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Abstract

Let G be any triangle-free graph with maximum degree ∆ ≤ 3. Staton
proved that the independence number of G is at least 5

14
n. Heckman

and Thomas conjectured that Staton’s result can be strengthened into
a bound on the fractional chromatic number of G, namely χf (G) ≤

14

5
.

Recently, Hatami and Zhu proved χf (G) ≤ 3− 3

64
. In this paper, we prove

χf (G) ≤ 3− 3

43
.

1 Introduction

This paper investigates the fractional chromatic number of a triangle free graph
with maximum degree at most 3. For a simple (finite) graph G = (V,E),
the fractional chromatic number of G is the linear programming relaxation
of the chromatic number of G. Let I(G) be the family of independent sets
of G. A mapping f : I(G) → [0, 1] is called an r-fractional coloring of G if
∑

S∈I(G) f(S) ≤ r and
∑

v∈S,S∈I(G) f(S) ≥ 1. The fractional chromatic num-

ber χf (G) of G is the least r for which G has an r-fractional coloring.
Alternatively, the fractional chromatic number can also be defined through

multiple colorings. A b-fold coloring of G assigns a set of b colors to each vertex
so that any two adjacent vertices receive disjoint sets of colors. We say a graph
G is a : b-colorable if there is a b-fold coloring of G in which each color is drawn
from a palette of a colors. We refer to such a coloring as an a : b-coloring. The
b-fold coloring number, denoted as χb(G), is the smallest integer a so that G
has a a : b-coloring. Note that χ1(G) = χ(G). It is known, in [10], that χb(G)

(as a function of b) is sub-additive and so the infimum of χb(G)
b

always exists,
which turns out to be an alternative definition of χf (G). (Moreover, χf (G) is
a rational number and the infimum can be replaced by minimum.)
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Let χ(G) be the chromatic number of G and ω(G) be the clique number of
G. A simple relation holds:

ω(G) ≤ χf (G) ≤ χ(G). (1)

Now we consider a graph G with maximum degree ∆ at most three. If G
is not K4, then by Brooks’ theorem, G is 3-colorable. If G contains a triangle,
then χf (G) ≥ ω(G) = 3. Equation (1) implies χf (G) = 3. One may ask what
is the possible value of χf (G) if G is triangle-free with ∆ ≤ 3. This problem
is motivated by a well-known, solved problem of determining the maximum
independence number α(G) for such graphs. Staton, in [11], showed that

α(G) ≥ 5n/14 (2)

for any triangle-free graph G on n vertices with maximum degree at most 3. Ac-
tually, Staton’s bound is the best possible since the generalized Peterson graph
P (7, 2) has 14 vertices and independence number 5 as noticed by Fajtlowicz,
in [2]. Griggs and Murphy, in [4], designed a linear-time algorithm to find an
independent set in G of size at least 5(n − k)/14, where k is the number of
components of G that are 3-regular. Heckman and Thomas, in [6], gave a sim-
pler proof of Staton’s bound and designed a linear-time algorithm to find an
independent set in G with size at least 5n/14.

In the same paper [6], Heckman and Thomas conjectured

χf (G) ≤
14

5
(3)

for every triangle-free graph with maximum degree at most 3. Note that, in
[10],

χf (G) =
n

α(G)
, (4)

provided G is vertex transitive. It implies that the generalized Peterson graph
P (7, 2) has the fractional chromatic number 2.8. Thus, the conjecture is tight
if it holds.

Recently, Hatami and Zhu, in [5], proved χf (G) ≤ 3 − 3
64 , provided G is

triangle free with maximum degree at most three. Inspired by their method, we
introduce the concept of “admissible sets” and prove the following theorem.

Theorem 1 If G is triangle-free and has maximum degree at most 3, then
χf (G) ≤ 3− 3

43 .

The rest of the paper is organized as follows. In section two, we will study
the convex structure of fractional colorings and the fractionally-critical graphs.
In section three, we will prove several key lemmas. In section four, we will show
that G can be partitioned into 42 admissible sets and present the proof of the
main theorem. We will give some concluding remarks at the end.
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2 Lemmas and Notations

In this section, we introduce an alternative definition of “fractional colorings.”
The new definition highlights the convex structure of the set of all fractional
colorings. The extreme points of these “fractional colorings” play a central role
in our proofs and seem to have independent interest. Our approach is analogous
to define rational numbers from integers.

2.1 Convex structures of fractional colorings

In this paper, we use bold letter c to represent the colorings. Recall that a
b-fold coloring of a graph G assigns a set of b colors to each vertex such that any
two adjacent vertices receive disjoint sets of colors. Given a b-fold coloring c, let
A(c) = ∪v∈V (G)c(v) be the set of all colors used in c. Two b-fold colorings c1 and
c2 are isomorphic if there is a bijection φ : A(c1) → A(c2) so that φ ◦ c1 = c2.
In this case we write c1 ∼= c2. The isomorphic relation ∼= is an equivalence
relation. We denote c̄ be the isomorphic class where c belongs. Whenever clear
under the context, we will not distinguish a b-fold coloring c and its isomorphic
class c̄.

For a graph G and a positive integer b, let Cb(G) be the set of all (isomorphic
classes of) b-fold colorings of G. For c1 ∈ Cb1(G) and c2 ∈ Cb2(G), we can define
c1 + c2 ∈ Cb1+b2(G) as follows: for any v ∈ V (G),

(c1 + c2)(v) = c1(v) ⊔ c2(v),

i.e., c1 + c2 assigns v the disjoint union of c1(v) and c2(v).
Let C(G) = ∪∞

b=0Cb(G). It is easy to check that “+” is commutative and
associative. Under this addition, C(G) forms a commutative monoid with the
unique 0-fold coloring (denoted by 0, for short) as the identity. For a positive
integer t and c ∈ Cb(G), we define

t · c =

t
︷ ︸︸ ︷

c+ · · ·+ c

to be the new tb-fold coloring by duplicating each color t times.
For c1 ∈ Cb1(G) and c2 ∈ Cb2(G), we say c1 and c2 are equivalent, denoted

as c1 ∼ c2, if there exists a positive integer s so that sb2 · c1 ∼= sb1 · c2. (This is
an analogy of the classical definition of rational numbers.)

Lemma 1 The binary relation ∼ is an equivalence relation over C(G).

Proof: It is easy to check ∼ is reflexive and symmetric. Now we prove ∼ is
transitive. Let ci ∈ Cbi(G) for i = 1, 2, 3. Suppose c1 ∼ c2 and c2 ∼ c3. We
need to prove c1 ∼ c3.

Since c1 ∼ c2, there is a positive integer s so that

sb2 · c1 ∼= sb1 · c2.

3



Since c2 ∼ c3, there is a positive integer t so that

tb3 · c2 ∼= tb2 · c3.

We have

stb2b3 · c1 ∼= tb3 · (sb2 · c1)
∼= tb3 · (sb1 · c2)

= sb1 · (tb3 · c2)
∼= sb1 · (tb2 · c3)

= stb2b1 · c3.

Thus, c1 ∼ c3 by definition. �

Let F(G) = C(G)/ ∼ be the set of all equivalence classes. Each equivalence
class is called a fractional coloring of G. For any c ∈ Cb(G), the equivalence
class of c under ∼ is denoted by π(c) = c

b
.

Remark: The notation c

b
makes sense only when c is a b-fold coloring.

Given any λ = q
p

∈ [0, 1] and two fractional colorings (two equivalence

classes) c1

b1
and c2

b2
, we define the linear combination as

λc1 + (1− λ)c2 =
qb2 · c1 + (p− q)b1 · c2

pb1b2
.

The following lemma shows this definition is independent of the choices of c1
and c2, and so λc1 + (1− λ)c2 is a fractional coloring depending only on λ, c1

b1
,

and c2

b2
.

Lemma 2 Assume ci ∈ Cbi(G) for i = 1, 2, 3, 4 satisfying c1 ∼ c3 and c2 ∼ c4.

For any non-negative integers p, q, p′, and q′ satisfying q
p
= q′

p′
∈ [0, 1], we have

qb2 · c1 + (p− q)b1 · c2 ∼ q′b4 · c3 + (p′ − q′)b3 · c4.

Proof: There exist two positive integers s and t satisfying

sb3 · c1 ∼= sb1 · c3;

tb4 · c2 ∼= tb2 · c4.

We have

p′stb3b4 · (qb2 · c1 + (p− q)b1 · c2) = p′qstb2b3b4 · c1 + p′(p− q)stb1b3b4 · c2

= p′qtb2b4 · (sb3 · c1) + p′(p− q)sb1b3 · (tb4 · c2)
∼= p′qtb2b4 · (sb1 · c3) + p′(p− q)sb1b3 · (tb2 · c4)

= p′qstb1b2b4 · c3 + p′(p− q)stb1b2b3 · c4

= pq′stb1b2b4 · c3 + p(p′ − q′)stb1b2b3 · c4

= pstb1b2 · (q
′b4 · c3 + (p′ − q′)b3 · c4).
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Note qb2 ·c1+(p− q)b1 ·c2 is a pb1b2-fold coloring while q′b4 ·c3+(p′− q′)b3 ·c4
is a p′b3b4-fold coloring. The above equality shows that qb2 ·c1+(p− q)b1 ·c2 ∼
q′b4 · c3 + (p′ − q′)b3 · c4. �

Define a function g : F(G) → Q as gG(
c

b
) = |A(c)|

b
. If the graph G is clear

under context, then we write it as g(c
b
) for short. It is easy to check that g does

not depend on the choice of c and so g is well-defined. For any τ > 0, we define

Fτ (G) = {
c

b
∈ F(G)|g(

c

b
) ≤ τ}.

Theorem 2 For any graph G on n vertices, there is an embedding φ : F(G) →
Q2n−1 such that φ keeps convex structure. Moreover, for any rational number
τ , Fτ (G) is convex with finite extreme fractional colorings.

Proof: We would like to define φ : F(G) → Q2n−1 as follows.
Given a fractional coloring c

b
, we can fill these colors into the regions of

the general Venn Diagram on n-sets. For i = 1, 2, . . . , 2n − 1, we can write i
as a binary string a1a2 · · ·an such that av ∈ {0, 1} for all 1 ≤ v ≤ n. Write
c1(v) = c(v) and c0(v) = c(v) (the complement set of c(v)). Then the number
of colors in i-th region of Venn Diagram can be written as

hi(c) = |∩n
v=1c

av (v)| .

By the definition, hi is additive, i.e.

hi(c1 + c2) = hi(c1) + hi(c2).

Thus hi(c)
b

depends only on the fractional coloring c

b
but not on c itself.

The i-th coordinate of φ(c
b
) is defined to be

φi(
c

b
) =

hi(c)

b
.

It is easy to check that φi is a well-defined function on F(G). Moreover, for any
λ = q

p
∈ [0, 1] and any two fractional colorings c1

b1
and c2

b2
, we have

φi

(

λ
c1
b1

+ (1 − λ)
c2
b2

)

= φi

(
qb2 · c1 + (p− q)b1 · c2

pb1b2

)

=
hi(qb2 · c1 + (p− q)b1 · c2)

pb1b2

=
qb2hi(c1) + (p− q)b1hi(c2)

pb1b2

=
q

p

hi(c1)

b1
+ (1 −

q

p
)
hi(c2)

b2

= λφi(
c1
b1

) + (1− λ)φi(
c2
b2

).

Thus φ keeps the convex structure.
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It remains to show φ is a 1− 1 mapping. Suppose φ(c1
b1
) = φ(c2

b2
). We need

to show c1 ∼ c2. Let c
′
1 = b2 · c1 and c′2 = b1 · c2. Both c′1 and c′2 are b1b2-fold

coloring. Note φ(
c
′

1

b1b2
) = φ(

c
′

2

b1b2
). For j = 1, 2 and 1 ≤ i ≤ 2n − 1, we denote

the set of colors in the i-th Venn Diagram region of A(c′j) by Bi(c
′
j). Since

φ(
c
′

1

b1b2
) = φ(

c
′

2

b1b2
), we have

|Bi(c
′
1)| = |Bi(c

′
2)|.

There is a bijection ψi from Bi(c
′
1) to Bi(c

′
2). Note that for j = 1, 2, we have a

partition of A(c′j) as the following

A(c′j) = ⊔2n−1
i=1 Bi(c

′
j).

Define a bijection ψ from A(c′1) to A(c
′
2) be the union of all ψi (1 ≤ i ≤ 2n−1).

We have
ψ ◦ c′1 = c′2.

Thus c′1
∼= c′2. Note that c1 ∼ c′1 and c2 ∼ c′2. We conclude that c1 ∼ c2.

Under the embedding, φ(Fτ (G)) consists of all rational points in a polytope
defined by the intersection of finite half spaces. Note that all coefficients of the
equations of hyperplanes are rational. The extreme points are rational as well.
They are finite. �

Remark: It is well-known that for any graph G there is a a : b-coloring of G
with a

b
= χf (G). In our terminology, we have χf (G) = min{g(c

b
)| for any c

b
∈

F(G)}.

2.2 Coloring restriction and extension

Let H be a subgraph of G. Any b-fold coloring of G is naturally a b-fold coloring
of H . This restriction operation induces a mapping iHG : F(G) → F(H). It is
easy to check that iHG keeps convex structure, i.e., for any c1

b1
, c2
b2

∈ F(G) and
λ ∈ [0, 1] ∩Q, we have

iHG

(

λ
c1
b1

+ (1− λ)
c2
b2

)

= λiHG

(
c1
b1

)

+ (1− λ)iHG

(
c2
b2

)

.

It is also trivial that
gH

(

iHG

(c

b

))

≤ gG

(c

b

)

.

Now we consider a reverse operation. We say a fractional coloring c1

b1
∈ F(H)

is extensible in Ft(G) if there is a fractional coloring c

b
∈ Ft(G) satisfying

iHG

(c

b

)

=
c1
b1
.

We say a fractional coloring c1

b1
∈ F(H) is fully extensible in F(G) if it is

extensible in Ft(G), where t = gH(c1
b1
). (It also implies that c1

b1
is extensible in

Ft(G) for all t ≥ gH(c1
b1
).)
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Lemma 3 Let H be a subgraph of G and c1

b1
, c2
b2

∈ F(H). Suppose that for
i = 1, 2, ci

bi
∈ F(H) are fully extensible in F(G). Then for any λ ∈ Q ∩ [0, 1],

λc1

b1
+ (1 − λ)c2

b2
is fully extensible in F(G).

Proof: Let ti = gH(ci
bi
) for i = 1, 2. Note that there are fractional colorings

c
′

i

b′
i

∈ Fti(G) such that iHG

(
c
′

i

b′
i

)

= ci

bi
for i = 1, 2. Let c

b
= λ

c
′

1

b′
1

+(1−λ)c
′

2

b′
2

. Then

we have gG(
c

b
) = λt1 + (1− λ)t2 and,

iHG

(c

b

)

= λiHG

(
c′1
b′1

)

+ (1− λ)iHG

(
c′2
b′2

)

= λ
c1
b1

+ (1− λ)
c2
b2
.

Note that

gH

(

λ
c1
b1

+ (1− λ)
c2
b2

)

= λt1 + (1− λ)t2.

Therefore, λc1

b1
+ (1− λ)c2

b2
is fully extensible in F(G) by definition. �

We say G = G1 ∪G2 if V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2).
Similarly, we say H = G1 ∩G2 if V (H) = V (G1)∩V (G2) and E(H) = E(G1)∩
E(G2).

Lemma 4 Let G be a graph. Suppose that G1 and G2 are two subgraphs such
that G1 ∪ G2 = G and G1 ∩ G2 = H. Suppose that two fractional colorings
c1

b1
∈ F(G1) and c2

b2
∈ F(G2) satisfy iHG1

(c1
b1
) = iHG2

(c2
b2
). Then there exists a

fractional coloring c

b
∈ F(G) satisfying

iGi

G (
c

b
) =

ci
bi

and gG(
c

b
) = max{gG1

(c1
b1
), gG2

(c2
b2
)} for i = 1, 2.

Proof: Without loss of generality, we can assume b1 = b2 = b. We also assume
gG1

(c1
b1
) ≤ gG2

(c2
b2
) so that |AG1

(c1)| ≤ |AG2
(c2)|. Since iHG1

(c1
b1
) = iHG2

(c2
b2
),

there is a bijection φ from ∪v∈V (H)c1(v) to ∪v∈V (H)c2(v). Extend φ as an 1-1
mapping from AG1

(c1) to AG2
(c2) in an arbitrary way. Now we define a b-fold

coloring c of G as follows.

c(v) =

{
φ(c1(v)) if v ∈ V (G1),
c2(v) if v ∈ V (G2).

SinceG1 andG2 cover all edges ofG, c is well-defined. Note c|V (G1) = φ◦c1 ∼= c1
and c|V (G2) = c2. Thus for i = 1, 2,

iGi

G

(c

b

)

=
ci
bi
.

We also have gG
(
c

b

)
=

|AG2
(c2)|

b
= gG2

(c2
b2
). �

Theorem 3 Let G be a graph. Suppose that G1 and G2 are two subgraphs such
that G1 ∪G2 = G and G1 ∩G2 = H. Suppose that χf (G1) ≤ t and any extreme
fractional colorings in Ft(H) are extensible in Ft(G2). Then χf (G) ≤ t.
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Proof: There is a fractional coloring c

b
∈ F(G1) satisfying gG1

(c1
b1
) = t. Since

every extreme fractional coloring of Ft(H) is extensible in Ft(G2), so there exist
fractional colorings c1

b1
, c2
b2
, · · · , cr

br
∈ Ft(G2) so that i

H
G2

(c1
b1
), iHG2

(c2
b2
), · · · , iHG2

(cr
br
)

are all extreme fractional colorings in Ft(H). The fractional coloring iHG1
(c
b
)

can be written as a linear combination of the extreme ones. Hence, there exist
λ1, λ2, . . . , λr ∈ Q ∩ [0, 1] such that

∑r

i=1 λi = 1 and

iHG1
(
c

b
) =

r∑

i=1

λii
H
G2

(
ci
bi
).

Let c
′

b′
=

∑r

i=1 λi
ci

bi
∈ Ft(G2). We have

iHG1
(
c

b
) = iHG2

(
c′

b′
).

Applying Lemma 4, there exists a fractional coloring c
′′

b′′
∈ Ft(G). Therefore,

χf (G) ≤ t. �

Corollary 1 Let G be a graph. Suppose that G1 and G2 are two subgraphs such
that G1 ∪G2 = G and G1 ∩G2 = Kr for some positive integer r. Then

χf (G) = max{χf (G1), χf (G2)}.

Proof: Without loss of generality, we assume χf (G1) ≥ χf (G2). Let t =
χf (G1). We have t ≥ r as G1 contains Kr. Because χf (G2) ≤ t, so we have
Ft(G2) 6= ∅. Since H is a complete graph, then Ft(H) contains only one frac-
tional coloring, namely, color all vertices of H using distinct colors. It is trivial
that any extreme fractional colorings in Ft(H) is extensible in G2. Applying
Theorem 3, we have χf (G) ≤ t. The other direction is trivial. �

Let uv be a non-edge of a graph G2. We denote G2+uv the supergraph of G2

by adding the edge uv and denote G2/uv be the quotient graph by identifying
the vertex u and the vertex v.

Lemma 5 Let G be a graph. Suppose that G1 and G2 are two subgraphs such
that G1 ∪G2 = G and V (G1) ∩ V (G2) = {u, v}.

1. If uv is an edge of G, then

χf (G) = max{χf (G1), χf (G2)}.

2. If uv is not an edge of G, then

χf (G) ≤ max{χf (G1), χf (G2 + uv), χf (G2/uv)}.

Proof: Part 1 is a simple application of Corollary 1. For the proof of part 2, let
t = max{χf(G1), χf (G2+uv), χf (G2/uv)}. Note t ≥ 2. All fractional colorings
of Ft({uv}) can be represented by the following weighted Venn Diagram.

There are two extreme fractional colorings s = 0 and s = 1. The fractional
coloring corresponding to s = 0 is extensible in Ft(G2) since χf (G + uv) ≤ t.
The fractional coloring corresponding to s = 1 is extensible in Ft(G2) since
χf (G/uv) ≤ t. Applying Theorem 3, we have χf (G) ≤ t. Part 2 is proved. �

8



u v

s1-s 1-s

Figure 1: Fractional colorings on the set of two vertices u and v are represented
as a weighted Venn Diagram.

2.3 Fractionally-critical graphs

In this subsection, we will apply our mechanism to triangle-free graphs with
maximum degree at most 3.

Recall that a graph G is k-critical (for a positive integer k) if χ(G) = k and
χ(H) < k for any proper subgraph H of G. For any rational number t ≥ 2, a
graph G is called to be t-fractionally-critical if χ(G) = t and χ(H) < t for any
proper subgraph H of G. For simplicity, we say G is fractionally-critical if G is
χf (G)-fractionally-critical.

We will study the properties of fractionally-critical graphs. The following
lemma is a consequence of Corollary 1.

Lemma 6 Suppose that G is a fractionally-critical graph with χf (G) ≥ 2. Then
G is 2-connected. Moreover, if G has a vertex-cut {u, v}, then uv is not an edge
of G.

For any vertex u of a graph G and a positive integer i, let N i
G(u) = {v ∈

V : v 6= u and there is a path of length i connecting u and v}.

Lemma 7 Suppose that G is a fractionally-critical triangle-free graph with ∆ ≤
3 and 11

4 < χf (G) < 3. Then for any vertex x and any 5-cycle C, we have
|V (C) ∩N2

G(x)| ≤ 3.

Proof: Let t = χf (G). We have 11
4 < t < 3. We will prove the statement

by contradiction. Suppose that there is a vertex x and a 5-cycle C satisfying
|V (C) ∩ N2

G(x)| ≥ 4. Combined with the fact G is triangle-free, we have the
following cases.

1. |V (C) ∩ N2
G(x)| = 5. It is easy to check that G contains the following

subgraph G9 as shown in Figure 2. Since G is 2-connected, G9 is the
entire graph (in [5]). Thus χf (G) ≤

8
3 < t. Contradiction!

2. |V (C) ∩N2
G(x)| = 4 and |V (C) ∩N1

G(x)| = 1. It is easy to check G is the
unique graph G8 on 8 vertices as shown in Figure 3. Thus χf (G) ≤

8
3 < t.

Contradiction!

9



123

237

457 678

168 268 145345

x

456

123

567 457 678

128

168 234345

x

Figure 2: An 8:3-coloring of G9, where
|V (C) ∩N2

G(x)| = 5.
Figure 3: An 8 : 3-coloring of G8,
where |V (C)∩N2

G(x)| = 4 and |V (C)∩
N1

G(x)| = 1.

3. |V (C) ∩N2
G(x)| = 4 and there exists one vertex on C having the distance

of 3 to x. Hatami and Zhu, in [5], showed that G contains one of the five
graphs in Figure 4 as a subgraph. (Note that some of the marked vertices
u, v, and w may be missing or overlapped. These degenerated cases result
a smaller vertex-cut, and can be covered in a similar but easier way. We
will discuss them at the end of this proof.)

u

v

x

u

v

x

u

v

x

(I) (II) (III)

u
v

w

x

u
v

w

x

(IV) (V)

Figure 4: All possible cases of |V (C) ∩ N2
G(x)| = 4 and |V (C) \ (N1

G(x) ∪
N2

G(x))| = 1.

If G contains a subgraph of type (I), (II), or (III), then G has a pair of
cut-vertex {u, v}. Let G1 and G2 be the two connected subgraphs of G
such that G1 ∪G2 = G, V (G1)∩V (G2) = {u, v}, and x ∈ G2. In all three
cases, G2 + uv and G2/uv are 8 :3-colorable. Please see Figure 5.
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2 7 8
2 6 7
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4 5 6

3 4 51 2 3
u v

1 2 3

4 5 6 4 6 7 5 6 7

2 4 8
2 5 8

1 3 4

5 6 7

1 3 72 3 8
u v

1 2 3

6 7 8

4 5 7 4 6 8

3 6 8

1 6 8 2 3 7

1 4 5

2 5 7
u v

G2/uv in (I) G2/uv in (II) G2/uv in (III)
123

456
568 457

237 347 268

145

137 168
u 268

v

123

456

u

457 568

347126378124

568

147

238

v

123

567
457 678

128

168 234

567

345

u

v
123

G2 + uv in (I) G2 + uv in (II) G2 + uv in (III)

Figure 5: G2 + uv and G2/uv are all 8 :3-colorable in cases (I), (II), and (III).

Applying Lemma 5, we have

χf (G) ≤ max{χf(G1), χf (G2/uv), χf (G2 + uv)}

≤ max{χf(G1),
8

3
}.

Since χf (G) ≥ t > 8
3 , then we must have χf (G1) ≥ χf (G) = t. This is a

contradiction to the assumption that G is fractionally-critical.

If G contains one of the subgraphs (IV) and (V), then G has a vertex-
cut set H = {u, v, w} as shown in Figure 4. Let G1 and G2 be the two
connected subgraphs of G such that G1 ∪ G2 = G, G1 ∩ G2 = {u, v, w},
and x ∈ G2. We shall show χf (G1) = t = χf (G). Suppose not. Then we
can assume χf (G1) ≤ t0 < t, where 8

3 <
11
4 < t0 < t < 3. The fractional

colorings Ft0(H) can be described as

Ft0(H) =







(x, y, z, s) ∈ Q4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x+ y + s ≤ 1
x+ z + s ≤ 1
y + z + s ≤ 1

3− x− y − z − 2s ≤ t0
x, y, z, s ≥ 0







.

See the weighted Venn Diagram in Figure 6.

The extreme fractional colorings of Ft0(H) are:

(a) x = y = z = 0 and s = 1.

(b) x = 1 and y = z = s = 0.

(c) y = 1 and x = z = s = 0.
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x

y z
s

u v

w

1-s-y-z

1-s-x-z1-s-x-y

Figure 6: The general fractional colorings on the vertices u, v, and w.

(d) z = 1 and x = y = s = 0.

(e) x = 3− t0 and y = z = s = 0.

(f) y = 3− t0 and x = z = s = 0.

(g) z = 3− t0 and x = y = s = 0.

We will show that all 7 extreme fractional colorings are extensible in
Ft0(G2).

(a) Let G2/uvw be the quotient graph by identifying u, v, and w as one
vertex. The fractional coloring (0, 0, 0, 1) is extensible in Ft0(G2) if
and only if χf (G2/uvw) ≤ t0. This is verified by Figure 7.

1 2 3

4 5 6
4 6 8 5 7 8

2 3 61 5 72 3 81 4 6

5 7 81 2 3

u v w

1 2 3

4 5 8
6 7 8 4 5 6

1 3 6 1 4 5 2 3 7

4 5 8

1 2 3

2 7 8

u v w

G2/uvw in (IV) G2/uvw in (V)

Figure 7: G2/uvw are 8 :3-colorable for subgraphs (IV) and (V).

(b) Let (G2/vw)+u(vw) be the graph obtained by first identifying v and
w as one vertex vw, and then adding an edge u(vw). The fractional
coloring (0, 0, 1, 0) is extensible in Ft0(G2) if and only if χf ((G2/vw)+
u(vw)) ≤ t0. This is verified by Figure 8.

(c) Let (G2/uw) + v(uw) be the graph obtained by first identifying u
and w as one vertex uw, and then adding an edge v(uw). The
fractional coloring (1, 0, 0, 0) is extensible in Ft0(G2) if and only if
χf ((G2/uw) + v(uw)) ≤ t0. This is verified by Figure 9.

(d) Let (G2/uv)+w(uv) be the graph obtained by first identifying u and
v as one vertex uv, and then adding an edge w(uv). The fractional

12



3 5 6

2 4 8

u

2 4 7 1 4 7

2 5 61 3 85 6 72 3 8

1 6 7 3 5 8

1 4 7

v w

1234

5678
5689 67ab

349a 47ab

1239

568b

1258

u

vw

249b

137a

(G2/vw) + u(vw) in (IV) (G2/vw) + u(vw) in (V)

Figure 8: (G2/vw) + u(vw) in (IV) is 8 :3-colorable, while (G2/vw) + u(vw) in
(V) is 11 :4-colorable.

1 2 3

4 5 6

u w

6 7 8 4 5 8

1 3 62 4 53 7 81 2 6

1 4 5

4 5 8

v

2 3 7

1 2 3

4 5 6
5 7 8 4 6 7

2 3 7 2 4 6 1 3 5

4 6 8

2 3 7

1 5 8

u w

v

1 4 6

(G2/uw) + v(uw) in (IV) (G2/uw) + v(uw) in (IV)

Figure 9: Both (G2/uw) + v(uw) in (IV) and (V) are 8 :3-colorable.
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coloring (0, 0, 1, 0) is extensible in Ft0(G2) if and only if χf ((G2/uv)+
w(uv)) ≤ t0. This is verified by Figure 10.

1 2 3

4 5 6

u v
w

4 5 7 5 6 8

3 4 71 2 63 7 81 2 4

5 6 81 4 72 3 8

1 2 3

4 5 6
5 6 8 4 5 7

2 3 7 3 4 7 2 6 8

1 4 5

1 3 7

1 6 8

u v w

2 6 8

(G2/uv) + w(uv) in (IV) (G2/uv) + w(uv) in (V)

Figure 10: Both (G2/uv) + w(uv) in (IV) and (V) are 8 :3-colorable.

(e) Choose λ = 3t0 − 8. Since 8
3 <

11
4 < t0 < 3, we have 0 < λ < 1. Note

that

(3− t0, 0, 0, 0) = λ(0, 0, 0, 0) + (1− λ)(
1

3
, 0, 0, 0).

Observe that (3 − t0, 0, 0, 0) being fully extensible in F(G2) implies
that (3 − t0, 0, 0, 0) is extensible in Ft0(G2). To show (3− t0, 0, 0, 0)
is fully extensible in F(G2), it suffices to show both (0, 0, 0, 0) and
(13 , 0, 0, 0) are fully extensible in F(G2) by Lemma 3 (See Figure 11
and 12).

u
v

w

x

1

1 1

1

2

2

22

3 2

3

3

u
v

w

x

1

1 1

1

2

2

22

3 2

3

3

(IV) (V)

Figure 11: The fractional coloring (0, 0, 0, 0) is fully extensible in F(G2).

(f) Similarly, to show (0, 3 − t0, 0, 0) is extensible in Ft0(G2), it suffices
to show (0, 0, 0, 0) and (0, 13 , 0, 0) are fully extensible in F(G2) (See
Figure 11 and 13).

(g) Similarly, to show (0, 0, 3 − t0, 0) is extensible in Ft0(G2), it suffices
to show (0, 0, 0, 0) and (0, 0, 13 , 0) are fully extensible in F(G2) (See
Figure 11 and 14).

Applying Theorem 3, we have χf (G) ≤ t0 < t = χf (G). This is a contra-
diction and so χf (G1) = t = χf (G). However, G is fractionally-critical.
Contradiction!
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1 2 3

4 5 8
6 7 8 4 5 6

1 2 3

1 2 8

3 6 7 2 4 5 1 7 8

2 4 5

3 4 5

6 7 8

u v

w

1 2 3

4 5 8
6 7 8 4 5 6

1 2 3 3 6 7 3 4 5 1 7 8

2 4 5

3 4 5

6 7 8

1 2 8

u
v

w

(IV) (V)

Figure 12: The fractional coloring (13 , 0, 0, 0) is fully extensible in F(G2).

1 2 3

4 5 8
6 7 8 4 5 6

1 2 7

1 2 8

3 6 7 2 4 5 1 7 8

2 4 5

3 4 5

6 7 8
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1 2 3

4 5 8
6 7 8 4 5 6

1 2 7 3 6 7 3 4 5 1 7 8

2 4 5

3 4 5

6 7 8

1 2 8

(IV) (V)

Figure 13: The fractional coloring (0, 13 , 0, 0) is fully extensible in F(G2).
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2 4 5
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3 6 8
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(IV) (V)

Figure 14: The fractional coloring (0, 0, 13 , 0) is fully extensible in F(G2).
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Now we consider the degenerated cases. For graph (I), (II), and (III), {u, v}
is degenerated into a singleton set. Since G is 2-connected, G is a subgraph
of graphs listed in Figure 5. Thus G is 8 : 3-colorable. Contradiction! For
graph (IV) and (IV), {u, v, w} is degenerated into a set H of size at most 2. If
|H | = 1, then G is one of graphs in Figure 7. If H = {y, z}, G2/yz and G2 + yz
are subgraphs of graphs listed in Figures (7, 8, 9, 10). Applying Lemma 5, we
get

χf (G) ≤ max{χ(G1),
11

4
} < χf (G).

Contradiction! Hence, Lemma 7 follows. �

Lemma 8 Suppose that G is a fractionally-critical triangle-free graph with ∆ ≤
3 and 8

3 < χf (G) < 3. Then for any vertex x and any 7-cycle C, we have
|V (C) ∩N2

G(x)| ≤ 5.

Proof: We prove the statement by contradiction. Suppose that there is a vertex
x and a 7-cycle C satisfying |V (C) ∩N2

G(x)| ≥ 6. Recall that |N2
G(x)| ≤ 6. We

have |V (C) ∩ N2
G(x)| = 6. Combined with the fact that G is triangle-free and

2-connected, G must be one of the following graphs which are all 8 :3-colorable,
see Figure 15. Contradiction!

238

145
567 457

267 134 278 136 248 136

458

x
238

145
567 457

368 234 168 237 148 236

157

x

238

456
567 147

237 148 256 138 256 138

456

x
238

456
457 567

278 136 248 136 248 137

456

x

Figure 15: All possible graphs with |V (C) ∩N2
G(x)| = 6.

�

3 Admissible sets and Theorem 4

The following approach is similar to the one used in [5]. A big difference is a
new concept “admissible set”. Basically, it replaces the independent set X (of
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G∗ in [5]) by three independent sets X1 ∪X2 ∪X3.
Recall that v ∈ N i

G(u) if there exists a uv-path of length i in G. A set
X ⊂ V (G) is called admissible if X satisfies the following conditions:

1. There is a partition X = X1 ∪X2 ∪X3.

2. If u, v ∈ Xi for some i ∈ {1, 2, 3}, then v 6∈ N1
G(u) ∪N

3
G(u) ∪N

5
G(u).

3. If u ∈ Xi and v ∈ Xj for some i and j satisfying 1 ≤ i 6= j ≤ 3, then
v 6∈ N1

G(u) ∪N
2
G(u) ∪N

4
G(u).

The following key theorem links the χf (G) to a partition of G into admissible
sets. We will prove it later.

Theorem 4 Let G be a fractionally-critical triangle-free graph with ∆ at most
3 and 11

4 < χf (G) < 3. Suppose that V (G) can be partitioned into k admissible
sets, then

χf (G) ≤ 3−
3

k + 1
. (5)

Let X = X1∪X2∪X3 be an admissible set. Inspired by the method used in [5],
we define an auxiliary graph G′ = G′(X) as follows. For each i ∈ {1, 2, 3}, let
Yi = Γ(Xi) be the neighbor of Xi in G. By admissible conditions, Y1, Y2, and
Y3 are all independent sets of G. Let G′ be a graph obtained from G by deleting
X ; identifying each Yi as a single vertex yi for 1 ≤ i ≤ 3; and adding three edges
y1y2, y2y3, y1y3. We have the following lemma, which will be proved later.

Lemma 9 Suppose that G is t-fractionally-critical triangle-free graph with ∆
at most 3, where t ∈ (114 , 3). Let X be an admissible set of G and G′(X) be the
graph defined as above. Then G′(X) is 3-colorable.

Proof of Theorem 4: Suppose that G can be partitioned into k admissible
sets, say V (G) = ∪k

i=1Xi, where Xi = X1
i ∪ X2

i ∪ X3
i . For each 1 ≤ i ≤ k

and 1 ≤ j ≤ 3, let Y j
i = Γ(Xj

i ). From the definition of an admissible set and

G being triangle-free, we have Y j
i is an independent set for all 1 ≤ i ≤ k and

1 ≤ j ≤ 3.
By Lemma 9, G′(Xi) is 3-colorable for all 1 ≤ i ≤ k. Let ci be a 3-coloring

of G′(Xi) with the color set {s1i , s
2
i , s

3
i }. We use P(S) to denote the set of all

subsets of S. We define fi : V (G) → P({s1i , s
2
i , s

3
i }) as

fi(v) =







{ci(v)} if v ∈ V (G)− (∪3
j=1X

j
i ∪3

j=1 Y
j
i ),

{ci(y
j
i )} if v ∈ Y j

i ,

{s1i , s
2
i , s

3
i } − ci(y

j
i ) if v ∈ Xj

i .

Note that for a fixed 1 ≤ i ≤ k, yji denotes the vertex of G′(Xi) obtained from

contracting Y j
i for j = 1, 2, 3. Observe that each vertex in Xj

i receives two
colors from fi and every other vertices receive one color. It is clear that any two
adjacent vertices receive disjoint colors. Let σ : V (G) → P(∪k

i=1{s
1
i , s

2
i , s

3
i }) be

a mapping defined as σ(v) = ∪k
i=1fi(v). Now σ is a k+1-fold coloring of G such
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that each color are drawn from a palette of 3k colors and so χf (G) ≤ 3k
k+1 =

3− 3
k+1 .
We completed the proof of theorem 4. �

Before we prove Lemma 9, we first prove a lemma on coloring the graph
obtained by splitting the hub of an odd wheel. Let x0, x1, . . . , x2k be the set of
vertices of an odd cycle C2k+1 in the circular order. Let Y = {y1, y2, y3}. We
construct a graph H as follows:

1. V (H) = V (C) ∪ Y .

2. E(C) ⊂ E(H).

3. Each xi is adjacent to exactly one element of Y .

4. y1y2, y2y3, y1y3 ∈ E(H).

5. H can have at most one vertex (of y1, y2, and y3) with degree 2.

The graph H can be viewed as splitting the hub of the odd wheel into 3
new hubs where each spoke has to choose one new hub to connect and then
connecting all new hubs. One special case it that one of the new hubs has no
neighbor in C.

Lemma 10 Let H be the graph as constructed above. Then H is 3-colorable.

Proof: Without loss of generality, we assume dH(y1) ≥ 3 and dH(y2) ≥ 3. We
construct a proper 3-coloring c of H as follows. First, let c(y1) = 1, c(y2) = 2,
and c(y3) = 3.

Again without loss of generality, we assume (x0, y1) ∈ E(H). The neighbors
of y1 divide V (C) into several intervals. The vertices in each interval are either
connecting to y2 or y3 but not connected to y1. Read the neighbors of y2 and
y3 in Y counterclockwise, and omit repetitions of y2y2 and y3y3. There are 4
types of intervals:

Type I: y2, y3, y2, y3, . . . , y3, y2.
Type II: y2, y3, y2, y3, . . . , y2, y3.
Type III: y3, y2, y3, y2, . . . , y3, y2.
Type IV: y3, y2, y3, y2, . . . , y2, y3.
If y3 is a vertex of degree two in H , then the interval I has only one type,

which is degenerated into y2.
Given an interval I, let u(I) (or v(I)) be the common neighbor of y1 and the

left (or right) end of I respectively. We color u(I) and v(I) first and then try
to extend it as a proper coloring of I. Sometimes we succeed while sometimes
we fail. We ask the question whether we can always get a proper coloring. The
yes/no result depends only on the type of I and the coloring combination of
u(I) and v(I). In Table 1, the column is classified by the coloring combination
of u(I) and v(I), while the row is classified by the types of I. Here “yes” means
the coloring process always succeeds, while “no” means it sometimes fails.
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(2, 2) (2, 3) (3, 2) (3, 3)
Type I Yes Yes Yes No
Type II Yes Yes No Yes
Type III Yes No Yes Yes
Type IV No Yes Yes Yes

Table 1: Can a coloring be extended to I properly?

An ending vertex w of an interval I is called a free end if w’s two neighbors
outside I receiving the same color. Observe that in all yes entries, there exist
at least one free end w. Note that each vertex on I has degree 3. We can always
color the vertices of I greedily starting from the end not equaling w. Since w is
a free end, there is no difficulty coloring w at the end.

Now we put them together. We color the neighbors of y1 one by one counter-
clockwise starting from x0 according to the following rules:

1. When we meet an interval I of type II or III, we keep the colors of u(I)
and v(I) the same.

2. When we meet an interval I of type I or IV, we keep the colors of u(I)
and v(I) different.

There are two possibilities. If the last interval obeys the rules, then by
Table 1, we can extend this partial coloring into a proper 3-coloring of H . If
the last interval does not obey the rules, then we swap the colors 2 and 3 of the
neighbors of y1. By Table 1, this new partial coloring can be extended into a
proper 3-coloring of H . We completed the proof. �

A maximal (by inclusion) 2-connected subgraph B of a graph is called a block
of G. A Gallai tree is a connected graph in which all blocks are either complete
graphs or odd cycles. A Gallai forest is a graph all of whose components are
Gallai trees. A k-Gallai tree (forest) is a Gallai tree (forest) such that the degree
of all vertices are at most k−1. A k-critical graph is a graph G whose chromatic
number is k and the chromatic number of any subgraph is strictly less than k.
Gallai showed the following Lemma.

Lemma 11 (Gallai [3]) If G is a k-critical graph, then the subgraph of G
induced on the vertices of degree k − 1 is a k-Gallai forest.

Now, we are ready to prove Lemma 9.
Proof of Lemma 9: Write G′ = G′(X) for short. Note that the only possible
vertices of degree greater than 3 in G′ are y1, y2, and y3. We can color y1, y2,
and y3 by 1, 2, and 3, respectively. Since the remaining vertices have degree at
most 3, we can color G′ properly with 4 colors by greedy algorithm.

Suppose that G′ is not 3-colorable. Let H be a 4-critical subgraph of G′.
Then dH(v) = 3 for all v ∈ H except for possibly y1, y2, and y3. Let T
be the subgraph induced by all v ∈ H such that dH(v) = 3. Then T is not
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empty since |T | ≥ |H | − 3 ≥ 1. By Lemma 11 the induced subgraph on T
is a 4-Gallai forest. T may contain one or more vertices in {y1, y2, y3}. Let
T ′ = T \ {y1, y2, y3} = V (H) \ {y1, y2, y3}. Observe that any induced subgraph
of a 4-Gallai forest is still a 4-Gallai forest and so the induced subgraph on T ′

is also a 4-Gallai forest.
Recall the definition of an admissible set. If u ∈ Xi and v ∈ Xj for some i

and j satisfying 1 ≤ i 6= j ≤ 3, then v 6∈ N1
G(u) ∪N

2
G(u) ∪N

4
G(u). This implies

that any vertex x in T ′ can have at most one neighbor in {y1, y2, y3}. Note
dH(x) = 3. We have dT ′(x) ≥ 2.

Let B be a leaf block in the Gallai-forest T ′. Then B is a complete graph or
odd cycles by the definition of the Gallai-forest. B can not be a single vertex
or K2 since every vertex in B has at least two neighbors in T ′. Since G is
triangle-free, then B must be an odd cycle C2r+1 with r ≥ 2.

Case (a): |NH(B) ∩ {y1, y2, y3}| ≥ 2. SinceH is 4-critical,H\B is 3-colorable.
Let c be a proper 3-coloring ofH\B. SinceH\B contains a triangle y1y2y3,
so y1, y2, and y3 receive different colors. Since |NH(B) ∩ {y1, y2, y3}| ≥ 2
and Lemma 10, we can extend the coloring c to all vertices on B as well.
Thus H is 3-colorable. Contradiction.

Case (b): |NH(B) ∩ {y1, y2, y3}| = 1. Since B is a leaf block, at most one
vertex, say v0, can connect to another block in T ′. List the vertices of B
in the circular order as v0, v1, v2, . . . , v2r. Then all v1, v2, . . . , v2r connect
to one yi, say y1. This implies that for i = 1, 2, . . . , 2r, there exist a vertex
xi ∈ X1 and a vertex wi ∈ Y1 so that vi-wi-xi form a path of length 2.
Since G is triangle free, we have wi 6= wi+1 for all i ∈ {1, . . . , 2r−1}. Note
that xi-wi-vi-vi+1-wi+1-xi+1 forms a path of length 5 unless xi = xi+1.

Recall the admissible conditions: if u, v ∈ Xi for some i ∈ {1, 2, 3}, then
v 6∈ N1

G(u)∪N
3
G(u) ∪N

5
G(u). We must have x1 = x2 = · · · = x2r. Denote

this common vertex by x. Now have
∣
∣N2

G(x) ∩B
∣
∣ ≥ 2r.

Note |N2
G(x)| ≤ 6. We have 2r ≤ 6. The possible values for r are 2 or 3.

If r = 2, B is a 5-cycle. This is a contradiction to Lemma 7. If r = 3, B
is a 7-cycle. This is a contradiction to Lemma 8.

The proof of Lemma 9 is finished. �

4 Partition into 42 admissible sets

Theorem 5 Let G be a triangle-free graph with maximum degree at most 3.
Suppose that G is 2-connected and girth(G) ≤ 6. Then G can be partitioned
into at most 42 admissible sets.

Proof of Theorem 5: We will define a coloring c : V (G) → [126] so that
for i = 1, . . . , 42, the i-th admissible set is c−1({3i− 2, 3i− 1, 3i}). We refer to
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{3i−2, 3i−1, 3i} as a color block for all i ∈ {1, . . . , 42}. Since 4 ≤ girth(G) ≤ 6,
there is a cycle C of length 4, 5, or 6. Let vn−1 and vn be a pair of adjacent
vertices of C. Since G is 2-connected, then G \ {vn−1, vn} is connected. We
can find a vertex v1 other than vn−1 and vn such that G \ v1 is connected.
Inductively, for each i ∈ {2, . . . , n− 2}, we can find a vertex vj other than vn−1

and vn such that G \ {v1, . . . , vj−1} is connected. Therefore, we get an order of
vertices v1, v2, . . . , vn−1, vn such that for j = 1, 2, . . . , n− 2, the induced graph
on vj , . . . , vn is connected.

We color the vertices greedily. Suppose that we have colored v1, v2, . . . , vj .
For vj+1, choose a color h satisfying the following:

1. For each u ∈ N1
G(vj+1) ∩ {v1, v2, . . . , vj}, h is not in the same block of

c(u).

2. For each u ∈
(
N3

G(vj+1) ∪N5
G(vj+1)

)
∩ {v1, v2, . . . , vj}, h 6= c(u).

3. For each u ∈
(
N2

G(vj+1) ∪N4
G(vj+1)

)
∩ {v1, v2, . . . , vj}, h could equal to

c(u) but not equal to the other two colors in the color block of c(u).

For j ≤ n−2, there is at least one vertex inN1
G(vj+1) and one vertex inN2

G(vj+1)
still uncolored. Thus

∣
∣N1

G(vj+1) ∩ {v1, v2, . . . , vj}
∣
∣ ≤ 2,

∣
∣N2

G(vj+1) ∩ {v1, v2, . . . , vj}
∣
∣ ≤ 5, |N3

G(vj+1)| ≤ 12, |N4
G(vj+1)| ≤ 24, and

|N5
G(vj+1)| ≤ 48. Since

3× 2 + 2× (5 + 24) + (12 + 48) = 124 < 126,

it is always possible to color the vertex vj+1 properly.
It remains to color vn−1 and vn properly. Note both vn−1 and vn are on the

cycle C. Let us count color redundancy according to the type of the cycle C.

Case C4: For any vertex v on C4, there are two vertices in N1
G(v)∩N

3
G(v). We

also have |N2
G(v)| ≤ 5 and |N4

G(v)| ≤ 23. Thus the number of forbidden
colors for v is at most

3× 3 + 2× (5 + 23) + (12 + 48)− 2 = 123 < 126.

Case C5: For any vertex v on C5, there are two vertices in N1
G(v)∩N

4
G(v). We

also have |N5
G(v)| ≤ 47. The number of forbidden colors for v is at most

3× 3 + 2× (6 + 24) + (12 + 47)− 2× 2 = 124 < 126.

Case C6: For any vertex v on C6, there are two vertices in N1
G(v)∩N

5
G(v) and

two vertices in N2
G(v) ∩ N4

G(v). We also have |N3
G(v)| ≤ 11. Thus the

number of forbidden colors for v is at most

3× 3 + 2× (6 + 24) + (11 + 48)− 2− 2× 2 = 122 < 126.
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In each subcase, we can find a color for vn−1 and vn. �

Proof of Theorem 1: Suppose that there exists a graph G which is triangle-
free, ∆ ≤ 3, and χf (G) > 3 − 3

43 . Without loss of generality, we can assume
G has the smallest number of vertices among all such graphs. Then G is 2-
connected and fractionally-critical.

If girth(G) ≥ 7, Hatami and Zhu, in [5], showed χf (G) ≤ 2.78571 ≤ 3 − 3
43 .

Contradiction!
If girth(G) ≤ 6, Theorem 5 states that G can be partitioned into 42 admis-

sible sets. By Theorem 4, we have χf(G) ≤ 3 − 3
k+1 = 3 − 3

43 . Contradiction!
�

5 Concluding Remarks

The reader may notice that we developed a heavy mechanism to prove Lemma
7 and 8. This is because in general G′(X) (in the proof of Lemma 9) could be
4-chromatic as shown in the figure 16.

Figure 16: A difficult case: χ(G′(X)) = 4.

However, if G is fractionally-critical, then these bad cases can be avoided by
the admissible conditions together with Lemma 7 and 8. This is the motivation
of section 2.

In this paper, we proved χf (G) ≤ 3 − 3
43 < 2.9303 for any triangle-free

graphs with maximum degree at most 3. The gap to the conjectured value 2.8
is still substantial. Although there is a possibility to improve the upper bound
on χf (G) slightly by modifying the definition of an admissible set, it certainly
needs new ideas to settle Heckman and Thomas’ conjecture.

In [5], Hatami and Zhu also considered the graph G with the girth g ≥ 5 and
the maximum degree at most 3. They proved χf (G) ≤ cg, where the constant
cg goes to 3 − 1

3 as the girth g goes to infinity. Our method does not apply to
these cases.

Although one can use our method to obtain an upper bound on χf (G) for
general triangle-free graphs, the bound is worse than other known upper bounds.
For example, Molloy and Reed, in [8], proved

χf (G) ≤
∆+ ω + 1

2
, (6)
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which is the fractional version of Reed’s famous conjecture,

χ(G) ≤

⌈
∆+ ω + 1

2

⌉

. (7)

Even for ∆ = 4, it already implies χf (G) ≤ 3.5. For large ∆, Johansson, in
[7], proved the much stronger fact that there exists a fixed constant c so that

χ(G) ≤ c∆(G)
ln∆(G) for every triangle-free graph G, provided ∆ is large enough.

So χf (G) ≤ c∆(G)
ln∆(G) for every triangle-free graph with sufficiently large maxi-

mum degree. Also, Reed, in [9], proved inequality (7) holds provided that ∆ is
sufficiently large and ω is sufficiently close to ∆.

Borodin and Kostochka, in [1], conjectured if ∆(G) ≥ 9 and ω(G) ≤ ∆(G)−1
then

χ(G) ≤ ∆(G)− 1. (8)

Molloy and Reed proved this conjecture holds for sufficiently large ∆. It would
be interesting to consider the fractional version of this conjecture for small ∆.

The frame-work of the convex structure of fractional colorings is very useful
in studying the properties of fractionally-critical graphs. These results hold for
the general graphs and are of independent interest. We have carefully separated
them from the rest of the paper.
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