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ABSTRACT

One of the most vexing challenges of working with graphical structures is that most algorithms scale poorly
as the graph becomes very large. The computation is extremely expensive even for polynomial algorithms,
thus making it desirable to devise fast approximation algorithms. We herein propose a framework using
advanced tools1–6 from random graph theory and spectral graph theory to address the quantitative analysis
of the structure and dynamics of large-scale networks. This framework enables one to carry out analytic
computations of observable network structures and capture the most relevant and refined quantities of real-
world networks.

1. INTRODUCTION

In this information age that we live in, there is a growing need to respond to the challenges to make sense of
large-scale graphs that often arise from various communication networks, sensor networks, social networks,
etc. In response to such challenges, we herein propose a framework using advanced tools1–6 from random
graph theory and spectral graph theory to address the quantitative analysis of the structure and dynamics
of large networks. This framework enables one to carry out analytic computations of observable network
structures and capture the most relevant and refined quantities of real-world networks.

One of the most vexing challenges of working with graphical structures is that most algorithms scale
poorly as the graph becomes very large. The computation is extremely expensive even for polynomial
algorithms, thus making it desirable to devise fast approximation algorithms. From the view of information
theory, one would like to capture the essential structure of the network and discard information that amounts
to random noise.

Our approach is based on the celebrated Szemerédi regularity lemma, which has proved to be an important
tool by asserting the existence of certain subgraphs in any sufficiently large graph. It roughly states that
every large enough graph can be divided into subsets (or partitions) of about the same size so that the
edges between different subsets behave almost randomly; in other words, any sufficiently large/dense graph
can be approximated by a general random graph G(n, P ). In recent years, the regularity lemma and its
variations have emerged as potentially powerful tools to solve numerous algorithmic and combinatorial
problems, e.g., approximation of Max-Cut in dense graphs,27 property testing in graphs,24 and fast Boolean
matrix multiplication.25 These problems are closely related to algorithmic questions involving the regularity
lemma, such as efficient regularity testing and regular partitioning.

If these regular partitions of a given graph can be found efficiently, it would then imply efficient (and
often parallel and distributed among partitions) methods to compute myriad graph properties of interest,
e.g., number of triangles, maximum cliques, etc., just to name a few. Unfortunately, there is no known
computationally efficient algorithm to find such partitions that scale for large graphs. In fact, Alon, et al.22

observed that the problem of regularity testing is co-NP. However, it is precisely here, that we believe ideas
from spectral graph theory can help. We will show that the investigation of the dominant eigenvalues of the
adjacency matrix of a graph can often lead to computationally efficient and scalable methods to approximate
these partitions and suggest a few applications.



2. TECHNICAL APPROACH

2.1 The Origin of Our Approach

Let us start with some well-known concepts from the general random graph theory. For a fixed m, a
probability matrix P = (pij) is an m × m symmetric matrix satisfying 0 ≤ pij ≤ 1 for 1 ≤ i ≤ j ≤ m.
Let [n] := {1, 2, . . . , n} denote the set of the first n numbers. Given a partition P of [n] into m sets:
[n] = V1 ∪ V2 ∪ . . .∪ Vm, we define the general random graph G(n, P,P) on the vertex set [n] as follows. For
any u ∈ Vi and v ∈ Vj , a pair (u, v) is an edge of G(n, P,P) with probability pij independently. When P is
an equitable partition, i.e., the sizes to two parts differ by at least 1, we simply write G(n, P ) for short.

If the number of blocks, m, is 1, then this model reduces to the Erdős-Renyi random graph model G(n, p)
(see6). If m = 2 and p11 = p22 = 0, then it is a model for a random bipartite graph. If m = n and
pij = wiwj

1
∑

n
i=1

wi
, then it is the model G(w1, . . . , wn) of a random graph with expected degree sequence.

The properties of G(w1, . . . , wn) have been studied extensively.1–5 It is a good model for capturing power
law graphs, but less flexible for modeling general graphs. However, the techniques used in G(w1, . . . , wn)
can still be applied to the general random graph model.

Let ∆ (or δ) be the maximum (or minimum) expected degree of the random graphG(n, P,P) respectively.
Let A be the adjacency matrix and D be the diagonal matrix of degrees. The (normalized) Laplacian is
given by L = I −D−1/2AD−1/2. We have the following proposition.

Proposition 2.1. Let G := G(n, P,P) be the general random graph associated to the partition P and the
probability matrix P . Then with probability 1− o(1), we have

1. If ∆ ≫ ln4 n, then all but at most m eigenvalues of the adjacency matrix A have absolute values at
most (2 + o(1))

√
∆.

2. If δ ≫ max{m, ln4 n}, then all but almost m eigenvalues λi of the Laplacian L satisfy |λi − 1| ≤
(2 +

√
m+ o(1)) 1√

δ
.

Proof: This is a corollary of Lu-Peng’s result on edge-independent random graphs. Note that in random
graph G(n, P,P) edges are mutually independent. Let Ā = E(A) the expectation of A. Lu-Peng32 proved
that if ∆ ≫ ln4 n then

‖λi(A) − λi(Ā)‖ ≤ (2 + o(1))
√
∆.

Observe that Ā is a rank m matrix since Āuv = pij if u ∈ Vi and v ∈ Vi. All but at most m of λi(Ā)’s are

zeros. Thus, all but at most m eigenvalues of λi(A)’s are at most (2 + o(1))
√
∆.

The proof of the statement of Laplacian is similar. Let D̄ be the diagonal matrix of the expected degrees
and L̄ = I − D̄−1/2ĀD̄−1/2. Lu-Peng32 proved that

|λi(L)− λi(L̄)| ≤ (2 +
√
m+ o(1))

1√
δ
.

Since I−L̄ has rank k, all but almost m eigenvalues λi of the Laplacian L satisfy |λi−1| ≤ (2+
√
m+o(1)) 1√

δ
.

�

Now, assume n ≫ m. The model G(n, P,P) is complicated but one can still determine the graph’s prop-
erties such as connectivity, diameter, maximal cliques, the number of triangles, etc. using the probability
matrix P and the partition P . Put another way, from the view of information theory, the general random
graph G := G(n, P,P) can be reduced to the pair (P,P), and because m is much smaller than n, any al-
gorithm that runs on (P,P) will be significantly faster than if it were to run on G itself. The pair (P,P)
can be viewed the backbone of G. One of the key enabling ideas that allows us to formulate our approach is
that Proposition 2.1 shows that all but m eigenvalues (of the adjacency matrix) are O(

√
n). There are two

obvious questions to ask:

Question 1: Is this model general enough to capture a variety of graphs?



Question 2: How can we get (P,P) from a given graph G?

Szemerédi regularity lemma: The first question can be answered by the celebrated Szemerédi regularity
lemma. The Szemerédi regularity lemma roughly states that every sufficiently large graph can be divided
into subsets of about the same size so that the edges between different subsets behave almost randomly; in
other words, any large/dense graph can be approximated by a general random graph G(n, P ).

More precisely, let G = (V,E) be a simple graph. For two disjoint vertex sets X and Y , the edge density
of the pair (X,Y ) is

d(X,Y ) :=
|E(X,Y )|
|X | |Y |

where E(X,Y ) denotes the cut set, i.e., edges having one end vertex in X and one in Y . For any ǫ > 0, a
pair of vertex sets X and Y is called ǫ-regular if for all subsets A of X and B of Y satisfying |A| ≥ ε|X | and
|B| ≥ ε|Y |, we have

|d(X,Y )− d(A,B)| ≤ ǫ.

A partition of the vertex set of G into k sets V0, V1, . . . , Vk is called an ǫ-regular partition, if |V0| ≤ ǫn,
|V1| = |V2| = · · · = |Vk|, and all but ǫk2 of the pairs Vi, Vj , 1 ≤ i < j ≤ k, are ǫ-regular. The Szemerédi
regularity lemma Regularity lemma can be stated as the following:

Lemma 2.1. For every ǫ > 0 and positive integer m there exists an integer M such that if G is a graph with
at least M edges, there exists an integer k in the range m ≤ k ≤ M and an ǫ-regular partition of the vertex
set of G into k sets. Tao11 proved two extensions of the regularity lemma—the probabilistic version and
the information-theoretic version. Both versions are more powerful than the original version; for example,
they can be used to prove the regularity lemma for hypergraphs.8

Now, for the second question above, the bound M for the number of parts in the partition of the graph
given by Szemerédi’s regularity lemma is very large (it is about a 1/ǫC-level iterated exponential of m for
some absolute constant C.) Gowers7 found examples of graphs for which M does indeed grow very fast and
is at least as large as a log(1/ǫ)-level iterated exponential of m. This makes the algorithm associated to its
proof intractable in practice. New methods are needed to find a similar partition of a given graph G.

2.2 A New Way Forward via Spectral Graph Theory

Consider a family of graphs {Gn}, where Gn is a graph on n vertices. List all eigenvalues of the adjacency
matrix of Gn such that the absolute values are in decreasing order:

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

An increasing function f(n) is a coarse spectral bound of Gn if

|{i : |λi(Gn)| ≥ f(n)}| = o(n).

The coarse spectral radius is not unique. Here are some properties.

Monotone: If f(n) ≥ g(n) for sufficiently large n and g(n) is a coarse spectral bound of Gn, then f(n) is
also a coarse spectral bound of Gn.

Continuity: Suppose two graphs Gn and G′
n only differ by o(dn)-edges. If f(n) is a coarse spectral bound

of G, then f(n) + o(d) is a coarse spectral bound of G′.

The “least” coarse spectral bound is called essential spectral radius of G. Roughly speaking, an essential
spectral radius is the absolute maximum of all but o(n) eigenvalues of G. By the monotonicity property, the
essential spectral radius is well-defined up to a lower order additive term. By Proposition 2.1, the general
random graph G(n, P,P) has essential spectral radius O(

√
n), provided m = o(n). We have the following

theorem.

Theorem 2.2. For any slowly increasing function f(n) (growing to infinity) and any sequence of graphs
{Gn}, the essential spectral radius of Gn is at most f(n)

√
n.



Proof: Let A be the adjacency matrix of Gn and λ1, λ2, . . . , λn are eigenvalues of A in the decreasing
order of absolute values. We have

n
∑

i=1

λ2
i = trace(A2) = 2|E(G)|. (1)

For any integer k ≤ n, we have

k|λk|2 ≤
k

∑

i=1

λ2
i < 2|E(G)| < n2. (2)

Hence
|λk| <

n√
k
.

Choosing k = n
f2(n) = o(n), we have λk < f(n)

√
n. In other words, the number of eigenvalues exceeding

f(n)
√
n in absolute value is o(n). The proof of theorem is finished. �

The upper bound of essential spectral radius in Theorem 2.2 cannot be replace by C
√
n for C < 2. The

essential spectral radius of Erdős-Renyi random graph G(n, p) is at least (2 + o(1))
√
np, which is greater

than (2− ǫ)
√
n as p approaches 1. In fact, we make the following conjecture.

Conjecture 1. For any family of graphs {Gn}, the essential spectral radius of Gn is at most (2+o(1))
√
n.

If the conjecture is true, it is then best possible.

The eigenvalues within the essential spectral radius are less significant while those outside the essential
spectral radius are significant. The subspace spanned by the eigenvectors corresponding to the less significant
eigenvalues are corresponding to the “random part” of the graph; which are less important. One should focus
on significant eigenvalues and their associated eigenvectors. In general, it is hard to determine the essential
spectral radius. However, if our aforementioned conjecture is true, then significant eigenvalues separate from
less significant eigenvalues. One can compute the most significant eigenvalue; and then the second most
significant eigenvalue; and so on until the big gap is reached. Let λ1, . . . , λm be the m significant eigenvalues
where m is determined by the algorithm. Let αi (1 ≤ i ≤ m) be the corresponding eigenvectors. Let Q be
the matrix defined as

Q =
m
∑

i=1

λiαiα
′
i.

The matrix Q has rank m ≪ n. We believe that Q contains the essential information of G. We may group
the similar entries of Q together to get the partition P of vertices and the probability matrix P . Once we
obtain a partition P and the probability matrix P , we can use them to estimate many graph parameters of
G efficiently.

The efficiency of the approach above depends on the rank of Q, equivalently, the number of significant
eigenvalues. Roughly speaking, Semeredi’s regularity Lemma implies that any dense graphs can be approx-
imated by some random graph G(n, P,P) with a finite number of partitions. Base on this observation, we
made the following conjecture.

Conjecture 2. For any ǫ > 0, there is a constant C = f(ǫ) such that the following holds. For any dense
graph Gn with at least ǫ

(

n
2

)

edges, the number of significant eigenvalues is at most C.

There do exist versions of the regularity Lemma for sparse graphs, however, they are less powerful.
Our approach should still work for sparse graphs, in principle, but we have to be careful where to cut the
significant eigenvalues versus the less significant ones. We have the following conjecture on the essential
spectral radius for sparse graphs.

Conjecture 3.

For any family of sparse graphs {Gn} with maximum degree ∆n, the essential spectral radius of Gn is
O(

√
∆n) if ∆ ≫ lnn.

Alternatively, we can use a matrix other than the adjacency matrix A. For example, the Laplacian matrix
for undirected graphs is defined as

L = I −D−1/2AD−1/2.



Here D is diagonal matrix of degrees in G. Another example is using the page-rank kind of matrix

c

n
J + (1− c)D−1/2AD−1/2.

2.3 Simulation of our new Approach

To illustrate our idea, we first generate a general random graph G := G(n, P ) as follows. Let n = 180 and
P be the (3 × 3)-matrix defined as

P =





0.2 0.4 0
0.4 0.4 0.4
0 0.4 0.6



 .

The graph G can be viewed as a (random) blow-up of the weighted graph of Figure 1.

0.4 0.4

0.2 0.4 0.6

Figure 1. The probability matrix P is viewed as a weighted graph.

The eigenvalues of the adjacency matrix of G are computed by Maple and then are drawn using Gnuplot
(see Figure 2(a)).
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(a) Eigenvalues of G.
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(b) The matrix Q.

Figure 2. The distribution of eigenvalues of G, (a), and the distribution of all entries in the matrix Q, (b).

From Figure 2(a), it is clear that there are only three significant eigenvalues: λ1 = 59.407153, λ2 =
25.300653, λ3 = −14.809906. The rest of eigenvalues have absolute values all less than 12. For i = 1, 2, 3,
let αi be the eigenvector associated to λi. We computed Q :=

∑3
i=1 λiαiα

′
i. The matrix Q is plotted in

Figure 2(b).

From Figure 2(b), it is clear that the vertices are partitioned into three groups, roughly agreeing with the
original partition P . This partition divides the matrix Q into 9 blocks (see the contour map at the bottom
in Figure 2(b).) By averaging over each block, we get the following matrix P̄ , which almost recovers the
matrix P .

P =





0.198167 0.395086 0.002750
0.395086 0.383684 0.390717
0.002750 0.390717 0.595066



 .



Now we consider the problem of counting the number of triangles in G. In the case that each block in
partition has the same size t, using equation (4) from Section 3, this can be simplified as

# of triangles ≈ t3

6
trace(P ). (3)

In our example, t = 60. We use P̄ to approximate P . We get trace(P ) ≈ trace(P̄ ) = 0.9982612835 and
conclude the number of triangles is about 35937. By heuristic search, the actual number of triangles in G is
35058. The relative error is about 2.5%.

3. APPLICATIONS

Application 1: Estimating the number of triangles in G. The number of triangles in G can be approximated
using the probability matrix and the partition P as follows.

# of triangles ≈ 1

6

∑

i,j,k

|Vi||Vj ||Vk|pijpjkpik. (4)

This is an O(m3) algorithm. This is efficient since m ≪ n.

Application 2: Find the maximum clique in G. There are many ways that a clique Kk can intersect the
blocks of P ; for each intersection pattern, we can compute the probability. If all probabilities are small
for all patterns, then decrease the value of k until we find the intersection pattern with the maximum and
non-trivial probability. For this particular pattern, we go back to the subgraph of G on the blocks which
have nontrivial intersections in this pattern. Then search the clique Kk as usual. Note that m ≪ n, the first
step is efficient while the running time of the second step is also reduced because the subgraph we considered
is usually much smaller than G.

Justification: The most costly step in the algorithm is to find the (absolute) largest eigenvalues/eigenvectors.
Computing the pairs of eigenvalues and eigenvectors is a well-studied problem. For a single pair, it can be
computed using O(n)-time. We can use parallel algorithms to speed up the computation. (See12–15).

Application 3: Dot Product Graph and Partitions

Next in order for us to compute more non-trivial features of social networks, we consider using dot product
representations to obtain a low dimensional representation of a simple graph, G, or where G is one of the
partitions we obtain using our approach described above. Specifically, the goal of dot product representations
is, given G, to assign a vector to each vertex of G such that the set of vectors capture the most important
and essential structure of the graph. Scheinerman & Tucker develop and analyze an algorithm for doing this
in.18

1: procedure Iterative-Eigenvalue-Method(A, d, t) of18

Require: A, the adjacency matrix of a given graph G with n vertices. Dimension d of the representation. Threshold t for the stopping
condition.

2: Let D := 0 be an n × n diagonal matrix. X := 0, a d × n matrix.

3: while

∣

∣

∣

∣

∣

∣
A + D − XTX

∣

∣

∣

∣

∣

∣
> t do

4: Compute the singular value decomposition (A+D) = UT ΛU . Define Û to be the the first d rows of U and Λ̂ to be the first

d rows and columns of Λ. Let X = Λ̂1/2Û .
5: For j = 1, . . . , n, update the j, j entry of D to be xj · xj where xj is the jth column of X.
6: end whilereturn Columns of X, x1, . . . ,xn as dot product representation of vertices 1 through n of G.
7: end procedure

Random dot product graphs were first introduced by Kraetzel, et al., in.16 This model, which randomly
selects vectors and uses their dot products to construct a graph, has been studied and extended by several
others. In,18 the reverse approach is taken. Given a graph, G = (V,E), where edge ij ∈ E, i 6= j, has
weight wij , we look for the set of n vectors in dimension d that would approximately generate edges with
these weights. In other words, we want to find vectors x1,x2, . . . ,xn ∈ R

d such that xi ·xj is as close to wij

as possible. In,18 Scheinerman & Tucker use an iterative eigenvalue method to discover an optimal vector
representation in R

d.



There is a natural way to apply dot product representations to the Szemerédi partition found in the
previous section. The iterative eigenvalue method is efficient for any graph with an adjacency matrix of
a size allowing for fast matrix-vector multiplication (as discussed later). Thus, it is often the case that
the method is applied to large, sparse graphs. However, the Szemerédi partition results in an m × m
probability matrix P where m is small. Thus, the method could also be applied to this dense matrix P . The
diagonal of P could be viewed as an intelligent “guess” of what D should be and the rest of P would be the
adjacency matrix A. By applying the iterative eigenvalue method to P = A+D, one would obtain vectors
v1,v2, . . . ,vm. Every vertex in V1 would have vector v1 as its representation, every vertex in V2 would have
vector v2 as its representation, and so on. This geometric representation would allow for the application of
fast geometric algorithms to discover properties of the graph.

Also note that the current theory supporting the discovery of the Szemerédi partition above applies to
dense graphs. Therefore, dot product representations serve two additional purposes in our approach. First,
because the methods are efficient for large, sparse graphs, they can be used in those cases as an alternative
to the Szemerédi partition for discovering the backbone of G. Second, when the regularity lemma theory is
extended for sparse graphs, we may compare the Szemerédi partition with the partition discovered using dot
product representations and an angular k-means algorithm. Discovery of similar partitions would validate
both methods. Because of these additional purposes, we will study dot product representations in their own
right, such as what dimension d is necessary to capture the “important” information of the graph, as well
as in the context of the Szemerédi partition. We seek to extend the work in18 to further explore how this
geometric graph representation improves the scalability of graph algorithms and analysis. Minimally, we will
consider the information lost through such a low dimensional representation and how to adapt the algorithm
in18 to include the dynamic nature of graphs.

4. CONCLUSIONS

In this paper we have presented a graph partition methodology based on spectral-theoretic understanding of
Szemerédi’s lemma with simulation and testing that scales to massive streaming data sets. This is a first step
towards establishing a distributed system for automatically identifying various structures from large-scale
graphs. Ultimately, we believe this will allow for greater and more complex automatic analyses of various
networks (social networks, communication networks, etc.).
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