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ABSTRACT
Proxy-network based overlays have been proposed to pro-
tect Internet Applications against Denial-of-Service attacks
by hiding an application’s location. We study how a proxy
network’s topology influences the effectiveness of location-
hiding. We present two theorems which quantitatively char-
acterize when proxy networks are robust against attacks (at-
tackers’ impact can be quickly and completely removed),
and when they are vulnerable to attacks (attackers’ im-
pact cannot be completely removed). Using these theorems,
we study a range of proxy network topologies, and iden-
tify those topologies favorable for location-hiding and resist-
ing Denial-of-Service attacks. We have found that popular
overlay network topologies such as Chord [25], which has
been suggested for location-hiding, is in fact not a favorable
topology for such purposes; we have also shown that CAN
[21], a less popular overlay network, can be a good topol-
ogy for location-hiding. Our theoretical results provide a
set of sound design principles on proxy networks used for
location-hiding.

1. INTRODUCTION
Denial-of-Service (DoS) attacks are a major security threat

to Internet applications. Since 1998, there have been a se-
ries of large-scale distributed DoS attacks which effectively
shut down popular sites such as Yahoo! and Amazon and
the White House website was forced to move to a differ-
ent location [28, 12, 4, 3, 5]. These attacks have serious
economic impact and political repercussions, and may even
threaten critical infrastructures and national security [14,
20, 23]. How to effectively defend against these attacks is
an open and important research problem.

In a DoS attack, attackers can make the victim applica-
tion unavailable to legitimate users by overloading the ap-
plication with a flood of network traffic or large amount of
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Figure 1: Internet Application Deployment.

work. DoS attacks can be categorized as infrastructure-level
or application-level attacks. Figure 1 shows a typical Inter-
net application deployment. The application service runs
on a set of interconnected hosts, which is the service infras-
tructure; users access it via the Internet. Infrastructure-level
attacks attack the service infrastructure directly, for exam-
ple, by sending packet floods to saturate the victim network.
Application-level attacks cause denial-of-service by request-
ing large amounts of work at the application level or by
exploiting weaknesses in the application.

Because many Internet applications are publicly accessi-
ble, they are easy targets for infrastructure-level DoS at-
tacks. Many researchers are exploring the use of overlay
networks to tolerate infrastructure-level attacks [26, 17, 24].
The key idea is to hide applications behind a proxy over-
lay network (Figure 2). Users can access applications via
the proxy network without knowing their IP addresses, but
attackers cannot easily locate the applications to launch at-
tacks.

Location-hiding is an important component of a complete
solution to DoS attacks. It gives applications the capability
to hide their IP addresses, thereby preventing infrastructure-
level DoS attacks, which depend on the knowledge of their
victims’ IP addresses. In general, location-hiding schemes
provide a “safety period” for applications, during which ap-
plications’ location is securely hidden and infrastructure-
level DoS attacks are prevented. When combined with other
mechanisms, such as application reconfiguration, redeploy-
ment, or even mobility, they can effectively protect applica-
tions against infrastructure-level DoS attacks. In particu-
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Figure 2: Proxy Network Scheme.

lar, if applications can change their location within a safety
period, they can avoid DoS attacks indefinitely. Effective
location-hiding schemes provide long safety periods, reduc-
ing the frequency of application reconfigurations, therefore
provide strong and efficient defense against DoS attacks. It
motivates our research looking for effective location-hiding
schemes.

We study the proxy network described above, which is a
general overlay network approach for location-hiding. Our
analysis of proxy network capabilities can provide better
understanding and design guidelines for the whole class of
location-hiding approaches.

Proxy networks defend against attacks by means of dy-
namic system reconfigurations. However, the effectiveness
of such schemes heavily relies on proxy network topologies.
But there has been no good understanding of how to design
appropriate topologies, and no way to measure the good-
ness of a topology. Therefore, in this paper, we extensively
study the impact of proxy network topologies on location-
hiding; we provide some methods to evaluate proxy network
topologies, and provide some insights on how they should be
designed. In particular, we provide two theorems to evalu-
ate whether a topology is favorable for proxy networks. One
theorem describes a sufficient condition for proxy networks
to be robust, in which case attackers’ impact can be quickly
removed; the other theorem describes a sufficient condition
for proxy networks to be vulnerable, in which case attackers’
impact will quickly become non-trivial and cannot be easily
removed.

Our results influence proxy network design in two ways:
First, they serve as a screening tool to evaluate proxy net-
work topologies, identify the favorable and filter out the
undesirable. Second, they provide a set of principles one
should observe during the design of proxy networks: proxy
networks with high average vertex degrees are in general un-
favorable, because it is hard to make them robust; further-

more, proxy networks should avoid large clusters of tightly
connected nodes, because such clusters are vulnerable to
attacks. On the other hand, graphs with low average ver-
tex degrees and balanced distribution of connectivity are in
general good candidates for proxy networks; because they
are reasonably easy to become robust and they do not have
vulnerable regions to harbor attackers’ impact.

The remainder of the paper is structured as follows. Sec-
tion 2 formulates the DoS problem and introduces our an-
alytical model. Section 3 presents our analytical results,
which characterize the robustness and vulnerability proper-
ties of the proxy network topology; we also present our case
study on a set of network topologies, and draw some design
principles for proxy networks. Section 4 presents mathe-
matical proofs of these results. Section 5 discusses related
work, and finally, we summarize in Section 6 and describe
directions for future work.

2. SYSTEM MODEL
In this section, we give an overview of the proxy network

scheme, describe the key components of the system, includ-
ing the resource pool, the proxy network, the attacks and
the related defensive mechanisms. Then we introduce an
analytical model to characterize these components. Finally,
we define the problem under study.

2.1 Proxy Network Scheme
Infrastructure-level DoS attacks target at the IP addresses

of the victim applications. Today’s Internet applications
publish their IP addresses (for example via DNS), so that
users can easily access the applications via the Internet. At
the same time, however, their published IP addresses be-
come obvious targets in DoS attacks. To address this prob-
lem, we use a proxy network to prevent such infrastructure-
level DoS attacks by hiding the IP addresses of the appli-
cations; all accesses to the applications are mediated by the
proxy network.

In our proxy network scheme (Figure 2), applications do
not publish their IP addresses. Instead, they hide behind a
proxy network, an overlay network that runs on a resource
pool of Internet hosts. A proxy network hide the IP ad-
dresses of all the nodes inside (including internal proxies
and applications); only the proxies at the edge (edge prox-
ies) publish their IP addresses (See Figure 2). Users can only
access the applications by contacting these edge proxies. No
one can easily discover the IP addresses of the applications,
thereby preventing infrastructure-level DoS attacks.

There are two key challenges in the proxy network scheme.
First, the proxy network should hide applications’ IP ad-
dresses securely. Second, the proxy network itself should be
resilient to DoS attacks, so it can shield the applications.
Here we focus on the first problem. It has been proved that
proxy network topologies may qualitatively change the ef-
fectiveness of location-hiding [26]. However, there has been
no good understanding of how to design appropriate topolo-
gies, and no way to measure the goodness of a topology.
Therefore, in this paper, we extensively study the impact
of proxy network topologies on location-hiding; we provide
some tools to evaluate proxy network topologies, and pro-
vide some insights on how they should be designed.



2.2 Resource Pool and Proxy Network
Before discussing the attacks and the defensive mecha-

nisms, we formally describe the resource pool and the proxy
network, and introduce a rigorous terminology.

The resource pool consists of hosts in the Internet. We
assume that the hosts can communicate directly if they have
each other’s IP addresses, and each host is identified by a
unique IP address. A node in the overlay network is either
a proxy or an application. When a node runs on a host,
that host (or its IP address) is called the location of the
node. We assume each node has a unique location at any
moment (an injective mapping from nodes to hosts). Two
nodes are adjacent if and only if they know each other’s lo-
cation. Obviously, adjacent nodes can communicate directly
through the underlying hosts at the IP level. We use a graph
(topology graph) to represent the overlay network. Vertices
in the graph correspond to nodes in the overlay; edges cor-
respond to the adjacency relationship. A conceptual view of
a proxy network is shown in Figure 2. The topology graph
describes the connectivity of the overlay network; two nodes
can communicate at the overlay level if there is a path be-
tween them in the topology graph. More importantly, the
topology graph also describes how the location information
is shared among the overlay nodes, a critical aspect of how
securely the proxy network can hide applications’ location,
because when attackers compromise a proxy node, they can
locate all the adjacent nodes.

2.3 Attacks
We consider host compromise attacks, a key threat to

location-hiding schemes. Host compromise attacks can pen-
etrate proxy networks and reveal the location of the overlay
nodes, including the applications. Other attacks are dis-
cussed in [26]. In a successful host compromise attack, at-
tackers can temporarily control the victim host and steal
information from it. A host under such impact is consid-
ered compromised, otherwise it is intact.

An overlay node is in one of the three states: intact, ex-
posed and compromised 1. A node is exposed if its location
is known to attackers; therefore it is subject to future host
compromise attacks. A node is compromised if it runs on
a compromised host. Since attackers can steal information
from compromised node, including the location information
of all its adjacent nodes (neighbors), all the nodes adjacent
to a compromised node are exposed. A node is intact if it
is neither exposed nor compromised.

Attackers can penetrate the proxy network by repeatedly
compromising exposed nodes, grow the population of com-
promised and exposed overlay nodes, and may eventually
expose the application, thereby defeating the proxy network
scheme.

2.4 Defensive Mechanisms
We have two defensive mechanisms, resource recovery and

proxy network reconfiguration. Resource recovery mecha-
nisms can recover compromised hosts into the intact state,
removing attackers’ impact. Examples of resource recovery

1Terms “intact” and “compromised” are overloaded for over-
lay nodes and hosts.

include recovery or removal of infected software components
on a compromised host, clean reload of system images, re-
vocation of suspected user accounts, and so on. Proxy net-
work reconfiguration mechanisms can dynamically change
the location of proxies or the structure of the proxy net-
work, thereby removing attackers’ impact and invalidating
the location information exposed to attackers. The reconfig-
uration mechanisms can convert exposed and compromised
overlay nodes into the intact state. An example of proxy net-
work reconfiguration is proxy migration: proxies change lo-
cations so that exposed and compromised proxies can move
to intact hosts whose location is unknown to attackers 2.

Resource recovery mechanisms help to maintain sufficient
intact hosts in the resource pool for proxy networks to op-
erate, while proxy network reconfiguration mechanisms con-
vert compromised and exposed proxies back to intact, thereby
removing attackers’ impact in the proxy network. These
mechanisms together can shrink the size of the compromised
and the exposed node population, therefore defend against
host compromise attacks. We know that when there are
sufficient intact hosts in the resource pool, the effectiveness
of location-hiding qualitatively depends on proxy network
reconfigurations [26] and resource recovery does not have
significant impact in that scenario. In this paper, we as-
sume sufficient intact hosts in the resource pool and focus
on proxy network reconfiguration mechanisms. Analysis of
resource recovery mechanisms can be found in [26].

2.5 Analytical Model
We model the impact of attackers and defensive mecha-

nisms. As stated in the previous section, we focus on proxy
network reconfiguration as the main defensive mechanism,
and do not explicitly model resource recovery mechanisms.
We assume that there exist appropriate resource recovery
mechanisms to ensure sufficient resource for proxy networks.

Model M(G, α, β, γ): Let G be the topology graph of
the proxy network defined in Section 2.2. G is a simple
undirected graph. At any time t, every vertex in G is in one
of the three states — intact, exposed, and compromised. We
study a discrete time stochastic process, in which vertices
change their state simultaneously at the end of each time
step according to the following rules (Figure 3):

1. With probability α, an exposed vertex can be changed
into the compromised state at the next step.

2. With probability β, a compromised vertex can be changed
into the intact state at the next step (or exposed ac-
cording to the last rule).

3. With probability γ, an exposed vertex can be changed
into the intact state at the next step (or stay exposed
according to the last rule).

4. u and v are vertices of G. If uv is an edge in G and u is
compromised and v is intact, then v is instantaneously

2We assume that the proxies do not have any exploitable
bugs, so that host compromise attacks can only compromise
the hosts, but not the proxies. Therefore, when a proxy
moves from a compromised host to an intact host, it will
become intact also (or exposed if one of its neighbors is still
compromised).



exposed. This rule is enforced immediately after any
of the previous three rules are applied.
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Figure 3: State transition without Rule 4. Here c, e, i
means compromised, exposed, and intact respec-
tively. At the end of each time step in the stochastic
process, the states of the vertices are changed ac-
cording to this state transition graph. Immediately
after that, Rule 4 is applied to update the states of
all the vertices.

α corresponds to attackers’ capability (how fast hosts can
be compromised); it is the probability that a node is success-
fully attacked during a time step (by a host compromise at-
tack). β corresponds to defenders’ capability; it is the prob-
ability of a successful proxy network reconfiguration during
a time step. γ reflects how much memory attackers have
and the coordination among attackers. For the most power-
ful attackers, which are fully coordinated and have infinite
memory, they keep and share the information about the lo-
cation of all the compromised and the exposed nodes; in
this case, γ is equal to β. For less powerful attackers, which
are memoryless and uncoordinated, for example, worms or
automated attack tools [4, 5, 3, 9, 10], γ = 1. Normally, γ
is between β and 1.

A few issues should be noted. First, we assume that there
are always enough hosts in the resource pool to allow proxy
network reconfiguration. This assumption has been vali-
dated in our previous work [26], which proved that when
proactive reset mechanisms 3 are used, it is possible to keep
the majority of hosts intact in a resource pool 4. Second,
in order to make analysis tractable, we assume uncorrelated
host vulnerabilities (constant compromise probability α). In
future work, correlation is clearly an important challenge to
get a more complete understanding of the problem. How-
ever, as a first step to build the foundation, we assume un-
correlated vulnerabilities. How this assumption affects our
results is discussed in section 3.3.4.

2.6 Problem Definition
In the model M(G, α, β, γ) described above, we define a

graph G to be robust if almost surely all vertices of G can
be changed into the intact state after a long run; we define
a graph G to be vulnerable if with some non-trivial proba-
bility (greater than a positive constant) there always exist

3Recoveries are done proactively, not triggered by intrusion
detectors. Examples include periodic system reload and so
on.
4[26] showed that by combining practical intrusion detection
based recoveries and proactive resets at a rate close to the
compromise rate, the majority of the hosts can be kept intact

a significant number of compromised vertices in G at any
time t.

Mathematically, we study the following problems in this
paper:

1. Given parameters α, β and γ, characterize the class of
graphs G that are robust.

2. Given parameters α, β and γ, characterize the class of
graphs G that are vulnerable.

3. ANALYTICAL RESULTS

3.1 Theorems for Proxy Network Robustness
As discussed in Section 2.5, the system parameters α, β, γ

characterize the capabilities of attackers and defenders. In-
tuitively, we also know that properties of the proxy network
topology affect the impact of attacks. For example, attack-
ers’ impact can propagate quickly in a well connected graph,
because once a node is compromised, many other nodes will
be exposed. Theorems 1 and 2 precisely characterize the
impact of these factors, showing how the system parame-
ters α, β, γ and the spectra (or eigenvalues) of the proxy
network topology graph G determine the robustness of the
proxy network.

Theorem 1. For the model M(G, α, β, γ), let σ1 be the
largest eigenvalue of the adjacency matrix of G, then the

graph G is robust if β(α+γ)
α

> σ1. In particular, for any ini-
tial states, almost surely all compromised and exposed ver-
tices vanish after O(α+β+γ−ασ1

αβ+βγ−ασ1
log n) steps. n is the number

of vertices in G.

Theorem 2. For the model M(G, α, β, γ), let λ̄ = maxi6=0 ‖1−
λi‖, where λi are the Laplacian spectrum of G. The graph G
is vulnerable if β

α
< 1

λ̄2 − 1. In this case, with some positive
constant probability, the volume of the compromised ver-

tices will reach Θ(λ̄2vol(G)) within Θ( α−βλ̄2

(β/(α+γ)+1)λ̄2−α
log n)

steps. n is the number of vertices in G. The volume of a
vertex set S, vol(S), is defined to be the sum of degrees of
the vertices in S, i.e., vol(S) =

∑
v∈S dv.

Intuitively, attackers expand their impact over the proxy
network topology (by compromising or exposing proxy nodes),
and the graph properties σ1 and λ̄ used in Theorem 1 and
2 characterize how fast attackers’ expansion can be; in the
mean time, defenders suppress attackers’ expansion and re-
move attackers’ impact in the proxy network (by recovering
compromised or exposed nodes). Roughly speaking, the ra-
tio β

α
can be viewed as the ratio between the rate of proxy

network reconfigurations and the rate of host compromise.
In other words, defenders can recover compromised or ex-
posed nodes β

α
times faster than attackers can compromise

or expose them. These theorems quantify how the proxy
network topology affects the balance between the two com-
peting forces, attackers and defenders.

Theorem 1 gives a sufficient condition of a proxy network
being robust. The eigenvalue σ1 is an important property
of a graph, characterizing graph connectivity. Informally,



we can treat σ1 as an average vertex degree of the graph. 5

Theorem 1 says when the defenders’ capability overpowers
the attackers’ by a factor of σ1

6, defenders are quick enough
to suppress the propagation of attackers impact, and the
proxy network is robust. Attackers’ impact will be quickly
removed from the proxy network regardless of the initial
state (even if attackers can have many compromised nodes
to begin with).

Theorem 2 gives a sufficient condition of a proxy network
being vulnerable. The Laplacian spectrum λ̄ is another im-
portant property to characterize graph connectivity. λ̄ can
characterize how a set of vertices expands to its neighbor-
hood. For any graph, 0 ≤ λ̄ ≤ 1, and a smaller λ̄ implies
richer connectivity and better neighborhood expansion of
the graph (small vertex sets have many vertices in the neigh-
borhood). Extensive discussions about Laplacian spectrum
can be found in [6]. Theorem 2 shows that when attackers
can outrun defenders roughly by a factor of λ̄2, the proxy
network is vulnerable. In this case, even if attackers only
have one node exposed at the beginning, the number of
compromised (and exposed) nodes will quickly grow, and de-
fenders can never cleanly remove them. More importantly,
this theorem applies to any subgraph of a proxy network
topology. If this condition holds in a subgraph of a proxy
network, attackers’ impact will linger in that part of the
network forever and cannot be cleanly removed.

3.2 Design Principles
When designing proxy networks, there are several issues

to be considered, such as the effectiveness of location-hiding,
performance of the proxy network and fault tolerance. We
focus on location-hiding, and our theorems reveal the rela-
tion between some key properties of proxy network topolo-
gies and the effectiveness of location-hiding; they also specify
the classes of favorable and unfavorable topologies for proxy
networks. Design principles can be derived from these the-
orems. From Theorem 1, we know that graphs with high
average vertex degrees require defenders to act significantly
faster than attackers to make proxy networks robust. This
posts a difficult requirement on defenders; therefore such
topologies are unfavorable for proxy networks. From The-
orem 2, we know that graphs with large clusters of tightly
connected nodes tend to be vulnerable, because attackers’
impact can linger inside those large clusters forever and can-
not be easily removed. Therefore such topologies should be
avoided in proxy network design. On the other hand, in
proxy network design, one should look for topologies with
relatively low average vertex degrees and balanced distribu-
tion of connectivity, because such topologies are easy to be-
come robust and do not have obvious vulnerable subgraphs.
These design principles can be summarized as follows.

1. Topologies with high average vertex degrees are in gen-
eral unfavorable.

5We have dmin ≤ σ1 ≤ dmax for any graph G. dmin and
dmax are respectively the smallest and the largest vertex
degree of the graph. In particular, σ1 = d for any d-regular
graph.
6More precisely, β

α
(α + γ) > σ1. We know β ≤ γ ≤ 1 and

α + β is a non-trivial constance(close to 1). Therefore β
α

is
the deciding factor of the left-hand side of the inequality.

Vertex Degree σ1
1

λ̄2 − 1
3 3 ≈ 0.75
5 5 ≈ 1.25
7 7 ≈ 1.75
9 9 ≈ 2.25
11 11 ≈ 2.75
13 13 ≈ 3.25
15 15 ≈ 3.75
17 17 ≈ 4.25
19 19 ≈ 4.75
21 21 ≈ 5.25
23 23 ≈ 5.75

Table 1: Topological Properties of Random Regular
Graph

2. Topologies with large clusters of tightly connected nodes
should be avoided.

3. Proxy network designers should look for topologies
with reasonably low average vertex degree (depending
on the capability of the defensive mechanisms available
to them), and balanced distribution of connectivity in
the graph.

3.3 Case Study
Besides providing design principles, another important

use of our theorems is to evaluate the goodness of a given
topology class and determine whether it is appropriate for
proxy networks. In this section, we present a case study to
exemplify this use.

We study the following classes of candidate topologies
for proxy networks: random regular graphs and current
overlay networks (Chord [25] and CAN [21] as represen-
tatives). Random regular graphs are obvious candidates,
because they are well understood and have many nice prop-
erties such as good connectivity. Existing overlay networks,
such as Chord [25], CAN [21], Pastry [22] and Tapestry
[29], are also reasonable candidates for proxy networks, and
Chord has been proposed for location-hiding [17, 24]. How-
ever, it was not well understood whether those topologies
are suitable for location-hiding. Therefore, it is worthwhile
to evaluate such topologies.

Our previous work [26] showed that proxy networks with
small diameters are not suitable for location-hiding. This
result is applied along with Theorems 1 and 2 to all classes
of graphs below.

3.3.1 Random Regular Graphs
A random d-regular graph is a regular graph with vertex

degree d, in which connections between vertices are deter-
mined in some random way. We know that σ1 = d and
1

λ̄2 − 1 ≈ d
4

for such graphs. Topological properties of some
random regular graphs are shown in Table 1.

It is straightforward to observe that random regular graphs
with high vertex degrees have large 1

λ̄2 − 1(≈ d
4
) and they

are fairly easy to become vulnerable. Therefore they are
not suitable for location-hiding. On the other hand, ran-
dom regular graphs with low vertex degrees , have small σ1



N Diameter σ1
1

λ̄2 − 1
128 4 13 1.086
256 4 15 0.859
512 5 17 0.710
1024 5 19 0.604
2048 6 21 0.526
4096 6 23 0.465

Table 2: Topological Properties of Chord

and it is less demanding for defenders to make the proxy net-
work robust. Therefore they are valid candidates for proxy
networks.

3.3.2 Chord
Chord [25] topology is a regular graph with degree 2log2N−

1, where N is the number of vertices in the graph. Consider
a Chord network with N = 2m nodes, and each node is
given a unique ID between 0 and N − 1; there is an edge
between vertices i and j if and only if |i − j| = 2k, where
0 ≤ k ≤ (m−1) is an integer (Figure 4). Since Chord topol-
ogy is a regular graph, we know that σ1 = 2log2N − 1. We
also calculated the diameter and λ̄ for such topologies. The
results are summarized in Table 2.

 

 

Figure 4: Chord Network Topology Graph with N =
8

It is straightforward to observe that Chord networks with
reasonable diameters (≥ 5 for example) have large σ1. This
is an unfavorable property due to Theorem 1. We also stud-
ied Pastry [22] and Tapestry [29], and found that they have
similar properties as Chord (In fact, they are a little worse
than Chord, because they have larger σ1 and larger 1

λ̄2 −1).
We only present Chord as a representative case.

3.3.3 CAN
CAN [21] is less popular than the other three overlay net-

works. It uses a d-dimensional Cartesian space torus to con-
struct the overlay network. It is a regular graph with degree
2d. A CAN network using 2-dimensional torus, which has 9
nodes, is illustrated in Figure 5.

Because CAN networks are regular graphs, we know that
σ1 = 2d (d is the dimension for the torus). Furthermore,

 
 

Figure 5: CAN Network Topology Graph with N =
9, d = 2

N d Diameter σ1
1

λ̄2 − 1
128 3 8 6 ≈ 0
128 4 7 8 ≈ 0
256 3 10 6 ≈ 0
256 4 8 8 ≈ 0
512 3 12 6 ≈ 0
512 4 10 8 ≈ 0
1024 3 16 6 ≈ 0
1024 4 12 8 ≈ 0
2048 3 19 6 ≈ 0
2048 4 14 8 ≈ 0
4096 3 24 6 ≈ 0
4096 4 16 8 ≈ 0

Table 3: Topological Properties of CAN

from the properties of d-dimensional toruses, we also know
that the diameter of CAN networks is roughly d

√
N× d

2
(N is

the number of nodes in the network), and λ̄ ≈ 1 (therefore
1

λ̄2 − 1 ≈ 0). The results for some CAN networks are shown
in Table 3.

These results imply that the CAN network topology is
more favorable for proxy networks than Chord (Pastry and
Tapestry). With appropriate settings (choice of N and d),
CAN networks can easily have large diameters and reason-
ably low σ1, so that proxy networks can fairly easily become
robust.

3.3.4 Discussion
Among the classes of topologies we studied, the CAN net-

work and random regular graphs with low vertex degrees are
favorable choices for proxy networks. Proxy networks with
such topologies are easy to achieve robustness. On the other
hand, popular overlays, such as Chord, Pastry and Tapestry,
have fairly large σ1, and therefore hard to achieve robust-
ness. They are less favorable for proxy networks.

Chord, Pastry and Tapestry are designed to have rich con-
nectivity to support efficient communication at the overlay
level, a completely different goal. Therefore, it is not sur-
prising that these topologies are not well suited for proxy



networks. On the other hand, CAN is also designed for sim-
ilar purposes as Chord and other overlays, but there are two
key differences that make CAN more favorable for proxy net-
works. First, topologically, CAN network have less connec-
tivity than Chord and other overlays, and its neighborhood
expansion property is not as good as Chord either. It is a
merit for proxy networks, because attackers cannot quickly
expand their impact. Second, CAN has a separate param-
eter (dimension of Cartesian space for the torus) to control
the connectivity of the graph. This makes it flexible for us
to choose a right amount of connectivity and an appropri-
ate graph diameter to meet our requirement. In Chord and
other overlays, however, graph connectivity is decided by
the number of nodes in the network (for example, Chord
has vertex degree 2log2N − 1); it is impossible to adjust the
graph diameter and connectivity independently.

Our assumption that the compromise of distinct systems
is uncorrelated makes analysis of the system dynamics tractable.
The successful analysis provides significant insights into the
relative benefits of different overlay network topologies. An
interesting direction for future work is to extend our model
to include correlation in compromise, but there are signifi-
cant challenges in analysis. However, we conjecture that the
result of a model with correlated host compromises might
have a significant quantitative impact on the results but not
a significant qualitative impact; that is it would not change
the relative desirability of topologies. The reason for this is
that correlation will exacerbate the negative impacts of high
connectivity in topologies. Compared to our results, topolo-
gies vulnerable to attack will suffer even more greatly.

In this paper, we focus on the effectiveness of location-
hiding. However, appropriate connectivity is also an impor-
tant issue for proxy networks to achieve reasonable perfor-
mance and fault tolerance. In fact, there is a fundamental
trade-off between connectivity of proxy networks and the
effectiveness of location-hiding they can provide, because
richer connectivity implies more information stored on each
proxy node, therefore attackers can gain information faster
and propagate faster. In the design of proxy networks, we
need to choose a right amount of connectivity to achieve
both effective location-hiding and good performance and
fault-tolerance. The value of our theorems is to provide
a tool to quantify the appropriate level of connectivity for
location-hiding, which is an important piece in proxy net-
work design.

4. MATHEMATICAL PROOF

4.1 Basic facts on the spectra of graphs
Eigenvalues or the spectrum are very useful for controlling

many graph properties. It have many applications includ-
ing information retrieval [19], low rank approximation [1],
and computer vision [13]. It has a rich history in the litera-
tures (see [2, 6, 11, 8, 16, 15, 18, 27, 7]). The eigenvalues of
many classes of graphs have been computed. For example,
for random graph G(n, p), the largest eigenvalue of its adja-
cency matrix is (1+o(1))np while the rest of eigenvalues are
bounded by (1 + o(1))2

√
np, for np = Ω(1). The distribu-

tion of the eigenvalues of G(n, p) follows Wigner’s semi-circle
Law. Recently, Chung, Lu and Vu [7] examined the eigen-
values of a random power law graph and proved that the

Laplacian eigenvalues of the random power law graph also
follows Wigner’s semi-circle Law.

We will begin with some basic definitions. Let G be a
connected (undirected) graph G. The adjacency matrix A
of the graph G is defined as A(x, y) = 1 if x is adjacent
to y, and 0 otherwise. The eigenvalues of A is denoted by
σ1, σ2, . . . , σn in the decreasing order. Here σ1 is the largest
eigenvalue of G. For d-regular graph, σ1 is just d. In general,√

dmaxσ1 ≤ dmax, where dmax denotes the maximum degree
of G. We remark that the lower bound of σ1 is achieved by
a star of dmax + 1 vertices.

The Laplacian eigenvalues (or the spectrum) are also widely
used in the spectral graph theory. It is defined as follows.
Let dv denote the degree of the vertex v, and T denote the
diagonal matrix with (v, v)-th entry having value dv. The
Laplacian of G is defined to be the matrix

L = I − T−1/2AT−1/2.

Here I is an identity n×n matrix. The Laplacian eigenvalues
of G are defined as the eigenvalues of L. They are often
written in an increasing order:

λ0 ≤ λ1 ≤ · · · ≤ λn−1.

For connected graph G, λ0 = 0, λ1 > 0, and λn−1 ≤ 2.
For example, the Laplacian eigenvalues of a cycle Cn are

1 − cos 2πk
n

for k = 0, . . . , n − 1. The laplacian eigenvalues

of a path Pn are 1 − cos kπ
n−1

for k = 0, . . . , n − 1. Let G1

and G2 are two graphs of size n1 and n2. The cartesian
product G1¤G2 of G1 and G1 is defined as a graph on n1×
n2 vertices. The edges are added to the pair (u1, u2) and
(v1, v2) if and only if u1 = v1 and u2v2 ∈ E(G2) or u2 =
v2 and u1v1 ∈ E(G1). The spectrum of G1¤G2 can be
computed as follows. We have

λ1(G1¤G2) =
1

2
min{λ1(G1), λ1(G2)}

λn1n2−1(G1¤G2) =
1

2
(λn1−1(G1) + λn2−1(G2)).

In particular, for the d-dimensional Torus graph Cd
n, the

λ̄ = 1 if n is even, λ̄ = max{cos π
n
, 1 − 1

d
+ 1

d
cos 2π

n
} if n is

odd.
If G is d-regular graph, the Laplacian becomes L = I− 1

d
A.

Thus, λi = 1 − 1
d
σn−i for 0 ≤ i ≤ n − 1. In general, the

spectrum of the graph G can be very different from the
eigenvalues of the adjacency matrix.

Laplacian eigenvalues control the expansion rate of the
neighborhoods for any subset S. We have the following use-
ful lemma.

Lemma (see [6]): Suppose G is not a complete graph. For
S ⊂ V (G), the neighborhood N(S) satisfies

volN(S)

vol(S)
>

1

λ̄2 + (1− λ̄2) vol(S)
vol(G)

,

where λ̄ = maxi 6=0 ‖1− λi‖.
4.2 Proof of Theorem 1

Let f t
v (or gt

v) be the probability that the node v is com-
promised (or exposed) at time t respectively. We have the
following recurrence formula:





f t+1
v = (1− β)f t

v + αgt
v

gt+1
v = (1− f t+1

v )(1−∏
u∼v(1− f t+1

u ))
+gt

v(1− α− γ)
∏

u∼v(1− f t+1
u ),



for every vertex v and time t. Here u ∼ v means uv is an
edge. The first additive item in gt+1

v is the contribution due
to a neighbor of v is captured at time t+1. The second item
is the probability that a vertex being exposed at time t and
remains being exposed at t + 1. We can rewrite is as




f t+1
v = (1− β)f t

v + αgt
v

gt+1
v = (1− (1− β)f t

v − (1− γ)gt
v)(1−∏

u∼v(1− f t+1
u ))

+gt
v(1− α− γ).

The above recurrence formula is not easy to solve. How-
ever, we have

gt+1
v ≤

∑
u∼v

f t+1
u + gt

v(1− α− γ).

Here we use the inequality (1−∏
u∼v(1−f t+1

u )) ≤ ∑
u∼v f t+1

u .
Let f t be the column vector with i-th entry f t

i . Let gt be
the column vector with i-th entry gt

i . We have

f t+1 = (1− β)f t + αgt

gt+1 ≤ Af t+1 + (1− α− γ)gt,

where A is the adjacency matrix of G. Given two vectors X
and Y , the notation X ≤ Y means Xi ≤ Yi for every index
i. We can rewrite into the following matrix form.
(

I
−A I

) (
f t+1

gt+1

)
≤

(
(1− β)I αI

(1− α− γ)I

) (
f t

gt

)
.

We (left) multiply both hand sides by a non-negative matrix
(

I
A I

)
.

We have
(

f t+1

gt+1

)
≤

(
(1− β)I αI
(1− β)A αA + (1− α− γ)I

) (
f t

gt

)
.

Let M denote the square matrix in the above inequality.
We have

λI −M =

(
(λ− 1 + β)I −αI
−(1− β)A −αA + (λ− 1 + α + γ)I

)

= B

(
(λ− 1 + β)I

(λ− 1 + α + γ)I − λα
λ−1+β

A

)
B−1,

whereB =

(
I

− 1−β
λ−1+β

A I

)
.

Thus, we obtain

det(λI −M) =

n∏
i=1

((λ− 1 + β)(λ− 1 + α + γ)− λασi).

Here σ1 ≥ σ2 ≥ · · · ≥ σn are the eigenvalues of A. The
largest eigenvalue µ1 of M satisfies the equation

f(x) = (x− 1 + β)(x− 1 + α + γ)− ασ1x = 0.

It is less than 1 if and only if f(1) = β(α + γ) − ασ1 > 0.
By solve f(x) = 0, we have the following upper bound:

µ1 ≤ α + β + γ − αβ − βγ

α + β + γ − ασ1
< 1.

For any initial state, almost surely there is no compromised
or exposed vertex after O( log n

− log µ1
) = O(α+β+γ−ασ1

αβ+βγ−ασ1
log n)

steps. ¤

4.3 Proof of Theorem 2
Let St (or Tt) be the set of compromised (or exposed)

nodes at time t respectively. Let Xt be the volume of the set
of compromised nodes, i.e., Xt = vol(St). Let Yt = vol(Tt)
be the volume of the set of exposed nodes. We have

E(Xt+1) = (1− β)E(Xt) + αE(Yt)

E(Yt+1) = (1− α− γ)E(vol(Tt \ (N(St+1) \ St+1)))

+ E(vol(N(St+1) \ St+1))

≥ (1− α− γ)E(Yt) + (α + γ)E(vol(N(St+1) \ St+1))

From Lemma 4.1, for at subset S with vol(S) ≤ εvol(G),
we have

vol(N(S)) >
vol(S)

λ̄2 + (1− λ̄2)ε
.

Let δ = 1
λ̄2+(1−λ̄2)ε

− 1. The following recurrence formula

holds as long as St+1 ≤ εvol(G).

E(Xt+1) = (1− β)E(Xt) + αE(Yt)

E(Yt+1) ≥ (1− α− γ)E(Yt) + (α + γ)δE(Xt+1)

We can rewrite it into the following form.
(

1
−(α + γ)δ 1

) (
E(Xt+1)
E(Yt+1)

)

≥
(

1− β α
1− α− γ

) (
E(Xt)
E(Yt)

)
.

We left-multiply the both hand sides by a non-negative ma-
trix (

1
(α + γ)δ 1

)
.

We have (
E(Xt+1)
E(Yt+1)

)
≥ M

(
E(Xt)
E(Yt)

)
,

where M =

(
1− β α

(α + γ)δ(1− β) (1− α− γ) + α(α + γ)δ

)
.

The characteristic polynomial p(x) of M is

p(x) = (x− 1 + β)(x− 1 + α + γ)− α(α + γ)δx.

Since p(1) = (β − αδ)(α + γ), the largest eigenvalue σ(M)
of M is greater than 1 if β < αδ. In this case, we have

σ(M) ≥ α + β + γ − αβ − βγ

α + β + γ − α(α + γ)δ
.

Let (c1, c2) be the corresponding eigenvector of σ(M) so that
(c1, c2)M = σ(M)(c1, c2). Then, both c1 and c2 are positive.
The expect value of c1Xt + c2Yt increases by a factor of at

least σ(M) > 1 + (αδ−β)(α+γ)

α+β+γ−α2δ−αγδ
until Xt ≥ εvol(G).

Let Zt = c1Xt + c2Yt. The above statement shows the
expected value of Zt grows exponentially (as a function of
t). By the recurrence formula of E(Xt) and E(Yt), both
expected values of Xt and Yt will grow exponentially. It
is sufficient to show Zt grow exponentially with constant
probability.

By Chernoff’s Inequality, we can show Zt concentrates on
its expected value. There exists a absolute constant c so the
following statements holds.

Pr(Zt > (1− ε)E(Zt)) ≤ e−cε2E(Zt).



Since E(Zt) increases by a factor of σ(M),
∑

t≥0 e−cε2σt(M)

converges and there exists an absolute constant t0 that∑
t≥t0

e−cε2E(Zt) < 1
2
. Moreover, there is a constant prob-

ability that Zt ≥ E(Zt0) for some t ≤ 2t0. Hence, with
positive constant probability, Zt will grow at least by a fac-

tor 1+σ(M)
2

> 1 until Xt reach εvol(G).

We choose ε = O(λ̄2) so that δ ≈ 1
λ̄2 − 1. With con-

stant probability, Zt, Xt, Yt will reach Θ(λ̄2vol(G)) within

Θ( (αδ−β)(α+γ)

α+β+γ−α2δ−αγδ
log n) = Θ( α−βλ̄2

(β/(α+γ)+1)λ̄2−α
log n) steps.

The proof of theorem 2 is finished. ¤

5. RELATED WORK
The most related work is our previous work [26], which

studied the impact of proxy network reconfiguration mech-
anisms, and proved that with reconfiguration mechanisms,
proxy networks can effectively hide applications’ IP addresses
thereby preventing infrastructure-level DoS attacks. [26]
also proved the importance of proxy network topology, but
did not study how to choose a topology.

The differences between [26] and this work are the follow-
ing. [26] studied the possibility of using overlay networks
to achieve location-hiding, and it focused on the impact of
defensive mechanisms, such as resource recovery and proxy
network reconfiguration mechanisms. It assumed having a
favorable topology for defenders, and did not address how
to design proxy network topologies. This work, on the other
hand, studies the impact of proxy network topologies on
location-hiding, and focuses on how to design proxy net-
work topologies to effectively achieve location-hiding. They
are complementary research.

There are other researchers exploring the use of overlay
network to tolerate or avoid DoS attacks. The Secure Over-
lay Services (SOS)[17] uses Chord[25] as the overlay network
to provide some amount of anonymity to hide the location
of secret ”servlets”. There are primitive analysis about the
system security under simple attack models such as DoS at-
tack on individual hosts. However, the analysis is tied to
the Chord-based design, and cannot be generalized. Fur-
thermore, they did not consider host compromise attacks,
which are critical threats to their scheme. Internet Indirec-
tion Infrastructure (i3) [24] also suggested the use of Chord
for location-hiding. But they did not fully analyze the effec-
tiveness of their scheme and did not consider host compro-
mise attacks either.

6. SUMMARY AND FUTURE WORK
In this paper, we studied how the topological properties of

proxy networks affect their effectiveness to achieve location-
hiding. In particular, we presented two theorems to charac-
terize when proxy networks are robust against attacks (at-
tackers’ impact can be quickly and completely removed from
the proxy network), and when proxy networks are vulnera-
ble to attacks (attackers’ impact can linger forever and never
be completely removed). We applied these theorems to a set
of topologies. From our results, we found that Chord [25]
topology, which has been suggested for location-hiding [17,
24], is in fact not a favorable topology for such purposes.
Our results also showed that CAN [21], a less popular over-

lay network, can be a favorable topology for location-hiding.

Our theoretical results and case study lead to a few design
principles: proxy networks with high average vertex degrees
are in general unfavorable, because it is hard to make them
robust; furthermore, proxy networks should avoid large clus-
ters of tightly connected nodes, because such clusters are
vulnerable to attacks. On the other hand, graphs with low
average vertex degrees and balanced distribution of connec-
tivity are in general good candidates for proxy networks; be-
cause they are reasonably easy to become robust and they
do not have vulnerable regions to harbor attackers’ impact.

Our theorems also provide a tool to evaluate the good-
ness of a proxy network topology for location-hiding. In
the design of proxy networks, it can help us select favorable
topologies from a set of candidates and filter out undesirable
ones.

Our future work have the following directions. On the the-
oretical path, we will extend our model to include correlated
host vulnerabilities, and study the impact of such correla-
tions, and the impact of technologies such as intrusion detec-
tion, intrusion/fault containment and software heterogene-
ity. We will also study how to design proxy networks that
can tolerate massive proxy failures due to DoS attacks. The
key challenges include finding appropriate system reconfig-
uration schemes and appropriate proxy network topologies
with sufficient connectivity to tolerate proxy failures. Fur-
thermore, we can generalize our framework and apply our
work to wider classes of problems. For instance, our work
can be extended to study the spreading of computer viruses
or even problems outside the computer science domain. On
the empirical path, we will implement a prototype proxy net-
work based on our theoretical results and empirically verify
the correctness of our theoretical results.
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