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Abstract

Many massive graphs (such as the WWW graph and Call
graphs) share certain universal characteristics which can
be described by the so-called “power law.” In this paper,
we examine three important aspects of power law graphs,
(1) the evolution of power law graphs, (2) the asymmetry
of in-degrees and out-degrees, (3) the “scale invariance” of
power law graphs. In particular, we give three increasingly
general directed graph models and one general undirected
graph model for generating power law graphs by adding at
most one node and possibly one or more edges at a time.
We will show that for any given edge density and desired
power laws for in-degrees and out-degrees, not necessarily
the same, the resulting graph will almost surely have the
desired edge density and the power laws for the in-degrees
and out-degrees. Our most general directed and undirected
models include nearly all known power law evolution mod-
els as special cases. Finally, we show that our evolution
models generate “scale invariant” graphs. We describe a
method for scaling the time in our evolution model such that
the power law of the degree sequences remains invariant.

1 Introduction

1.1 Empirical power law graphs

Recently, a variety of real world massive graphs have
been shown to exhibit a power law for their degree distri-
butions. In a power law degree distribution, the fraction of
nodes with degree d is proportional to 1/dα for some con-
stant α > 0. A graph is called a power law graph if it
has a power law degree distribution. In 1999, Kumar et al.
[19] reported that a web crawl of a pruned data set from
1997 containing about 40 million pages revealed that the
in-degree and out-degree distributions of the web followed
a power law. Albert and Barabasi [9, 10] independently
reported the same phenomenon on the approximately 325
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thousand node nd.edu subset of the web. Both reported a
power of approximately 2.1 for the in-degree power law and
2.7 for the out-degree (although the degree sequence for the
out-degree deviates from the power law for small degree).
More recently, these figures have been confirmed for a Web
crawl of approximately 200 million nodes [11]. Thus, the
power law fit of the degree distribution of the Web appears
to be remarkably stable over time and scale.

Faloutsos et al. [17] have also observed a power law for
the degree distribution of the Internet network. They re-
ported that the distribution of the out-degree for the interdo-
main routing tables fits a power law with a power of approx-
imately 2.2 and that this power remained the same over sev-
eral different snapshots of the network. At the router level
the out-degree distribution for a single snapshot in 1995 fol-
lowed a power law with a power of approximately 2.6.

In addition to the Web graph and the Internet graph, sev-
eral other massive graphs exhibit a power law for the de-
gree distribution. The graph derived from telephone calls
during a period of time over one or more carriers’ networks
is called a call graph. Using data collected by Abello et al.
[1], Aiello et al. [3] observe that their call graphs are power
law graphs. Both the in and the out degree have a power of
2.1. The graphs derived from the U.S. power grid and from
the co-stars graph of actors (where there is an edge between
two actors if they have appeared together in a movie) also
obey a power law [9]. Thus, a power law fit for the degree
distribution appears to be a ubiquitous and robust property
for many massive real-world graphs.

1.2 Modeling Power Law Graphs

Many of the graphs above are so large and dynamic that
answering simple structural questions exactly by empirical
means is very difficult or infeasible. It is important, there-
fore, to develop models which match empirically observed
behavior and yet are themselves amenable to structural anal-
ysis. Good models often guide further empirical analysis
which often subsequently requires the models to be refined,
and so on.

Note that the standard random graph models,
G(n, p), G(n, |E|), and G̃n (see, for example, [7, 15, 16]),
will not suffice as models of power law graphs. In these



models, the choice of edges have a high degree of in-
dependence. Hence, the distribution of degrees decays
exponentially from the expected or average degree.

In order for a power law degree distribution to emerge,
the choice of edges must be correlated. To achieve this cor-
relation, two basic approaches have been taken thus far. The
first approach attempts to model power law graphs and the
manner in which the power law degree distribution arises
[2, 5, 9, 10, 11, 17, 18, 20, 21] with the aim of of approx-
imating the statistical behavior of some targeted massive
graphs. The second approach is exemplified in Aiello et
al. [3]. They do not attempt to explain how graphs with a
power law degree distribution arise. Rather, they focus on
classes of graphs with a power law degree distribution and
they derive the structures and properties (such as connected
components [3], diameters [22], etc.) as a function of the
power. Chung and Lu [12, 13] further extend the analysis to
random graphs with arbitrary degree distribution. Newman
et al. [26] take a similar approach but use different methods
of analysis. Other remarkable works in this direction in-
clude Molloy and Reed [24, 25], and Łuczak [23]. Certain
questions are likely to prove more amenable to analysis us-
ing the later approach than the former and vice versa. Thus,
the two approaches are complementary.

In this paper, we continue to explore the graph evolution
approach. We concentrate on modeling the three simplest
empirical measures of directed power law graphs: the den-
sity of the graph, the power of the power law for the in-
degree, and the power for the out-degree. Our main contri-
bution is an evolution model that can generate graphs where
these three parameters can be set independently and thus
can model these empirical measures for a variety of real
world power law graphs. Our model is the first to have this
capability. In addition, we show that our model has a nat-
ural scale invariance: the degree distribution maintains the
same power law even as the time scale is varied. Before de-
scribing our results in detail we will first review some of the
previous graph evolution models.

1.3 Related work

Barabasi and Albert [9] describe the following graph
evolution process. They start with a small initial graph. At
each time step they add a new node and an edge between
the new node and each of m random nodes in the existing
graph, where m is a parameter of the model. The random
nodes are not chosen uniformly. Instead, the probability of
picking a node is weighted according to its existing degree
(the edges are assumed to be undirected). That is, if there
are et edges at time t and node v has degree δv,t at time
time t, then the probability of picking node v is δv,t/2et.
Using heuristic analysis (e.g., the analysis assumes that the
discrete degree distribution is differentiable) they derive a

power law for the degree distribution with a power of 3, re-
gardless of m. Clearly, the fact that the power is 3 regardless
of the parameter m is a drawback of the model. Moreover,
it can easily be shown that all of edges (except, perhaps,
those of the small initial graph) of a resulting graph can be
decomposed into m disjoint forests (i.e., the graph has ar-
boricity m). Presumably, most massive real-world graphs
with power law degree distributions have a richer structure
than this. As we will see, by inserting the appropriate pa-
rameters into our general model, our analysis does yield a
degree distribution power law with power 3. A power law
with power 3 for the degree distribution of this model was
independently derived by [8].

Although their analysis is heuristic, the main intuition
behind the development of a power law degree distribu-
tion for this model is as follows. Nodes which acquire
a relatively large degree early on in the process have an
“advantage” and continue to accumulate added degree be-
cause of the preferential selection of nodes with high de-
gree. Barabasi and Albert show that if the preferential selec-
tion of high degree nodes is replaced by a uniform selection
of nodes then the power law behavior of the degree distri-
bution does not result. Moreover, if the number of nodes is
fixed, as opposed to constantly increasing, then the power
law degree distribution again fails to occur.

Kumar et al. also describe a random graph evolution pro-
cess [20]. Unlike that of [9], their random graphs are di-
rected. Their model has the advantage that the power in
the power-law is a function of a parameter of the model.
We will denote this model as the α-model and it can be
described as follows. A node and an edge are added at ev-
ery time step. With probability 1−α, a directed self-loop is
added to the new node. With probability α, an edge is added
from the new node to a randomly selected node. This ran-
dom node is selected in proportion to its current in-degrees.
The α-model has a similar drawback as the model of [9]:
the resulting random graph is a tree. Moreover, the density
of the graph is exactly one. As we will see, this model is
a special case of our general model for which our analysis
yields a power law for the distribution of the in-degrees with
a power of 1 + 1/α.

1.3.1 Asymmetry of in-degrees and out-degrees

Since the empirical directed power law graphs have differ-
ent powers for the in-degree and out degree distributions,
it is important to have models that can vary the distribu-
tions of the in-degrees and out-degrees independently. In
the same paper in which they describe the α-model above,
Kumar et el. [20] provide such a model which they denote
the (α, β) model. As before a node and an edge are added at
every time step. Let wt be the node added at step t. At each
time step, two nodes u and v are chosen from the existing



graph. Node u is selected in proportion to its out degree.
Node v is selected in proportion to its in-degree. Then two
independent coins are tossed. The “origin” coin is “u” with
probability α and “wt” with probability 1−α. The “destina-
tion” coin is “v” with probability β and “wt” with probabil-
ity 1 − β. The new edge is added from the outcome of the
origin coin to the outcome of the destination coin. As we
will see below, the above model in [20] allows for different
powers laws for the in-degree and out-degree. Moreover,
the graphs generated do not appear to have small arboricity.
However, it has two restrictive properties. First, with high
probability, a constant fraction (approximately (1−α)β) of
the nodes will have in-degree 0. Likewise, with high prob-
ability, a constant fraction (approximately α(1 − β)) of the
nodes will have out-degree 0. While some real-world power
law graphs may have this property, it is likely that some,
e.g., the Web, do not,and a more general model would be
desirable. Also, as with their previous model, this model is
restricted to graphs with density 1.

As with their first model, the (α, β) model is a special
case of our general model. Our analysis yields power laws
with powers 1 + 1/α and 1 + 1/β for the out-degree and
in-degree, respectively.

Recently, Kumar at el. [21] proposed three evolution
models — “linear growth copying”, “exponential growth
copying”, and “linear growth variants”. The Linear growth
coping model adds one new vertex with d out-links at a
time. The destination of i-th out-link of the new vertex is
either copied from the corresponding out-link of a “proto-
type” vertex (chosen randomly) or a random vertex. They
showed that the in-degree sequence follows a power law.
These models were designed explicitly to model the World
Wide Web. Indeed, they show that their model has a large
number of complete bipartite subgraphs, as has been ob-
served in the WWW graph, whereas several other models,
including that of [3], do not. But this (and the linear growth
variants model) has the similar drawback as the model of
[9] and the α-model of [20]: The out-degree of every vertex
is a constant. Edges and vertices in the exponential growth
copying model increases exponentially. This exponential
growth copying model does not have the same drawback as
the other two models have. However, it is not clear whether
its out-degrees satisfy the power law distribution.

The model of [21] is fairly complex. The goal of [21],
as stated above, is an evolution model that generates graphs
that have a large number of complete bipartite graphs, in
addition to a power law for the in-degrees. As discussed
above, we take a different direction. Rather than develop-
ing a model for a specific structural property, our goal is
to develop a simple, general model that can easily generate
graphs where the most basic properties of density and in-
degree and out-degree power law distributions can be var-
ied independently. Finding simple models which properly

generate these parameters we take as an important starting
place for understanding more complex properties of mas-
sive power law graphs. As we will see, our model is general
enough that specific instantiations of it with specific mul-
tivariate edge distributions per time step will likely gener-
ate different additional “signatures ” or structures beyond
the basic three parameters we’ve specified and we leave as
an open question the identification of additional signatures
from our general model.

1.3.2 Scale-free property for power law graphs

Power-laws or heavy tailed distributions are often associ-
ated with self-similarity and scaling laws. Indeed, by com-
paring the web crawls of [9, 10] and [11, 19] we see that
the same power law appears to govern various subgraphs
of the web as well as the whole. However, while some
subgraphs obey the same power law and appear to be self-
similar, clearly, there exists subgraphs of the web which
would not obey the power law (e.g., the subgraph defined
by all nodes with outdegree 100). The natural problem is
thus: formally define and analyze a scale-free property for
power law graphs. While there may be several types of scal-
ing behavior exhibited by power law graphs, to the best of
our knowledge, we give the first such definition and show
that our model exhibits this scale-free property.

1.4 Our Results

Below we will describe a sequence of graph evolution
models. The first three, Models A, B, and C, are for di-
rected graphs and are increasingly more general. The first
two are primarily illustrative although they may have merits
as models in their own right due to their parsimony. Model
C encompasses all of the directed graph models above, ex-
cept that of [21]. We also describe a fourth model, Model
D, which is the natural analogue of Model C for undirected
graphs.

Consider the following simple model which we call
model A. At each time step, a new node is added with prob-
ability 1 − α. The node starts with in-weight 1 and out-
weight 1. Whenever the node is the origin (destination) of
a new edge, the out-weight (in-weight) is increased by 1.
That is, the in-weight (out-weight) of a node u at time t is
just win

u,t = 1 + δin
u,t (wout

u,t = 1 + δout
u,t ). With probability

α a random edge is added to the existing nodes. The ori-
gin (destination) of the new edge is chosen proportional to
the current in-weights (out-weights) of the nodes. That is, u
(v) is chosen as the origin (destination) of the new edge at
time t with probability wout

u,t /t (win
v,t/t). Note the expected

number of edges in the graph is α and the expected number
of nodes is 1 − α. Call the ratio of the former to the latter
∆ = α/(1−α) as it is a measure of the density of the graph.



As a corollary to our general result, we will show that this
model yields a power law with power 2 + 1/∆ for both the
in-degree and the out-degree. Thus, this model allows for
graphs of varying density. For this model we also derive
the joint distribution for the in-degrees and out-degrees. We
show that the number of nodes with in-degree i and out-
degree j is proportional to (i + j)3+1/∆.

Note that when an edge is added among existing nodes,
the probabilities concerning which edge is added are func-
tions of the current degree distribution. Thus, the probabil-
ity distribution of the new degree distribution is a function
of the current degree distribution. This is difficult to solve
recursively since the current degree distribution, itself, has
a probability distribution. However, this means that the ex-
pected value of the new degree distribution is a function of
the current degree distribution. Moreover, as we will see,
the change in the degree distribution from step to step is
bounded. Thus, we observe that the evolution of the degree
distribution is a semi martingale where deviation from the
expected value of the final degree distribution occurs with
exponentially small tails. Due to linearity of expectation,
we are able to solve for the expected value of the final de-
gree distribution recursively. These recursive equations and
their solutions are non-standard, to the best of our knowl-
edge, and may be of independent interest.

One drawback of model A is that the density parame-
ter ∆ and the power in the power law cannot be controlled
independently. They are both functions of the parameter
α. Moreover, the in and out degree have the same power.
A simple modification to model A yields model B which
overcomes both drawbacks. When a new node is added
with probability 1 − α at a time step, it will be given in-
weight γin and out-weight γout. Thus, the in-weight (out-
weight) of a node u at time t is just win

u,t = γin + δin
u,t

(wout
u,t = γout + δout

u,t ). As before, when an edge is added
with probability α, the origin of the edge is chosen with
probability proportional to the current out-weights and the
destination is chosen with probability proportional to the
current in-weights. We will show that this graph evolu-
tion process yields graphs with power law degree distri-
butions with powers 2 + γ in/∆, and 2 + γout/∆ for the
in- and out-degrees, respectively. Note that the powers for
the in-degrees and out-degrees and the density can all be
controlled separately. This is the simplest model of which
we are aware for which this is the case. Moreover, the
model does not suffer from any of the other drawbacks men-
tioned above such as small arboricity or a constant fraction
of nodes with no incoming edges.

While the above model may indeed be the simplest with
which to model a real-world power law graph on the basis of
measurements of the density of the graph and the powers for
the in-degrees and out-degrees, it may not capture other fea-
tures of the graph which are measurable. Hence, we would

also like a more general model which, for example, would
include the above model as well as that of [20]. Consider
now model C. Suppose that at each time step four numbers
me,e, mn,e, me,n, mn,n are drawn according to some prob-
ability distribution. We assume that the four random vari-
ables are bounded. These four random variables need not
be independent. In this time step me,e edges are added be-
tween existing nodes in the graph. Of course, as before, the
origin and destination of these edges are chosen indepen-
dently according to the current out-degrees and in-degrees,
respectively. Likewise, mn,e edges are added from the new
node to existing nodes chosen independently according to
the current in-degrees. Likewise, me,n edges are added
from existing nodes (chosen independently according to the
current out-degrees) to the new node. Finally, mn,n directed
self loops are added to the new node. We will ignore nodes
which are born with no indegree or outdegree (i.e., at the
time step the node is born mn,n = me,n = mn,e = 0), or
alternatively we will not include degree zero in the degree
distribution.

Each of these four random variables has a well-defined
expectation which we denote µe,e, µn,e, µe,n, µn,n, respec-
tively.

We show that this general process still yields a power
law degree distribution. We derive a power of 2 + (µn,n +
µn,e)/(µe,n + µe,e) for the out-degree. To understand this
expression, consider the rightmost ratio in this expression.
By definition, the first element of a superscript refers to the
origination of the random edges. Hence, the numerator of
this ratio is the expected number of edges per step with the
new new node as the origin and the denominator is the ex-
pected number of edges per step with an existing node as
the origin. Notice that both terms in the numerator have
the new node as the origination and both terms in the de-
nominator have existing nodes as the origination. We also
derive a power of 2 + (µn,n + µe,n)/(µn,e + µe,e) for the
in-degree. Analogously to the expression for outdegree, re-
call that the second element of a superscript refers to the
destination of the random edges. Hence, the numerator of
this ratio is the expected number of edges per step with the
new new node as the destination and the denominator is the
expected number of edges per step with an existing node as
the destination.

Recall that in the α-model of [20], an edge is added from
the new node to an existing node with probability α and a
self-loop is added with probability 1 − α. Thus, µn,e =
α, µn,n = 1 − α and µe,e = µe,n = 0 and substituting
this into our result gives an in-degree power of 2 + (1 −
α)/α = 1 + 1/α. Similarly, the (α, β) model of [20] gives
µe,e = αβ, µn,e = (1−α)β, µe,n = α(1−β), µn,n = (1−
α)(1−β). Using our general results this gives an out-degree
power of 1 + 1/α and an in-degree power of 1 + 1/β. Also
note that our model A has µe,e = α, µe,n = µn,e = 0 and



µn,n = 1 − α. This yields a power of 1 + 1/α, as claimed,
for both the in- and out-degrees. Model C can easily be
generalized to include the parameters of the initial weights
of the new nodes given in Model B but we omit that here.

Finally, we also describe a general undirected model
which we denote Model D. It is a natural variant of Model
C. At each time step three numbers (me,e, mn,e, mn,n) are
drawn according to some probability distribution. We as-
sume that the three random variables are bounded. In this
time step me,e undirected edges are added between existing
nodes in the graph. The endpoints of these edges are chosen
independently according to the current total degrees. Like-
wise, mn,e edges are added between the new node and ex-
isting nodes chosen independently according to the current
total degrees. Finally, mn,n undirected self loops are added
to the new node. We show that this undirected graph evolu-
tion process also yields a power law degree distribution. We
derive a power of 2 + (2µn,n + µn,e)/(µn,e + 2µe,e). Re-
call that model of Barabasi and Albert [9] adds edges from
the new node to m nodes selected randomly according to
their degrees. Thus, µn,n = µe,e = 0 and µn,e = m and
substituting this into our general result gives a power of 3
which matches their heuristically derived bound. Note that
the natural undirected version of model A has µn,e = 0 and
thus a power of 2 + µn,n/µe,e = 1 + 1/α. As with model
C, initial weights can easily be incorporated into Model D.

We remark that our conditions for Model C and D are
much weaker than the previous known models. For exam-
ple, previous known models assume that the way in which
edges are added are identical at each time. In our mod-
els, to analyze the asymptotic value of the expectation of
the degree distribution, we only need to assume edges are
added in an “asymptotically similar” way. Moreover, we
emphasize that our model allows the random variables, e.g.,
(me,e, mn,e, me,n, mn,n) for the directed case, to be arbi-
trarily correlated. Thus, different distributions on these tu-
ples of random variables which share the same means, and
thus the same density, and in-degree and out-degree distri-
butions, may generate graphs with quite different distribu-
tions for other structures. We leave the exploration of these
variations as open problems.

Scale Invariance The evolution of massive graphs can
be viewed as a process of growing graphs by adding nodes
and edges per unit time. Given this it is natural to attempt
to scale the model in time. That is, consider a “scaled” unit
of time to be, say, c consecutive units of time. All nodes
“born” in the underlying process in a block of c consecutive
units of time mapped to a particular scaled unit of time are
identified as a single “scaled” node. All the edges in the
underlying process are mapped to edges in the scaled pro-
cess in the natural way. The bigger the scaled time unit one
chooses, the smaller the size of the resulting graph. This

procedure is similar to scaling maps in space. A graph evo-
lution model is called scale-free or time scale invariant if
the scaled graphs have the same asymptotic degree distri-
bution with high probability. In other words, an evolution
model is time scale invariant if we change the time scale
by any given factor and examine the scaled graph, then the
original graph and the scaled graph satisfy the power law
with the same powers for the in-degrees and out-degrees. A
detailed definition will be given below.

Briefly, we scale time in our model and then show that
the power law of the degree distribution of Model C is in-
variant with respect to the time scaling. To begin the dis-
cussion, consider an arbitrary evolution process G in which
at most one node is added at every time step. Suppose the
evolution process is run for T time steps and let GT be the
graph generated. Label nodes by the time step in which they
are added to the graph. To scale this evolution process by
a factor of σ, we begin by aggregating time steps into su-
per steps of σ consecutive time steps. That is, super-step
1 consists of time steps 1 through σ, super-step 2 consists
of times steps σ + 1 through 2σ, and so on (where we as-
sume for convenience that σ divides T ). The scaled graph
Hσ(GT ) is created from GT as follows. A node in GT with
step label i is mapped to the node in Hσ(GT ) with super
step label di/σe. (If there is no node in GT with time label
in super step τ (i.e., σ(τ − 1) + 1, . . . , στ ) then no node
is created in Hσ(GT ) with label τ .) An edge in GT from
node i to node j gets mapped to an edge in Hσ(GT ) from
node di/σe to node dj/σe. The morphism Hσ applied to
each GT generated by G defines a natural evolution process
which we denote by Hσ(G). We say the G is invariant for
time scales [α, β] if for all σ ∈ [α, β], Hσ(G) obeys the
same degree distribution as G asymptotically.

Now consider a model C evolution process with pa-
rameters with parameters µn,n, µn,e, µe,n, and µe,e and a
bound B on the number of edges added per time step. The
morphism Hσ on this evolution process defines a natural
evolution process, which, strictly speaking, is not covered
by Model C. Nonetheless, we will show that this evolu-
tion process has the same power law asymptotically as a
Model C evolution process with parameters µ′n,n = σµn,n,
µ′n,e = σµn,e, µ′e,n = σµe,n, and µ′e,e = σµe,e and
size bound σM . Given our general results on Model C,
the latter Model C process has the same power law as the
first Model C process (e.g., the power for the out-degree is
2 + (µn,n + µn,e)/(µe,n + µe,e) ) and therefore the time
scaled process defined by the morphism Hσ has the same
power law as the first Model C process. Thus, the power
law degree distribution of a Model C evolution process is
invariant with respect to the time scaling defined above.

The rest of the paper is organized as follows. In section
2, we will define Models A,B,C,D, and state our theorems
(Theorems 1,2,3,4) on the power law degree distribution of



these models. We also state the scale-free property of these
models (Theorem 5). In section 3, we prove Theorem 1 and
5 while The proof for Theorem 3 will be given in the full
paper. The proofs of Theorems 2 and 4 are omitted.

Variations of the model We have also considered
a variant of our model which can be described as fol-
lows. As in model C, a four-tuple of random variables
(me,e, mn,e, me,n, mn,n) is sampled every time step. How-
ever, rather than adding me,e edges to the existing graph by
choosing a separate origin and destination (according to de-
gree) for each edge, we choose a single origin according to
degree and choose a separate destination according to de-
gree for each edge. The recurrence for the expected out-
degree distribution is slightly different than that for model
C but nonetheless the asymptotic power of the power law
is the same: 2 + (µn,n + µn,e)/(µe,n + µe,e). And again
we see that the ratio can be described as the expected num-
ber of edges with the new node as the origin over the ex-
pected number of edges with an existing node as the origin.
More generally, several nodes can be chosen according to
degree and from each such nodes several outgoing edges
can be added in the usual degree-biased way. The impor-
tant quantity is µe,e. Analogously, the destination can be a
single node chosen according to degree and the origins for
all me,e edges can be chosen according to degree. In this
case, the outdegree is identical to that of model C and the
indegree is asymptotically the same. Similar variants apply
to the undirected model.

A recent paper has studied a similar model to that above.
First, consider a simplified model of the undirected graph
model variant above. Either a new node is born with a ran-
dom number edges to the existing graph (mn,n = me,e = 0
and mn,e ≥ 0) with probability 1 − α, or edges are added
between a single node in the graph and a random number of
other nodes in the graph (mn,n = mn,e = 0 and me,e ≥ 0)
with probability α. If µ̃n,e is the expected value of mn,e in
the former case and µ̃e,e is the expected value of me,e in the
later case then the power law degree distribution has power
2+(1−α)µ̃n,e/((1−α)µ̃n,e +2αµ̃e,e). A directed version
of this model is analogous.

The model of Cooper and Frieze [14] effectively takes
this simplified model as a starting point and then allows
all choices of nodes for origins or destinations in the exist-
ing graph to be either sampled according to degree or sam-
pled uniformly. The choice is determined by a biased coin.
When the sampling of nodes is according to degree with
probability one, the models of [14] reduce to those above.
Cooper and Frieze also argue that their model produces
asymptotically the same degree sequence as that of [21].

2 A General Graph Evolution Process

2.1 Definition of models

In this section we define our four graph evolution mod-
els. In each model, the graph is grown in discrete time steps.
In each time step, the graph is augmented by at most one
node and one or more edges.

Model A. Model A is the basic model which the subse-
quent models rely upon. It starts with no node and no edge
at time 0. At time 1, a node with in-weight 1 and out-weight
1 is added. At time t+1, with probability 1−α a new node
with in-weight 1 and out-weight 1 is added. With probabil-
ity α a new directed edge uv is added to the existing nodes.
Here the origin u is chosen with probability proportional to

the current out-weight wout
u,t

def
= 1+δout

u,t and the destination
v is chosen with probability proportional to the current in-

weight win
v,t

def
= 1 + δin

v,t. We note that δout
u,t and δin

v,t denote
the out-degree of u and the in-degree of v at time t, respec-
tively. The total in-weight (out-weight) of graph in model
A increases by 1 at a time. At time t, both total in-weight
and total out-weight are exactly t.

Model B. Model B is a slight improvement of Model A
with two additional positive constant γin and γout. Differ-
ent powers can be generated for in-degrees and out-degrees.
In addition, the edge density can be independently con-
trolled.

Model B starts with no node and no edge at time 0. At
time 1, a node with in-weight γin and out-weight γout is
added. At time t+1, with probability 1−α a new node with
in-weight γin and out-weight γout is added. With prob-
ability α a new directed edge uv is added to the existing
nodes. Here the origin u (destination v) is chosen propor-

tional to the current out-weight wout
u,t

def
= γout + δout

u,t while

the current in-weight is win
v,t

def
= γin + δin

v,t. Here δout
u,t is

the out-degree of u and δin
v,t is the in-degree of v at time t,

respectively.

Model C. Now we consider Model C, this is a general
model with four specified types of edges to be added.

Assume that the random process of model C starts at time
t0. At t = t0, we have an initial directed graph with some
vertices and edges. At step t > t0, a new vertex is added and
four numbers me,e, mn,e, me,n, mn,n are drawn according
to some probability distribution. (Indeed, any bounded dis-
tribution is allowed here. It can even be a function of time t
as long as the limit distribution exists as t approaches infin-
ity. We emphasize that the four numbers can be arbitrarily



correlated.) We assume that the four random variables are
bounded. Then we proceed as follows:
1. Add me,e edges randomly. The origins are chosen with
the probability proportional to the current out-degree and
the destinations are chosen proportional to the current in-
degree.
2. Add me,n edges into the new vertex randomly. The ori-
gins are chosen with the probability proportional to the cur-
rent out-degree and the destinations are the new vertex.
3. Add mn,e edges from the new vertex randomly. The
destinations are chosen with the probability proportional to
the current in-degree and the origins are the new vertex.
4. Add mn,n loops to the new vertex.

Each of these random variables has a well-defined ex-
pectation which we denote by µe,e, µn,e, µe,n, µn,n, respec-
tively. We will show that this general process still yields
power law degree distributions and the powers are simple
rational functions of µe,e, µn,e, µe,n, µn,n.

Model D. Model A, B and C are all power law models
for directed graphs. Here we describe a general undirected
model which we denote by Model D. It is a natural variant
of Model C.

We assume that the random process of model C starts at
time t0. At t = t0, we start with an initial undirected graph
with some vertices and edges. At step t > t0, a new ver-
tex is added and three numbers me,e, mn,e, mn,n are drawn
according to some probability distribution. We assume that
the three random variables are bounded. Then we proceed
as follows:
1. Add me,e edges randomly. The vertices are chosen with
the probability proportional to the current degree.
2. Add me,n edges randomly. One vertex of each edge
must be the new vertex. The other one is chosen with the
probability proportional to the current degree.
3. Add mn,n loops to the new vertex.

2.1.1 General notation

For all graph models A, B, C, D, we denote nt be the
number of vertices at time t. Let et be the number of edges
at time t.

For (directed) graph models A, B, C, let din
i,t and dout

j,t

denote the random variables as the number of vertices with
in-degree i and out-degree j, respectively. let djoint

i,j,t be the
random variable as the number of vertices with in-degree i
and out-degree j.

For (undirected) graph model D, let di,t denote the ran-
dom variable as the number of vertices with degree i.

2.2 Results and applications

Theorem 1 For model A, the distribution of in-degree and
out-degree sequences follow the power law distribution with
power 1 + 1

α . The joint distribution of in-degree and out-
degree sequence follows the power law distribution with
power 2 + 1

α . More precisely, we have

Pr(|djoint
i,j,t − ai,jt| > λ

√
t + 2) < e−λ2/8,

P r(|din
i,t − bit| > λ

√
t + 2) < e−λ2/2,

P r(|dout
j,t − cjt| > λ

√
t + 2) < e−λ2/2.

where ai,j , bi, cj satisfy

ai,j =
(1 − α)(i + j−2)!αi+j−2

∏i+j
l=2(1 + lα)

=
( 1

α − 1)Γ( 1
α + 2)

(i + j)
1
α

+2
+oi+j(1)

bi =
(1 − α)!αi−1

∏i
l=1(1 + lα)

=
( 1

α − 1)Γ( 1
α + 1)

i
1
α

+1
+ oi(1)

cj =
(1 − α)(j − 1)!αj−1

∏j
l=1(1 + lα)

=
( 1

α − 1)Γ( 1
α + 1)

j
1
α

+1
+ oj(1).

For all i,j,t, the expected values E(djoint
i,j,t ), E(din

i,t) and
E(dout

j,t ) satisfy

|E(djoint
i,j,t ) − ai,jt| < 2

|E(din
i,t) − bit| < 2

|E(dout
j,t ) − cjt| < 2.

Theorem 2 For model B, the distribution of in-degree se-
quence follows the power law distribution with power 2 +
γin

∆ , and the distribution of out-degree sequence follows the

power law distribution with power 2+ γout

∆ . Here ∆ = α
1−α

is the asymptotic edge density. More precisely, we have

Pr(|din
i,t − b′it| > 2λ

√
t) < e−λ2/2,

P r(|dout
j,t − c′jt| > 2λ

√
t) < e−λ2/2.

where b′i, c
′
j satisfy

b′i = (1 − α)(
1

γin
+

1

∆
)

i+1
∏

l=1

l − 2 + γin

l + γin

α

= (1 − α)(
1

γin
+

1

∆
)
Γ(γin

α + 1)

Γ(γin − 1)

1

i
γin

∆
+2

+ oi(1)

c′j = (1 − α)(
1

γout
+

1

∆
)

j+1
∏

l=1

l − 2 + γout

l + γout

α

= (1 − α)(
1

γout
+

1

∆
)
Γ(γout

α + 1)

Γ(γout − 1)

1

j
γout

∆
+2

+ oj(1)



Theorem 3 For model C, almost surely the out-degree se-
quence follows the power law distribution with the power
2 + µn,n+µn,e

µe,n+µe,e where µ’s are as defined in 2.1.3.) Almost
surely the in-degree sequence follows the power law distri-
bution with the power 2 + µn,n+µe,n

µn,e+µe,e . More precisely, we
have

Pr(|din
i,t − b′′i t| > 2Mλ

√
t) < e−λ2/2,

P r(|dout
j,t − c′′j t| > 2Mλ

√
t) < e−λ2/2.

where b′′i , c′′j satisfy

b′′i =
b′′

i2+
µn,n+µe,n

µn,e+µe,e

+ oi(1),

c′′j =
c′′

j2+ µn,n+µe,n

µn,e+µe,e

+ oj(1).

Here b′′, c′′, M are constants determined by the joint dis-
tribution of me,e, mn,e, me,n, mn,n of this model, but
independent of i and t. (See the proof for definitions of
b′′, c′′, M .)

Theorem 4 For model D, almost surely the degree se-
quence follows the power law distribution with the power
2 + 2µn,n+µn,e

µn,e+2µe,e . More precisely, we have

Pr(|din
i,t − a′

it| > 2M ′λ
√

t) < e−λ2/2,

where a′
i satisfies

a′
i =

a′

i2+
2µn,n+µn,e

µn,e+2µe,e

.

Here a′, M ′ are constants determined by distribution of
(me,e, mn,e, mn,n) of this model, but independent of i and
t.

Theorem 3 has an important application on “Scale-free”
property.

Theorem 5 Model A, B, C, D are scale-free. Especially
almost all previous models [9, 10, 19, 20] are scale-free.

Remarks: Theorem 1 and 2 hold for all ranges of i, j, t.
Theorems 3 and 4 hold for t ≥ t0, where t0 depends on the
initial graphs and the asymptotic behavior of the variables
involved in the evolution process. In general, din

i,t and dout
j,t

concentrate on their expected values within an interval of
length t1/2+ε, for any ε > 0. We note that the desirable
range of i (or j) for Theorems 1-4 is i � t1/(2p), where p
is the power in the power law model as stated in Theorems
1-4.

3 Proofs of the theorems

For models A,B,C,D, we denote Gt the probability space
associated to each graph Gt at time t. As t increases, Gt

can be defined recursively. For each t, let τt be a random
variable of Gt.

{τt} is said to satisfy the c-Lipschitz condition. if

|τt+1(Ht+1) − τt(Ht)| ≤ c

whenever Ht+1 is obtained from Ht by adding some edges
or some vertices at time t + 1.

This concept is very similar to the vertex or edge Lips-
chitz condition in classical random graph theory (see [6]).
We will use the following fact which is from the standard
martingale theory.

Lemma 1 If τ satisfies the c-Lipschitz condition, then we
have for every λ > 0

Pr[|τt − E(τt)| > λ
√

t] < 2e−
λ2

2c2

In particular, τt is almost surely very close to its expected
value E(τt) with an error term o(t

1
2
+ε) for any ε > 0, as t

approaches infinity.

Proof of Theorem 1:
Both {din

i,t} and {dout
j,t } satisfy 1-Lipschitz condition.

{djoint
i,j,t } satisfies 2-Lipschitz condition. By Lemma 1, it

is enough to compute the corresponding expected values.
Here we compute E(djoint

i,j,t ) in detail.
At time 0, there is nothing in graph. At time 1, a node

with a loop is added. So we have

djoint
1,1,1 = 1 and djoint

i,j,1 = 0 for i > 1 or j > 1

i = 1, j = 1 is special. For t ≥ 1, we have djoint
1,1,t+1 =























djoint
1,1,t + 1 w.p. 1 − α

djoint
1,1,t − 1 w.p. α(2

djoint
1,1,t

t (1 − djoint
1,1,t

t ) +
djoint
1,1,t

t2 )

djoint
1,1,t − 2 w.p. α((

djoint
1,1,t

t )2 − djoint
1,1,t

t2 )

djoint
1,1,t otherwise

Let Nt = (djoint
i,j,t )all i,j denote the degree distribution at

time t. We have

E(djoint
1,1,t+1|Nt) = djoint

1,1,t + 1 − α − α(
2

t
− 1

t2
)djoint

1,1,t

For (i, j) 6= (1, 1), similarly, we have

E(djoint
i,j,t+1|Nt) = djoint

i,j,t +
α

t
((i − 1)(1 − j

t
)djoint

i−1,j,t +

(j − 1)(1 − i

t
)djoint

i,j−1,t − (i + j − ij

t
)djoint

i,j,t )



Hence we have the following recurrence formula:

E(djoint
1,1,t+1) = E(djoint

1,1,t )(1 − α(
2

t
− 1

t2
)) + 1 − α

For (i, j) 6= (1, 1), we have

E(djoint
i,j,t+1) = E(djoint

i,j,t )(1 − α
(i + j)

t
+ α

ij

t2
)

+
(i − 1)α

t
(1 − j

t
)E(djoint

i−1,j,t)

+
(j − 1)α

t
(1 − i

t
)E(djoint

i,j−1,t)

To examine the asymptotic behavior of E(djoint
i,j,t ), we want

to express
E(djoint

i,j,t ) = ai,jt + ci,j,t,

where ci,j,t = o(t) is a lower order term. To choose an
appropriate value for ai,j , we substitute it into the above
recurrence formula and let t approach infinity. We obtain

a1,1 =
1 − α

1 + 2α

For (i, j) 6= (1, 1) we have

ai,j = α
(i − 1)ai−1,j + (j − 1)ai,j−1

1 + (i + j)α

The solution to the above recurrence is the following:

ai,j =
(1 − α)(i + j − 2)!αi+j−2

∏i+j
k=2(1 + kα)

=
( 1

α − 1)Γ( 1
α + 2)

(i + j)
1
α

+2
+ oi+j(1)

for all i, j.
It suffices to establish an upper bound for ci,j,t. In fact,

we will show that |ci,j,t| ≤ 2. This will be proved by in-
duction. When i = j = 1, c1,1,t satisfies the following
recurrence formula

c1,1,t+1 = c1,1,t(1 − α(
2

t
− 1

t2
)) + α

1 − α

1 + 2α

1

t

Since c1,1,1 = 3α
1+2α < 2, by induction on t, we have

|c1,1,t+1| ≤ 2(1− α(
2

t
− 1

t2
)) + α

1 − α

1 + 2α

1

t
≤ 2.

For i ≥ 2 or j ≥ 2, ci,j,t’s satisfy the following recurrence
formula:

ci,j,t+1 = (1 − α
it + jt − ij

t2
)ci,j,t

+
(i − 1)α

t
(1 − j

t
)ci−1,j,t +

(j − 1)α

t
(1 − i

t
)ci,j−1,t

+
α

t
(ijai,j − (i − 1)jai−1,j − i(j − 1)ai,j−1)

Now we use induction on i, j, t to show |ci,j,t| ≤ 2. By in-
duction hypothesis, we assume that |ci,j,t| < 2, |ci−1,j,t| <
2, |ci,j−1,t| < 2. Now we have

|ci,j,t+1| ≤ 2(1 − α
it + jt − ij

t2
)

+
(i − 1)α

t
(1 − j

t
)2 +

(j − 1)α

t
(1 − i

t
)2 +

α

t
2

= 2 − 2α

t
(1 − 1

t
) − 2α(i − 1)(j − 1)

t2

≤ 2.

Thus we finished the induction step. (Here we use the fact
that ijai,j − (i−1)jai−1,j − i(j−1)ai,j−1 <

∑

ij ijaij =
2.)

The other two recurrences can be proved analogously.
Actually, bi and cj can be derived from ai,j by observing
that

din
i,t =

∑

j≥0

djoint
i,j,t and dout

j,t =
∑

i≥0

djoint
i,j,t .

�

The proof of Theorem 2 is similar and will be omitted.
Theorem 3 will be proved in the full paper while Theorem
4 can be proved in a similar way and will be omitted.

Next, we will prove Theorem 5.

A sketched proof of Theorem 5: Model A and previ-
ous models [9, 10, 19, 20] are the special cases of Model
C. We will prove that Model C has the scale-free property.
The proofs for Models A, B and D are similar and will be
omitted.

We suppose that the evolution GT is scaled by a factor
of σ. (See section 1 for the definition.) The scaled evolution
Hσ(GT ) is not exactly covered by Model C. But it is nat-
urally approximated by an evolution GT ′ of Model C with
parameters µ′n,n = σµn,n, µ′n,e = σµn,e µ′e,n = σµe,n

µ′e,e = σµe,e and size bound σM . Given our general re-
sults on Model C, the latter Model C process has the same
power law as the first Model C process (e.g., the power for
the out-degrees is 2+(µn,n +µn,e)/(µe,n +µe,e) ). Hence,
it is enough to show that both the scaled evolution Hσ(GT )
and the approximating evolution GT ′ have the same power
for the out-degree (and in-degree).

The evolution Hσ(GT ) only differs from GT ′ in the way
of adding edges. At each time unit, edges are added simul-
taneously in GT ′ while some edges in Hσ(GT ) are added
simultaneously and some are added sequentially. By exam-
ining the proof of Theorem 3 (given in the full paper [4]),
we conclude that both evolutions give the same power for
the out-degrees as well as for the in-degrees. A complete
analysis will be given in the full paper [4]. �
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