)−n/2

e−k/2 works for k = o(n6/7).
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Formula (37) has had an unexpected proof by Skau [22], who proved, for any
1 ≤ k ≤ n, the inequality

(n!)k
k−1
∏

t=1

(

1− t

n

)n

≤ L(k, n) (38)

from the van der Waerden inequality for the permanent. If k = o((n/ logn)1/2),
the lower bound in (38) is asymptotically the same as the RHS of (37). Skau’s
asymptotically tight upper bound [22] followed from Minc’s inequality for the
permanent.

In [14] we claimed (38) from the Lovász Local Lemma in error. However, our
method still gives back Yamamoto’s range for (36). Fix an arbitrary t×n Latin
rectangle with rows π1, π2, ..., πt. Consider a complete bipartite graph with
classes {1, 2, ..., n} an {1′, 2′, ..., n′}, and let Ω be the space of perfect matchings
in this complete bipartite graph. Permutation πt+1 of {1, 2, ..., n} are in one-
to-one correspondence with perfect matchings by (πt+1(j), j

′) : 1 ≤ j ≤ n.
Permutation πt+1 fails to extend the given Latin rectangle into a (t + 1) × n
Latin rectangle iff there are i, j such that πi(j) = πt+1(j). Therefore a perfect
matching provides a legal (t + 1)th row for the Latin rectangle iff it does not
contain any of the edges (πi(j), j

′) : 1 ≤ j ≤ n, 1 ≤ i ≤ t. Define the event Aij as
the canonical event in Ω corresponding to the one-edge matching (πi(j), j

′). Let
G be the a negative dependency graph for the family of events Aij , according
to Theorem 3. G is (t − 1)-regular. We can apply Theorem 5 with 1. r = 1,
2. 1/n < ǫ, 3. 2(t − 1)/n < ǫ, 4. like 2., and condition 5. holds vacuously;

µ = 1
n · (nt) = t. Hence #πt+1/n! = exp

(

−t+O
(

t2

n

)

)

by (32), and L(k, n) =

∏k−1
t=0 n! exp

(

−t+O
(

t2

n

)

)

= (n!)k exp

(

−
(

k
2

)

+O
(

k3

n

)

)

.

5.2 Applications II: The configuration model and the enu-

meration of d-regular graphs

For a given sequence of positive integers with an even sum, d = (d1, d2, . . . , dn),
the configuration model of random multigraphs with degree sequence d is defined
as follows [4].
1. Let us be given a set U that contains N =

∑n
i=1 di distinct mini-vertices.

Let U be partitioned into n classes such that the ith class consists of di mini-
vertices. This ith class will be associated with vertex vi after identifying its
elements through a projection.
2. Choose a random matching M of the mini-vertices in U uniformly.
3. Define a random multigraph G associated with M as follows: For any
two (not necessarily distinct) vertices vi and vj , the number of edges joining vi
and vj in G is equal to the total number of edges in M between mini-vertices
associated with vi and mini-vertices associated with vj .
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The configuration model of random d-regular graphs on n vertices is the
instance d1 = d2 = · · · = dn, where nd is even.

The enumeration problem of labelled d-regular graphs has a rich history in
the literature. The first result was Bender and Canfield [3], who showed in 1978
that for any fixed d, with nd even, the number of them is

(
√
2 + o(1)

)

e
1−d2

4

(

ddnd

ed(d!)2

)
n
2

.

The same result was discovered at the same time by Wormald. In 1980, Bol-
lobás [4] introduced probability to this enumeration problem by defining the
configuration model, and put the result in the alternative form

(1 + o(1))e
1−d2

4
(dn− 1)!!

(d!)n
. (39)

where the term (1 + o(1))e
1−d2

4 in (39) can be explained as the probability of
obtaining a simple graph after the projection. The semifactorial (dn − 1)!! =

(dn)!

(dn/2)!2dn/2 equals the number of perfect matchings on dn elements, and 1
(d!)n

is just the number of ways matchings can yield the same simple graph after
projection. Bollobás also extended the range of the asymptotic formula to d <√
2 logn, which was further extended to d = o(n1/3) by McKay [15] in 1985.

The strongest result is due to McKay and Wormald [16] in 1991, who refined
the probability of obtaining a simple graph after the projection to

(1 + o(1))e
1−d2

4 − d3

12n+O( d2

n ) (40)

and extended the range of the asymptotic formula to d = o(n1/2). Wormald’s
Theorem 2.12 in [27] (originally published in [26]) asserts that for any fixed
numbers d ≥ 3 and g ≥ 3, the number of labelled d-regular graphs with girth
at least g, is

(1 + o(1))e−
∑g−1

i=1
(d−1)i

2i
(dn− 1)!!

(d!)n
. (41)

In our theorem below, we allow both d and g go to infinity slowly. If we set g = 3,
we get back the asymptotic formula for the number of d-regular graphs up to
d = o(n1/3), giving an alternative proof to McKay’s result cited above. However,
our method inherently fail to extend this result as McKay and Wormald did,
in fact, our method already fails to extend the lower bound. McKay, Wormald
and Wysocka [17] proved the same theorem below under a slightly weaker as-
sumption d2g−3 = o(n):

Theorem 7 In the configuration model, assume d ≥ 3 and

g6d2g−3 = o(n). (42)
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Then the probability that the random d-regular multigraph has girth at least g ≥ 1

is (1 + o(1)) exp
(

−∑g−1
i=1

(d−1)i

2i

)

, and hence the number of d-regular graphs on

n vertices with girth at least g ≥ 3 is

(1 + o(1))e−
∑g−1

i=1
(d−1)i

2i
(dn− 1)!!

(d!)n
.

(The case g = 3 means that the random d-regular multigraph is actually a sim-
ple graph.) Furthermore, the number of d-regular graphs not containing cycles
whose length is in a set C ⊆ {3, 4, ..., g − 1}, is

(1 + o(1))e−
d−1
2 −

(d−1)2

4 −
∑

i∈C

(d−1)i

2i
(dn− 1)!!

(d!)n
.

Proof: We prove the first claim. To prove the second claim, only (44) has to be
adjusted, everything else remains the same. For i = 1, 2, . . . , g−1, let Mi be the
set of matchings of U whose projection gives a cycle of length i; there are exactly
1
2i

(

n
i

)

i!di(d−1)i of them. The bad events for the negative dependency graph are

the union of matchings M = ∪g−1
i=1Mi. For each Mi ∈ Mi (i = 1, 2, . . . , g − 1),

we have

Pr(AMi ) =
1

(nd− 1)(nd− 3) · · · (nd− 2i+ 1)
. (43)

We have

∑

M∈M

Pr(AM ) =

g−1
∑

i=1

1

2i

(

n

i

)

i!di(d− 1)i
1

(nd− 1)(nd− 3) · · · (nd− 2i+ 1)

=

g−1
∑

i=1

(d− 1)i

2i

(

1 +O

(

i2

n

))

=

(

1 +O

(

g2

n

)) g−1
∑

i=1

(d− 1)i

2i
.

(44)

Let r = g − 1 and ǫ = K′g5(d−1)g−2

n for a large constant K ′. Now we verify
the conditions of Theorem 5. Item 1 and 2 are trivial by the definition of r and
ǫ. Item 3 can be verified as follows. For M ∈ M1, we have

∑

M ′:AM′∩AM=∅

Pr(AM ′ ) =
2d− 4

nd− 1
+

g−1
∑

i=2

∑

M ′∈Mi:AM′∩AM=∅

Pr(AM ′)

≤ 2d− 4

nd− 1
+

g−1
∑

i=2

(

n
i−1

)

(i− 1)!2(d− 1)idi−1

(nd− 1)(nd− 3) · · · (nd− 2i+ 1)

≤ 2d− 4

nd− 1
+

g−1
∑

i=2

4(d− 1)i

(nd− 1)

< ǫ. (45)
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For M ∈ Mj (j 6= 1), we have

∑

M ′:AM′∩AM=∅

Pr(AM ′ ) =
j(2d− 1)

nd− 1
+

g−1
∑

i=2

∑

M ′∈Mi:AM′∩AM=∅

Pr(AM ′ )

≤ (2d− 1)j

nd− 1
+ j

g−1
∑

i=2

(

n
i−2

)

(i − 2)!2(d− 1)i−1di−2

(nd− 1)(nd− 3) · · · (nd− 2i+ 1)

<
(2d− 3)(g − 1)

nd− 1
+ (g − 1)

g−1
∑

i=2

4(d− 1)i−1

(nd− 2g + 3)2

< ǫ. (46)

Now we verify item 4. For any uv ∈ M ∈ M, we have

∑

M :uv∈M∈M

AM ≤ 1

nd− 1
+

g−1
∑

i=2

(

n
i−2

)

(i− 2)!(d− 1)idi−2

(nd− 1)(nd− 3) · · · (nd− 2i+ 1)

<
1

nd− 1
+

g−1
∑

i=2

4(d− 1)i

(nd− 2g + 3)2

< ǫ/2. (47)

Finally, we verify item 5. For any F ∈ M, we need estimate
∑

M∈MF
PrN−2r(AM ).

If the projection of F is a loop, then MF = ∅ and there is nothing to do. Now
we assume the projection of F is a cycle Ck. Assume that M ′ ∈ M intersects
F , M = M ′ \F , and the projection of M ′ is a cycle Cs with k, s ≤ g− 1. Then
the components of Cs ∩ Ck having at least one edge are paths P1, P2, . . . , Pt,
with t ≥ 1. Fixing these paths, and the edges in M ′ ∩ F , some additional ℓ
vertices are joined with these t paths to make Cs. So the number of possible
Cs’s with these fixed paths is at most

∑

ℓ≤g−1−2t

(

n

ℓ

)

(ℓ + t− 1)!2t,

and the number of M ′-s defining this particular Cs with M ′ ∩ F fixed, is at
most dℓ(d − 1)ℓ+2t. The t paths with at least one edge can be selected in at
most 2

(

k
2t

)

ways from Ck. The probability PrN−2r(AM ), where M = M ′ \F , is

at most (N − 3g)−(ℓ+t). We summarize that

∑

M∈MF

Pr(AM ) ≤
⌊k/2⌋
∑

t=1

2

(

k

2t

)

∑

ℓ≤g−1−2t

(

n

ℓ

)

(ℓ+ t− 1)!2t
dℓ(d− 1)ℓ+2t

(N − 3g)ℓ+t
. (48)

As ℓ+ t− 1 ≤ g− 3, we have (ℓ+ t− 1)! = ℓ!(ℓ+ t− 1)t−1 ≤ ℓ!(g− 3)t−1. There

is an absolute upper bound K > (n)ℓd
ℓ

(N−3g)ℓ
. As ℓ + 2t ≤ g − 1, the RHS of (48)
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can be further estimated by

2K(d−1)g−1
∑

t

(

k

2t

)

∑

ℓ≤g−1−2t

(

2(g − 3)

N − 3g

)t

≤ 2Kg(d−1)g−1
∑

t

(

k

2t

)

(

2(g − 3)

N − 3g

)t

.

It is easy to see that the last summation has its largest term at t = 1, has less
than g terms, and is ≤ 4Kg5(d− 1)g−1/(N − 3g) < ǫ.

To apply Theorem 5, we need rµǫ = o(1). As r < g, µ ≤ (d − 1)g−1/2 and

ǫ = K′g5(d−1)g−2

n , this condition boils down to g6(d− 1)2g−3 = o(n), which was
provided in (42). The neglection of error in (44) is also allowed by (42). �

In the bipartite configuration model we have two sets, U and V , each con-
taining N mini-vertices, a fixed partition of U into d1, ..., dn element classes,
and a fixed partition of V into δ1, ..., δn element classes. Any perfect match-
ing between U and V defines a bipartite multigraph with partite sets of size
n after a projection contracts every class to single vertex. In the regular case,
d1 = · · · = dn = δ1 = · · · = δn = d. We prove next another theorem of McKay,
Wormald and Wysocka [17]:

Theorem 8 In the regular case of the bipartite configuration model, assume
that g is even, d ≥ 3, and

g6d2g−3 = o(n). (49)

Then the probability that the random bipartite d-regular multigraph has girth

at least g ≥ 2 is (1 + o(1)) exp
(

−∑(g−2)/2
i=1

(d−1)2i

2i

)

, and hence the number of

d-regular biparite graphs on n, n vertices with girth at least g ≥ 4 is

(1 + o(1))e−
∑(g−2)/2

i=1
(d−1)2i

2i
(dn)!

(d!)2n
.

(The case g = 4 means that the random d-regular bipartite multigraph is actually
a simple bipartite graph.) Furthermore, the number of d-regular bipartite graphs
not containing cycles whose length is in a set C ⊆ {4, 6, ..., g − 2}, is

(1 + o(1))e−
(d−1)2

2 −
∑

i∈C

(d−1)i

i
(dn)!

(d!)2n
.

Proof: We outline the proof of the first claim. For i = 1, 2, . . . , (g − 2)/2, let
Mi be the set of matchings of U and V , whose projection gives a cycle of length

2i; there are exactly
(

n
i

)2
d2i(d − 1)2i(i − 1)!2i of them. The bad events for the

negative dependency graph are the union of matchings M = ∪(g−2)/2
i=1 Mi. For

each Mi ∈ Mi (i = 1, 2, . . . , (g − 2)/2), we have

Pr(AMi) =
(dn− 2i)!

(dn)!
. (50)
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We have

∑

M∈M

Pr(AM ) =

(g−2)/2
∑

i=1

(

n

i

)2

d2i(d− 1)2i(i− 1)!2i
(dn− 2i)!

(dn)!

=

(g−2)/2
∑

i=1

(d− 1)2i

2i

(

1 +O

(

i2

n

))

=

(

1 +O

(

g2

n

)) (g−2)/2
∑

i=1

(d− 1)2i

2i
.

(51)

All the estimates go through as in the proof of Theorem 7. To prove the second
claim, only (51) has to be adjusted, everything else remains the same. �

5.3 Applications III: Enumeration of graphs by girth and

degree sequence

McKay and Wormald [16] enumerated graphs by degree sequences. We extend
this result to include the girth or the set of allowed short cycle lengths. However,
our range for the degrees is not as broad as in [16]. For example, formula (40)
that we could not obtain is a special case of [16].

We start with some technicalities. Let σ
(k)
n (x1, ..., xn) denote the kth ele-

mentary symmetric polynomial in n variables. Assume that every xi > 0 and
set average x̄ = (

∑n
i=1 xi)/n and the second order average x̃ = (

∑n
i=1 x

2
i )/x̄.

We claim the following:

nk

(n)k

(

1−
(

k

2

)

nx̃

x̄

)

≤ σ
(k)
n (x1, ..., xn)

σ
(k)
n (x̄, ..., x̄)

≤ nk

(n)k
. (52)

Formula (52) follows from the following inequalities:

(a) σ
(k)
n (x1, ..., xn) ≤ (x1 + ...+ xn)

k/k!, and

(b) in the expansion of (x1 + ... + xn)
k −

(

k
2

)

(
∑k

i=1 x
2
i )(x1 + ... + xn)

k−2 all
terms that contain a square or higher power of a variable, have non-positive
coefficients. It follows that

σ(k)
n (x1, ..., xn) =

(n)k(x̄)
k

k!

(

1 +O
(k2

n
+ k2

x̃

x̄

)

)

, (53)

whenever the quantity in the O-term goes to zero. Assume further that x1 ≤
x2 ≤ ... ≤ xn. Define a sequence by yi = xt+i for i = 1, 2, ..., n − t. It is

easy to see that for t = o(n) and k2 x̃
x̄ = o(1) we have ȳ =

(

1 + O
(

t
n

)

)

x̄ and

ỹ =

(

1 +O
(

t
n

)

)

x̃. From here and (53) we conclude

σ
(k)
n−t(y1, ..., yn−t) =

(n)k(x̄)
k

k!

(

1 +O
(k2 + kt

n
+ k2

x̃

x̄

)

)

. (54)
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Let us return to the configuration model as described at the beginning of
Subsection 5.2 and try to do in more generality the steps of the proof of The-
orem 7. The combinatorial structures are the same, but different class sizes
have to be taken into account. Assume now that d1 ≤ d2 ≤ ... ≤ dn and
set Dj = dj(dj − 1). If the projection provides a graph with degree sequence
d1, d2, ..., dn (as opposed to a multigraph), then exactly d1!d2! · · · dn! matchings
on the set of N = d1 + ... + dn mini-vertices yield this graph. We want to
compute the probability that after the projection we obtain a graph with girth
at least g (g ≥ 3). For i = 1, 2, . . . , g − 1, let Mi be the set of matchings of U

whose projection gives a cycle of length i; there are exactly (i−1)!
2 σ

(i)
n

(

D1, ..., Dn

)

of them. The bad events for the negative dependency graph are the union of
matchings M = ∪g−1

i=1Mi. For each Mi ∈ Mi (i = 1, 2, . . . , g − 1), we have

Pr(AMi ) =
1

(N − 1)(N − 3) · · · (N − 2i+ 1)
, (55)

where N = nd̄. We have

∑

M∈M

Pr(AM ) =

g−1
∑

i=1

(i− 1)!

2
· σ

(i)
n

(

D1, ..., Dn

)

(N − 1)(N − 3) · · · (N − 2i+ 1)

=

g−1
∑

i=1

(n)i(D̄)i

2i(N − 1)(N − 3) · · · (N − 2i+ 1)

(

1 +O
( i2

n
+ i2

D̃

D̄

)

)

.

(56)

The estimate in (45) changes to

2dn − 4

nd̄− 1
+

g−1
∑

i=2

(i− 1)!2(d1 − 1)σ
(i−1)
n−1 (D2, ..., Dn)

(nd̄− 1)(nd̄− 3) · · · (nd̄− 2i+ 1)
. (57)

The estimate in (46) changes to

(2dn − 1)j

nd̄− 1
+ j

g−1
∑

i=2

(i− 2)!2(d2 − 1)σ
(i−2)
n−2 (D3, ..., Dn)

(nd̄− 1)(nd̄− 3) · · · (nd̄− 2i+ 1)
. (58)

The estimate in (47) changes to

1

nd̄− 1
+

g−1
∑

i=2

(d1 − 1)(d2 − 1)σ
(i−2)
n−2 (D3, ..., Dn)

(nd̄− 1)(nd̄− 3) · · · (nd̄− 2i+ 1)
. (59)

The estimate in (48) changes to

⌊k/2⌋
∑

t=1

2

(

k

2t

)

∑

ℓ≤g−1−2t

(ℓ+ t− 1)!2t(dn − 1)2tσ
(ℓ)
n−2t(D2t+1, ..., Dn)

(N − 3g)ℓ+t

≤
⌊k/2⌋
∑

t=1

2

(

k

2t

)

∑

ℓ≤g−1−2t

[

4(g − 3)(dn − 1)2

N − 3g

]t(

D̄

d̄

)ℓ
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and as the ℓth power is maximized at ℓ = g− 1− 2t, and the sum is maximized

at t = 1, our bound is ǫ = Kg5
(

D̄
d̄

)g−3 (dn−1)2

N−3g for some constant K. This ǫ also

provides a bound for (59), (58), and (57). The least trivial is the last one, it

follows from the boundedness of d1D̄
d̄(dn−1)2

. We are in a position to claim to the

generalization of Theorem 7 for other than constant degree sequences:

Theorem 9 Assume that N = d1+ ...+dn is even, d̄ ≥ 3, every di ≥ 1. In the
configuration model, assume

g2
D̃

D̄

(D̄

d̄

)g−1

= o(1) and g6
( D̄

d̄

)2g−4

d2n = o(N). (60)

Then the probability that the random multigraph with degrees d1, d2, ..., dn after
the projection has girth at least g ≥ 1 is

(1 + o(1)) exp
(

−
g−1
∑

i=1

(n)i(D̄)i(N − 2i− 1)!!

2i(N − 1)!!

)

, (61)

and hence the number of graphs on n vertices with degrees d1, d2, ..., dn and girth
at least g ≥ 3 is

(1 + o(1))
(N − 1)!!
∏

i di!
exp

(

−
g−1
∑

i=1

(n)i(D̄)i(N − 2i− 1)!!

2i(N − 1)!!

)

.

(The case g = 3 means that the random multigraph is actually a simple graph,
and hence d1, d2, ..., dn is a graph degree sequence.) Furthermore, the number of
graphs with degrees d1, d2, ..., dn not containing cycles whose length is in a set
C ⊆ {3, 4, ..., g − 1}, is

(1+o(1))
(N − 1)!!
∏

i di!
exp

(

− nD̄

2(N − 1)
− n(n− 1)(D̄)2

4(N − 1)(N − 3)
−
∑

i∈C

(n)i(D̄)i(N − 2i− 1)!!

2i(N − 1)!!

)

.

Proof: We proved the first claim before stating the theorem. The proof of the
second claim is analogous except the calculation of µ. It is easy to see that

µ = O
(

D̄
d̄

)g−1

, therefore (60) implies rǫµ = o(1) as required in the condition

above (33). Note that the first part of (60) allows the approximation in (56). �
It is not difficult to obtain a degree sequence version of Theorem 8. As the

proof is just a combination of the proofs of Theorems 8 and 9, we leave the
details to the reader.

Theorem 10 In the bipartite configuration model, assume that g is even, the
class sizes are 1 ≤ d1 ≤ · · · ≤ dn and 1 ≤ δ1 ≤ · · · ≤ δn, N =

∑

i di =
∑

i δi,
d̄ = δ̄ ≥ 3, Dj = dj(dj − 1) and ∆j = δj(δj − 1). Assume further that

g2
(D̃

D̄
+

∆̃

δ̄

)(D̄ · ∆̄
d̄ · δ̄

)(g−2)/2

= o(1) and g6(d2n + δ2n)
( D̄

d̄

)g−3(∆̄

δ̄

)g−3

= o(N).

(62)
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Then the probability that the random bipartite multigraph with the prescribed
degree sequence has girth at least g ≥ 2 is

(1 + o(1)) exp
(

−
(g−2)/2
∑

i=1

(n)2i (D̄)i(∆̄)i

2i(N)2i

)

,

and hence the number of bipartite graphs with the prescribed degree sequence and
girth at least g ≥ 4 is

(1 + o(1))
N !

∏

i di!δi!
exp
(

−
(g−2)/2
∑

i=1

(n)2i (D̄)i(∆̄)i

2i(N)2i

)

.

(The case g = 4 means that the random bipartite multigraph with the given
degree sequence is actually a simple bipartite graph, and hence given sequence is
a bipartite graph degree sequence.) Furthermore, the number of bipartite graphs
with the prescribed degree sequence that do not contain cycles whose length is in
a set C ⊆ {4, 6, ..., g − 2}, is

(1 + o(1))
N !

∏

i di!δi!
exp
(

− n2D̄∆̄

2N(N − 1)
−
∑

i∈C

(n)2i (D̄)i(∆̄)i

2i(N)2i

)

.

6 Revisiting girth and chromatic number: high

girth and high chromatic number graphs on a

given degree sequence

An early result of Erdős [8] asserts that for every k and g, there is a graph G
with girth(G) ≥ g and chromatic number χ(G) ≥ k. In Theorem 11 we refine
this result of Erdős, changing the existential quantifier to universal.

We start with some technicalities. Let N be an even positive integer. For
a set S ⊂ [N ], we say that a perfect matching M of KN traverses S, if every
edge in M is incident to at most one vertex in S, in other words no edge has
two endpoints in S.

Lemma 6 For a fixed set S of size s, the probability that S is traversed, equals
to

2s
(N

2
s

)

(

N
s

) .

Proof: Clearly the probability in question does not depend on the choice of S,
just depends on the cardinality s. Therefore the probability does not change if
we average it out for all s-subsets, and hence it is

#(S,M) : perfect matching M traverses S

(N − 1)!!
(

N
s

) .
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Count now in the ordered pairs in the numerator as follows: for all (N − 1)!!
perfect matchings, decide which s edges of the N/2 edges of the perfect matching
have endpoint in S, and for those s edges decide which endpoint out of the two
possibilities will belong to S. �

Lemma 7 Assume that ln2 N
N1/3 ≤ x ≤ 1

4 and xN → ∞. For any fixed set S of
size xN , the probability that S is traversed is

e−N x2

2 +O(Nx3),

where O() refers to xN → ∞.

Proof: From the Stirling formula

N ! =

(

√
2πN +O(N− 1

2 )

)

NN

eN

one easily obtains
(

N

xN

)

=
1 +O( 1

xN )
√

2πx(1 − x)N
eN ·H(x).

Here H(x) = −x lnx − (1 − x) ln(1 − x) denotes the binary entropy function.
Also,

( N
2

xN

)

=
1 +O( 1

xN )
√

2πx(1− 2x)N
e

1
2N ·H(2x),

and finally we have

2xN
( N

2
xN

)

(

N
xN

) =

(

1 +O(
1

xN
)

)2xN 1√
2πx(1−2x)N

e
1
2N ·H(2x)

1√
2πx(1−x)N

eN ·H(x)

=

(

1 +O(
1

xN
)

)

√

1− x

1− 2x
eN( 1

2H(2x)−H(x)+x ln 2)

=

(

1 +O(
1

xN
)

)

√

1− x

1− 2x
e−N

(

(1/2−x) ln(1−2x)−(1−x) ln(1−x)
)

= e−Nx2/2+O(x3N),

where the last inequality follows from x = Ω( ln
2 N

N1/3 ). �

Theorem 11 Consider the configuration model as in Theorem 9. Assume (60),

d̄ ≥ 3, k < 1
2

√

d̄
log 2 , and assume further that N

8k2 −
(

D̄
d̄

)g−1

goes to infinity.

Then almost all graphs with degree sequence d1, ..., dn and girth at least g ≥ 4
are not k-colourable.
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Specializing to regular graphs, we get back the existence of graphs of high chro-
matic number and high girth, roughly in the same range where Erdős [8] ob-
tained it.
Proof. Recall that (61) gave the probability that the multigraph resulting from
the configuration model has girth at least g. Because of the g ≥ 4 assumption,
the probability that a resulting graph has girth at least g is at least as much as
(61).

Now we set an upper bound on the probability that G is k-colorable. For a
subset A of V (G), let the volume of A be

∑

v∈A dG(v). If G is k-colorable, then

G contains an independent set of volume at least 2N
k . By Lemma 7, at x = 2/k,

the probability of this event is at most

2n exp

(

−2N

k2
+O

(N

k3

)

)

= exp

(

(

− 2

k2
− log 2

d̄
+O

( 1

k3
)

)

N

)

. (63)

Computing the difference of the exponents in (63) and in (61) we are at home.
�
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