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Abstract. The small world phenomenon, that consistently occurs in numerous exist-
ing networks, refers to two similar but different properties — small average distance
and the clustering effect. We consider a hybrid graph model that incorporates both
properties by combining a global graph and a local graph. The global graph is modeled
by a random graph with a power law degree distribution, while the local graph has
specified local connectivity. We will prove that the hybrid graph has average distance
and diameter close to that of random graphs with the same degree distribution (under
certain mild conditions). We also give a simple decomposition algorithm which, for
any given (real) graph, identifies the global edges and extracts the local graph (which
is uniquely determined depending only on the local connectivity). We can then apply
our theoretical results for analyzing real graphs, provided the parameters of the hybrid
model can be appropriately chosen.

1 Introduction

In 1967, the psychologist Stanley Milgram [1] conducted a series of experiments
which led him to the well known concept captured by the phrase “Six degrees
of separation”. Namely, any two strangers (on the planet) are connected by a
short chain of intermediate acquaintances of length at most six. Since then, it
has been observed that many realistic networks possess the so-called small world
phenomenon, with two distinguishing traits —small distance between any pair
of nodes, and the clustering effect that two nodes are more likely to be adjacent
if they share a neighbor.

There have been various approaches to model networks that have the small
world phenomenon. Progress has been made in analyzing the aspect of small
distances by using generalized random graph theory and properties of the power
law distribution. However, the clustering effect seems much harder to model.

In 1999, several research groups independently observed that numerous net-
works such as the Internet graphs, call graphs and social networks, etc. all have
a power law distribution [2–15]. Namely, the number of nodes of degree k is pro-
portional to k−β for some positive exponent β. By using a random graph model
for a given degree distribution, it can be shown [16] in a rigorous way that,
for example, a random power law graph with exponent β, where 2 < β < 3,
almost surely has average distance of order log logn and has diameter of order
log n. (Note that the average distance is the average of distances between pairs
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of nodes that are connected and the diameter is the maximum distance between
such pairs of nodes.)

To model the clustering effect, most common approaches just add random
edges to grid graphs or the like (see Watts and Strogatz [17,18]). Kleinberg [19]
introduced the network model of a grid graph with additional random edges
joining two nodes u, v with probability proportional to [d(u, v)]−r (where d(., .)
represents the distance in the grid graph and r is a constant that determines the
effectiveness of decentralized algorithms for the network). In Kleinberg’s model
and the model of Watts and Strogatz, the graphs have the same expected de-
gree at every node and do not have a power law degree distribution. Fabrikant,
Koutsoupias and Paradimitriou [20] proposed a model of having vertices in the
Euclidean plane and adding edges by optimizing the trade-off between (Eu-
clidean) distances and “centrality” in the network. Such grid-based models are
quite restrictive and far from satisfactory for modeling webgraphs or biological
networks, for example.

The difficulty in reconciling these two aspects – small distance and clustering
effect– resembles philosophically the challenge in physical world concerning the
“weak force” and the “strong force”. There is no unified model embracing both
the weak and strong forces in spite of intense efforts of many great scientists.
Random power law graphs are good for modeling the aspect of small distance,
but fail miserably for modeling the clustering effect. As a matter of fact, the
related graph-theoretical parameters involving small distances and clustering
seem to be of an entirely different scale. For example, the clustering effect is quite
sensitive to average degree but this is not so for the small (average) distance.
Examples of real graphs tell the same story. According to Henzinger [21] at
Google, random graphs are good for modeling interdomain hyperlinks but not
the local links.

In this paper, we consider a general hybrid graph model that has both aspects
of the small world phenomenon. Roughly speaking, a hybrid graph is a union
of a global graph (consisting of “long edges” providing small distances) and a
local graph (consisting of “short edges” respecting local connections). (Detailed
definitions will be given in Sect. 2.) By using several tools for dealing with
random graphs with given expected degree sequences, we will prove that our
hybrid graphs have the following properties:

1. Power law degree distribution for a given power β.
2. Small average distance at the same order as that of random graphs.
3. Small diameter at the same order as that of random graphs.
4. Locally highly connected.

We will show that the average distance/diameter is bounded above by c log n
where c depends on the “second-order” average degree (which will be defined
later). Consequently, this implies a polylog upper bound for analyzing many
distributed algorithms if the network can be well approximated by this general
family of hybrid power law graphs.
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Motivated by the hybrid graph model, we will give a simple decomposition
algorithm. For any real network, the decomposition algorithm identifies the local
graph and the global graph. We can then use our theorems to deduce properties
of the real network if the local graph satisfies local connectivity conditions and
the global graph can be approximated by a random power law graph.

This paper is organized as follows. In Sect. 2, we give basic definitions for
power law graphs and random graphs. In Sect. 3, we consider local graphs and
give the decomposition algorithm. In Sect. 4, we propose the hybrid graph model
by combining a local graph and a random power law graph. We also show that
the local graph can be extracted from the hybrid graph with an error estimate
of lower order. In Sect. 5, we describe several useful facts about random graphs
with given expected degrees. In particular, we summarize some facts concerning
the average distance and diameter of random power law graphs. In Sect. 6, we es-
tablish the desired upper bounds for average distance/diameter for hybrid power
law graphs. Section 7 includes further discussions and a number of remarks.

2 Preliminaries

Before we consider the hybrid graphs, we will discuss random graphs with given
expected degree sequences and power law degree distribution.

2.1 Random Graphs with Given Expected Degrees

We consider a general class of random graphs with given expected degree se-
quence w = (w1, w2, . . . , wn). The probability pij that there is an edge between
vertex vi and vertex vj is wiwjρ for any index i and index j. Here we choose
ρ to be (

∑
wi)−1 and we assume that maxi w2

i <
∑
k wk so that pij ≤ 1 for

all i and j. It is then easy to check that the vertex vi has expected degree wi.
We remark that the assumption maxi w2

i <
∑
k wk implies that the sequence wi

is graphical (in the sense that it satisfies the necessary and sufficient condition
for a sequence to be realized by a graph [22]) except that we do not require
the wi’s to be integers. We note that this model allows a non-zero probability
for self-loops. The expected number of loops is quite small (of lower order) in
comparison with the total number of edges. Consequently, loops have little effect
on various graph properties such as average distance, clusterness, etc.

We denote a random graph with a given expected degree sequence w by
G(w). For example, the typical random graph G(n, p) (see [23]) on n ver-
tices and edge density p is just a random graph with expected degree sequence
(pn, pn, . . . , pn). The random graph G(w) is different from the random graphs
with a prescribed exact degree sequence (which involve dependency and are hard
to analyze). For example, in [24,25], Molloy and Reed obtained results on the
sizes of connected components for random graphs with prescribed exact degree
sequences which are required to satisfy certain “smoothing” conditions. Our
model is also different from the evolution models generated by simple growth
rules (such as preferential attachment schemes as in [3,5,26,9] ).
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2.2 Power Law Degree Distribution

If a graph strictly follows the power law, then the average degree as well as its
connectivity (i.e., the distribution of connected components) will be completely
determined by the exponent of the power law (see [3]). However, for most realistic
graphs, the power law holds only for a certain range of degrees, namely, for the
degrees which not too small and not too large. We will consider the following
model with the consideration that most examples of massive graphs satisfying
power law have exponent β > 2.
Model M(n, β, d,m) where
• n is the number of vertices,
• β > 2 is the power of the power law,
• d is the expected average degree,
• m is the expected maximum degree (or an upper bound for the range of

degrees that obey the power law) and m2 = o(nd).

We assume that the i− i0 + 1-th vertex vi has expected degree

wi = ci−
1

β−1

for i0 ≤ i < n+i0. Here c depends on the average degree d and i0 depends on the
maximum expected degree m. It is easy to compute that the number of vertices
of expected degree between k and k+1 is of order c′k−β where c′ = cβ−1(β− 1)
as required by the power law. To determine c, we consider

Vol(G) =
∑

i

wi =
n∑

i=i0

ci−
1

β−1 ≈ cβ − 1
β − 2

n1− 1
β−1

Here we assume β > 2. Since nd ≈ Vol(G), we have

c =
β − 2
β − 1

dn
1

β−1 (1)

i0 = n

(
d(β − 2)
m(β − 1)

)β−1

(2)

Here (2) is deduced from the (cut-off) condition wi0 = m and (1).
Let f(x) = β−2

β−1dx
− 1

β−1 . The expected degrees (or weights) are just f( in ),
i0 ≤ i ≤ n.

We will also consider an alternative model M ′(n, β, d,m), in which each ver-
tex x is assigned a weight f(y), where y is a real number chosen uniformly in
the range of (i0, n). It can be easily shown that two models are equivalent (for
i0 � n ) in the sense that a property that holds for a random graph inM almost
surely must hold for M ′ and vice versa.

2.3 The Volume and the Second-Order Average Degree

For a subset S of vertices, the k-th volume of S, denoted by Volk(S), is the sum
of the k-th power of weights of vertices in S.



The Small World Phenomenon in Hybrid Power Law Graphs 93

Volk(S) =
∑

vi∈S
wki

The expected average degree is defined to be

Vol1(G)
Vol0(G)

=
1
n

∑

i

wi = d(1 + o(1)).

We write Vol(G) = Vol1(G). Of particular interest is the second-order average
degree d̃ defined by

d̃ =
Vol2(G)
Vol1(G)

=
∑
i w

2
i∑

i wi
.

For power law graphs with exponent β, we have [16]

d̃ =
Vol2(G)
Vol1(G)

=






d (β−2)2

(β−1)(β−3) (1 + o(1)) if β > 3.
1
4d lnm(1 + o(1)). if β = 3.
d (β−2)2

(β−1)(3−β)m
3−β(1 + o(1)) if 2 < β < 3.

3 Local Graphs

Roughly speaking, a local graph is locally highly connected. To be precise, here
we use two parameters to describe the local connectivity. For any fixed two
integers k ≥ 2 and l ≥ 2, a graph L is called “locally (k, l)-connected” if for
any edge uv, there are at least l edge-disjoint paths (i.e, no two paths share a
common edge) with length at most k joining from u to v (including the edge
uv). For example, the grid graph Cn�Cn is locally (3, 3)-connected as well as
locally (5, 9)-connected.

By the definition, the union of two locally (k, l)-connected graphs is lo-
cally (k, l)-connected. The maximum locally (k, l)-connected subgraph H is the
union of all locally (k, l)-connected subgraphs of G. Thus, for any graph G, the
maximum locally (k, l)-connected subgraph is unique. We remark that a (k, l)-
connected graph is not necessarily connected. For example, the disjoint union of
two (k, l)-connected graphs is still (k, l)-connected.

Here is a simple greedy algorithm for finding the maximum locally (k, l)-
connected subgraph.

Algorithm(k, l):
For each edge e = uv, check whether there are l edge-disjoint paths with length
at most k connecting u and v in the current graph G. If not, delete the edge e
from G. Then iterate the procedure until no edge can be removed.

Theorem 1. For any graph G, Algorithm(k, l) finds the unique maximum locally
(k, l)-connected subgraph regardless of the order of edges chosen.
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Fig. 1. A hybrid graph, which contains
the grid graph C50�C50 as the local graph,
and 528 additional random edges.

Fig. 2. After removing all global edges
(with k = l = 3), the local graph is almost
perfectly recovered.

Proof. Let H ′ be a graph produced by the Algorithm(k, l) where the order that
edges are removed is arbitrary. It is sufficient to show H = H ′.

Let G = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hr = H ′ be the sequence of the inter-
mediate subgraphs produced by Algorithm(k, l). We will prove H ⊂ Hi for all
i = 0, 1, 2, . . . , r by induction on i. It is trivial for i = 0 since H ⊂ H0 = G. Now
we assume H ⊂ Hi. For i + 1, let ei+1 = uv be the edge being removed at the
(i+ 1)-st stage. It is sufficient to show uv is not an edge of H. Otherwise, there
are l edge-disjoint paths of H joining from u to v. Since H ⊂ Hi, these paths
are also paths of Hi. According to the algorithm, it can not be removed, which
is a contradiction. Thus, we have H ⊂ Hi+1 and H ⊂ Hr = H ′.

In the other direction, since H ′ is locally (k, l)-connected, we have H ′ ⊂ H.
H is the maximum subgraph with this property. The proof is complete. �

The edges removed are considered the “global” edges. For certain classes of
graphs, the local graph can be almost perfectly recovered as shown by Figs. 1
and 2.

Another example is the Collaboration Graph of the second kind with 237,426
vertices (as authors of Math Review) and about 226,194 edges (each of which is
associated with a paper with exactly two coauthors), (see
http://www.oakland.edu/∼grossman/erdoshp.html for detailed explanations).
The local graph L (with k = l = 3) has 1979 vertices and 4221 edges. Their
degree distributions are showed by Figs. 3, 4 and 5.
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Fig. 3. The degree distribution of the Collaboration Graph of the second kind.
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Fig. 4. The degree distribution of the lo-
cal graph of the Collaboration Graph of
the second kind (with k = l = 3) .

Fig. 5. The degree distribution of the
global graph of the Collaboration Graph
of the second kind.

4 The Hybrid Power Law Model

A hybrid graph consists of two parts – a global graph and a local graph. The
edge set of the hybrid graph is a disjoint union of the edge set of the global graph
and that of the local graph. The related parameters include:
β, the power law exponent,
d, the average degree,
m, the expected maximum degree (or an upper bound for the range of degrees
that obey the power law), and
L, the local graph.

We remark that for a given network, all these parameters are straightforward
to compute and estimate. Therefore it is quite easy to build a simulation for a
network with given parameters.

The hybrid graph H(n, β, d,m,L):
The local graph L is a locally (k, l)-connected graph with bounded degrees.
The vertex vi of H has weight wi where w1, w2, . . . , wn satisfy a power law
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distribution with power β > 2 using the model M ′(n, β, d,m) in the Sect. 2.2.
We also assume that d ≥ 1.

For any two points u and v, the probability of having an edge between u and
v is denoted by p(u, v), defined as follows:

p(u, v) =
{

1 if uv is an edge of L;
wuwvρ otherwise.

We will see that the local graph is quite robust in the sense that it can be
almost completely recovered from the hybrid graph.

Theorem 2. For any fixed constants M , k ≥ 2, and l ≥ 3, suppose L is a locally
(k, l)-connected graph with degrees bounded by M . Let L′ be the maximum locally
(k, l)-connected subgraph in the hybrid graph H(n, β, d,m,L) with m = o(n

1
2 − 1

l ).
Then L′ satisfies

1. L ⊂ L′. The expected number of edges in L′ \L is small, i.e., e(L′)− e(L) =
O(m) = o(

√
n).

2. The degree of L′ is almost surely bounded above by M + � l2� − 1.
3. The diameter D(L′) of L′ is almost surely (1 + o(1))D(L) if the diameter
D(L) is sufficiently large.

Proof. From the definitions, we have L ⊂ L′. Thus, D(L′) ≤ D(L). In the
other direction, we consider edges in L′ but not in L, which we call the surviving
edges. We call the distance of two vertices in L the local distance, denoted by
dL. The neighborhood of a vertex in L is said to be a local neighborhood. A i-th
local neighborhood of v consists of all vertices within local distance i from v. We
will prove the following:

Claim. Almost surely all surviving edges uv have endpoints with local distance
dL(u, v) at most k.

For any vertices u and v, if dL(u, v) > k, any path of length at most k in L′

from u to v must contain at least one surviving edge. Since this edge uv survives
after the algorithm terminates, there exist at least l edge-disjoint edges in L′

from the i-th local neighborhood of u to the j-th local neighborhood of v with
some i + j = k − 1. Since the local degrees are bounded by M , the number of
vertices in the i-th local neighborhood of u is at most

i∑

s=0

Ms =
M i+1

M − 1
≤ 2M i.

Similarly, the number of vertices in the j-th local neighborhood of u is at most
2M j . There are at most 2M i × 2M j = 4Mk−1 pairs of such vertices. For each
pair, the probability of being randomly chosen for the hybrid graph is less than
m2ρ. Thus, the probability that uv survives is at most

(
4Mk−1

l

)
(m2ρ)l = o

(
1
n2

)
.
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Therefore, almost surely, all surviving edges have endpoints with local distance
at most k.

Now we consider the expected number of surviving edges, which almost surely
have endpoints within local distance at most k. We choose a vertex u. There are
at most 2Mk vertices with local distance at most k from u. The expected number
of surviving edge uv with dL(u, v) ≤ k is at most

∑
u 2Mkwumρ = 2Mkm. Form

large, the number of surviving random edges is well-concentrated on its expected
value.

For any fixed u, we examine the number of surviving edges uv which are
incident to u. Since almost surely v is within local distance k from u, there are
at most 2Mk of possible v’s. The probability that there are at least � l2� v’s with
uv surviving is at most

(
2Mk

� l2�
)

(m2ρ)� l
2 � = o

(
1
n

)
.

Thus, almost surely the degree of L′ is at most M + � l2� − 1.
Let g(n) be a (very) slowly growing function of n, which approaches infinity

as n increases. There are at most 4M2g(n) pairs of vertices within local distance
g(n) from any given vertex u. The probability that l surviving edges are within
local distance g(n) from any given vertex u is at most

(
4M2g(n)

l

)
(m2ρ)l = o

(
1
n2

)
,

for some slowly growing function g(n) = o(log n
1
2 − 1

l

m ). Almost surely, for all
vertex u, there are at most l − 1 surviving edges with local distance at most k
from u.

Let (u, v) be a pair of vertices with dL(u, v) = D(L). The distance between u
and v in the hybrid graph can be reduced (from the local distance of u and v) by
surviving edges. Each surviving edge can reduce the distance from u to v by at
most k− 1. The total number of surviving edges which can be used on the path
from u to v is at most l

g(n) = o(1). Hence dL′(u, v) ≥ (1− kl
g(n) )dL(u, v) = (1−

o(1))D(L). Thus, the diameter D(L′) is at least (1− o(1))D(L). This completes
the proof of Theorem 2 �

5 Several Facts Concerning Random Power Law Graphs

In this section we state several useful facts for random power law graphs G(w)
with given expected degree sequence w. Proofs of these facts can be found in
[16].

The expected degree sequence w for a graph G on n vertices in G(w) is said
to be strongly sparse if we have the following :
(i) The second order average degree d̃ satisfies 0 < log d̃� log n.
(ii) For some constant c > 0, all but o(n) vertices have expected degree wi
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satisfying wi ≥ c. The average expected degree d =
∑
i wi/n is strictly greater

than 1, i.e., d > 1 + ε for some positive value ε independent of n.
The expected degree sequence w for a graph G on n vertices in G(w) is said

to be admissible if the following condition holds, in addition to the assumption
that w is strongly sparse.
(iii) There is a subset U satisfying:

Vol2(U) = (1 + o(1))Vol2(G) 
 Vol3(U) log d̃ log log n
d̃ log n

.

The expected degree sequence w for a graph G on n vertices is said to be
specially admissible if (i) is replaced by (i’) and (iii) is replaced by (iii’):
(i’) log d̃ = O(log d).
(iii’) There is a subset U satisfying Vol3(U) = O(Vol2(G)) d̃

log d̃
, and Vol2(U) >

dVol2(G)/d̃.

Fact 1. For a random graph G with admissible expected degree sequence
(w1, . . . , wn), the average distance is almost surely (1 + o(1)) log n

log d̃
.

Fact 2. For a random graph G with a specially admissible degree sequence
(w1, . . . , wn), the diameter is almost surely Θ(log n/ log d̃).

Fact 3. For a power law random graph with exponent β > 3 and average degree
d strictly greater than 1, almost surely the average distance is (1+o(1)) log n

log d̃
and

the diameter is Θ(log n).

Fact 4. Suppose a power law random graph with exponent β has average degree d
strictly greater than 1 and maximum degree m satisfying logm
 log n/ log log n.
If 2 < β < 3, almost surely the diameter is Θ(log n) and the average distance is
at most (2 + o(1)) log log n

log(1/(β−2)) .
For the case of β = 3, the power law random graph has diameter almost

surely Θ(log n) and has average distance Θ(log n/ log log n).

The proofs of the above facts use the following lemmas concerning the dis-
tances and neighborhood expansions in G(w). These lemmas (as proved in [27])
are useful later for proving the main theorems in the next section.

Lemma 1. In a random graph G in G(w) with a given expected degree sequence
w = (w1, . . . , wn), for any fixed pairs of vertices (u, v), the distance d(u, v) be-
tween u and v is greater than

⌊
log Vol(G)−c

log d̃

⌋
with probability at least 1− wuwv

d̃(d̃−1)
e−c.

Lemma 2. In a random graph G ∈ G(w), for any two subsets S and T of
vertices, we have

Vol(Γ (S) ∩ T ) ≥ (1− 2ε)Vol(S)
Vol2(T )
Vol(G)

with probability at least 1 − e−c where Γ (S) = {v : v ∼ u ∈ S and v �∈ S},
provided Vol(S) satisfies
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2cVol3(T )Vol(G)
ε2Vol22(T )

≤ Vol(S) ≤ εVol2(T )Vol(G)
Vol3(T )

(3)

Lemma 3. For any two disjoint subsets S and T with Vol(S)Vol(T ) > cVol(G),
we have

Pr(d(S, T ) > 1) < e−c

where d(S, T ) denotes the distance between S and T .

6 The Diameter of the Hybrid Model

Most local graphs have large diameters and large average distances. For example,
the average distance of the grid graph on n vertices is O(

√
n

log n ). However, with

additional “hyperlinks”, (e.g., edges from the global random power law graph),
the average distance of the hybrid graph can be significantly reduced.

In a hybrid graph H, let G denote its global power law graph as defined in
Sect. 4. Let w = (w1, w2, . . . , wm) denote the degree sequence of G. We will
say that vertex vi has weight wi and we recall that for a subset S of vertices,
we have Vol(S) =

∑
vi∈S wi and Vol(G) =

∑
wi. Also for k ≥ 1, we have

Volk(S) =
∑
vi∈S w

k
i . In particular, the second order average degree d̃ is just

Vol2(G)/Vol(G). The following are immediate consequences of Fact 3 and Fact 4.

Theorem 3. For a hybrid graph H(n, β, d,m,L) with β > 3, almost surely, the
average distance is (1 + o(1)) log n

log d̃
and the diameter is O(log n).

Theorem 4. For a hybrid graph H(n, β, d,m,L) with 2 < β < 3, almost surely,
the average distance is O(log log n) and the diameter is O(log n).

For a hybrid graph H(n, β, d,m,L) with β = 3, almost surely, the average
distance is O(log n/ log log n) and the diameter is O(log n).

For the range of 2 < β < 3, the power law graphs include many real networks.
We can further reduce the diameter if additional conditions are satisfied. A local
graph L is said to have isoperimetric dimension δ if for every vertex v in L and
every integer k < (log log n)1/δ, there are at least kδ vertices in L of distance k
from v. For example, the grid graph in the plane has isoperimetric dimension 2.
The d-dimensional grid graph has isoperimetric dimension d.

Theorem 5. In a hybrid graph H(n, β, d,m,L) with 2 < β < 3, suppose that
the local graph has isoperimetric dimension δ with δ ≥ log log n/(log log logn).
Then almost surely, the diameter is O(log log n).

The main idea of the proof of Theorem 5 is to use the “octopus” structure
of the random powerlaw graph with exponent β between 2 and 3. The proof is
quite similar to that in [16] except that here we have the additional help from
the local graph. For the sake of completeness, we include the proof here.



100 F. Chung and L. Lu

Proof of Theorem 5.
First, we define the core of a power law graph with exponent β to be the set St
of vertices of degree at least t = n1/ log log n.

Claim 1. The diameter of the core is almost surely O(log log n). This follows
from the fact that the core contains an Erdős-Renyi graph G(n′, p) with n′ =
cnt1−β and p = t2/Vol(G). From [23], this subgraph is almost surely connected.
Using a result in [28], the diameter of this subgraph is at most log n′

log pn′ = (1 +
o(1)) logn

(3−β) log t = O(log log n).

Claim 2. Almost all vertices with degree at least log n are almost surely within
distance O(log log n) from the core. To see this, we start with a vertex u0 with
degree k0 ≥ logC n for some constant C = 1.1

(β−2)(3−β) . By applying Lemma 3,
with probability at least 1 − n−3, u0 is a neighbor of some u1 with degree
k1 ≥ (k0/ logC n)1/(β−2)s

. We then repeat this process to find a path with vertices
u0, u1, . . . , us, and the degree ks of us satisfies ks ≥ (k0/ logC n)1/(β−2)s

with
probability 1 − n−2. By choosing s to satisfy log ks ≥ log n/ log log n, we are
done.

Claim 3. Each vertex v is within distance O(log log n) from a vertex of degree
at least logC n.

Proof of Claim 3. The main tools are Lemma 2. Let S be i-th neighborhood of
u, consisting of all vertices within distance i0 from u where i0 = log log n. Let
T = S(wmin, a) denote the set of vertices with weights between wmin and awmin.
Here a is some large value to be chosen later. We have

Vol(T ) ≈ nd(1− a2−β).

Vol2(T ) ≈ nd2
(

1− 1
β − 1

)2
β − 1
3− β a

3−β

Vol3(T ) ≈ nd3
(

1− 1
β − 1

)3
β − 1
4− β a

4−β

To apply Lemma 2, Vol(Γ (S)) must satisfy:

Vol(Γ (S)) ≥ 2c
ε2

Vol3(T )
Vol22(T )

Vol(G)

≈ 2c
ε2

(3− β)2

(β − 2)(4− β)
aβ−2

and

Vol(Γ (S)) ≤ εVol2(T )
Vol3(T )

Vol(G)

≈ ε (β − 2)(3− β)
(β − 1)(4− β)a

n.
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Both the above equations are easy to satisfy by using the assumption on the
local graph. Namely, we can select a = 10, c = 3 log n and for each vertex u,

Vol(Γi0(u)) ≥
60

ε2(β − 2)
log n.

By Lemma 2, with probability at least 1− e−c = 1− 1
n3 , the volume of Γi(u) for

i > i0 will grow at a rate greater than

(1− 2ε)
Vol2(T )
Vol(G)

≈ (1− 2ε)d(β − 2)2

2(β − 1)(3− β)
a3−β ,

if Γi(u) has volume not too large (<
√
n). After at most (1 + o(1)) 2 loglogn

(3−β) log a =
O(log log n) steps, the volume of the reachable vertices is at least log2 n. Lemma
3 then implies that with one additional step we can reach a vertex of weight
logC n with probability at least 1−e− log2 n The total number of steps is at most

i0 +O(log log n) + 1 = O(loglogn).

The total failure probability for u to reach a vertex of weight at least logC n is
at most

O(log log n)
1
n3 + e−O(log2 n) = o

(
1
n2

)
.

Thus, the total failure probability that some vertex u can not reach a vertex of
weight at least logC n is at most

o(1) +O(log log n)O
(

1
n

)
+ ne−O(log2 n) = o(1).

Claim 3 is proved. �
This completes the proof of Theorem 5. �
The proof of the above theorem implicitly implies the following results:

Theorem 6. In a hybrid graph H(n, β, d,m,L) with 2 < β < 3, suppose that
the local graph has isoperimetric dimension δ. Then almost surely, the diameter
is O((log n)1/δ).

Theorem 7. In a hybrid graph H(n, β, d,m,L) with 2 < β < 3, suppose that
every vertex is within distance log log n of some vertex of degree log n. Then
almost surely, the diameter is O(log log n).

7 Concluding Remarks

In this paper, we consider the hybrid model for further understanding the “land-
scape” of real networks. Here we mention a number of remarks concerning the
flexibility and possible extensions of our model.
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Fig. 6. The distribution of the sizes of lo-
cal communities in the local graph (with
k = l = 3) of the Collaboration Graph of
the second kind.

Fig. 7. A “community” of size 87 in the
Collaboration Graph of the second kind.

1. In our hybrid model, the global graph was chosen to be a random graph with
given degree distribution satisfying a power law. If the global graph is to be
taken to be an admissible graph or specially admissible graph (as defined in
Sect. 5), similar results on average distance and diameter can be established
by using methods in the the proofs of Theorem 5. There are several reasons
for selecting the global graph to be a power law graph. Namely, many real
networks have power law degree distribution. In addition, random power law
graph G has the “scale-free” property [29] in the sense that if a fraction of
vertices or edges are deleted from G, the remaining graph is still a power
law graph with the same exponent (but with different average degree).

2. It is of interest to further analyze the local graphs for various classes of net-
works. In addition to local connectivity, are there other distinct properties
that local graphs have? One such example is the isoperimetric dimension
(as defined in Sect. 6) or its variations. Different types of networks (Inter-
net graphs versus biological graphs, and so on) can have different kinds of
local graphs. Are there good characterizations for different local graphs? In
particular, are there special characterizations for local graphs for networks
arising in epidemics and percolation?

3. The local graph in our hybrid model is a (k, l)-connected graph, with param-
eters k and l which can be chosen to suit the actual network under consider-
ation. We note that (k, l)-connected graphs include the grid graphs, disjoint
union of grid graphs, and grid graphs of higher dimensions, depending on
the choice of k and l. In fact, by appropriately choosing several pairs of k
and l, the algorithm given in Sect. 3 can result in a (k, l)-connected subgraph
with a number of distinct connected components and thereby identify local
“communities” within the (large) network. For example, for k = l = 3, the
local graph of Collaboration graph of the second kind is the disjoint union
of 149 (non-trivial) components as shown in Fig. 6. Each component can be
viewed as a community (Fig. 7).
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