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Given a finite poset P , we consider the largest size La(n, P ) of
a family of subsets of [n] := {1, . . . ,n} that contains no (weak)
subposet P . This problem has been studied intensively in recent
years, and it is conjectured that π(P ) := limn→∞ La(n, P )/

( n
� n

2 �
)

exists for general posets P , and, moreover, it is an integer. For
k � 2 let Dk denote the k-diamond poset {A < B1, . . . , Bk < C}.
We study the average number of times a random full chain meets
a P -free family, called the Lubell function, and use it for P = Dk

to determine π(Dk) for infinitely many values k. A stubborn open
problem is to show that π(D2) = 2; here we make progress by
proving π(D2) � 2 3

11 (if it exists).
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in how large a family of subsets of the n-set [n] := {1, . . . ,n} there is that avoids
a given (weak) subposet P . The foundational result of this sort, Sperner’s Theorem from 1928 [16],
solves this problem for families that contain no two-element chain (that is, for antichains), determin-
ing that the maximum size is

( n
� n

2 �
)
. For other excluded subposets, it is interesting to compare the

maximum size of a P -free family to
( n
� n

2 �
)
.

We give background and our new results for this study in the next section. One small forbidden
poset that continues to stymie all interested researchers is the diamond poset on four elements. We
present a better new upper bound on the size of diamond-free families. For k-diamond-free families
for general k, we provide bounds that, surprisingly, turn out to be best-possible for infinitely many
values of k.

In Section 3 we introduce our method for this subject, the Lubell function of a family, which gives
the average number of times a random full chain meets the family. The Lubell function yields an upper
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bound on the size of a family. For diamond-free families, we observe that the maximum possible
Lubell function decreases with n, and a calculation gives our bound. For excluding k-diamonds, our
new idea is to partition the set of full chains, obtaining bounds on each block of the partition. The
Lubell and full chain partition methods hold promise for other families of forbidden subposets.

Section 4 contains our detailed proofs, except for the long proof of Theorem 2.4, which is given in
Section 5. The paper concludes with our ideas for advancing the project.

2. Background and main results

For posets P = (P ,�) and P ′ = (P ′,�′), we say P ′ is a weak subposet of P if there exists an in-
jection f : P ′ → P that preserves the partial ordering, meaning that whenever u �′ v in P ′ , we have
f (u) � f (v) in P [17]. Throughout the paper, when we say subposet, we mean weak subposet. We
say the height h(P ) of poset P is the maximum size of any chain in P .

Let the Boolean lattice Bn denote the poset (2[n],⊆). We consider collections F ⊆ 2[n] . Then F can
be viewed as a subposet of Bn . If F contains no subposet P , we say F is P -free. We are interested in
determining the largest size of a P -free family of subsets of [n], denoted La(n, P ).

In this notation, Sperner’s Theorem [16] gives that La(n, P2) = ( n
� n

2 �
)
, where Pk denotes the path

poset on k points, usually called a chain of size k. Moreover, Sperner determined that the largest
antichains in Bn are the middle level,

( [n]
n/2

)
(for even n) and either of the two middle levels,

( [n]
(n−1)/2

)
or

( [n]
(n+1)/2

)
(for odd n), where for a set S ,

(S
i

)
denotes the collection of i-subsets of S . More generally,

Erdős solved the case of Pk-free families. Let us denote by Σ(n,k) the sum of the k middle binomial
coefficients in n, and let B(n,k) denote the collection of subsets of [n] of the k middle sizes, that is,
the sizes �(n − k + 1)/2�, . . . , �(n + k − 1)/2� or else the sizes �(n − k + 1)/2	, . . . , �(n + k − 1)/2	.
So there are either one or two possible families B(n,k), depending on the parities of n and k, and
regardless, |B(n,k)| = Σ(n,k). Then we have

Theorem 2.1. (See [6].) For n � k − 1 � 1, La(n, Pk) = Σ(n,k − 1). Moreover, the Pk-free families of maxi-
mum size in Bn are given by B(n,k).

It follows that for fixed k, La(n, Pk) ∼ (k − 1)
( n
� n

2 �
)

as n → ∞. Katona and his collaborators pro-

moted the problem of investigating La(n, P ) for other posets P , especially its asymptotic behavior for
large n. Consider the r-fork poset Vr , which has elements A < B1, . . . , Br , r � 2. In 1981 he and Tar-
ján [13] obtained bounds on La(n, V2) that he and DeBonis [4] extended in 2007 to general Vr , r � 2,
proving that(

1 + r − 1

n
+ Ω

(
1

n2

))(
n

�n
2 �

)
� La(n, Vr) �

(
1 + 2

r − 1

n
+ O

(
1

n2

))(
n

�n
2 �

)
.

While the lower bound is strictly greater than
( n
� n

2 �
)
, we see that La(n, Vr) ∼ ( n

� n
2 �

)
. Earlier, Thanh [18]

had investigated the more general class of broom-like posets. Griggs and Lu [11] studied the even
more general class of baton posets. These posets mentioned so far have Hasse diagrams that are trees.
Carroll and Katona [3] considered forbidding induced V 2 subposets. Another survey of the subject
is [12].

In [5] it is shown that for the butterfly poset B, with elements A, B both less than C, D , one can
give an exact answer, La(n, B) = Σ(n,2), for n � 3, which is asymptotic to 2

( n
� n

2 �
)
. More generally, for

any s, t � 2, the complete bipartite poset Ks,t with elements A1, . . . , As all less than B1, . . . , Bt , satis-
fies La(n, Ks,t) ∼ 2

( n
� n

2 �
)

[4]. The N -poset, with elements A, B, C, D such that A < B , C < B , C < D , is

intermediate between V2 and B. It is shown in [8] that La(n, N ) ∼ ( n
� n

2 �
)
.

Based on the examples for which La(n, P ) was known, Griggs and Lu [11] proposed the conjecture
that was certainly apparent to Katona et al.:

Conjecture 2.2. For every finite poset P , the limit π(P ) := limn→∞ La(n,P )

( n
� n �)

exists and is integer.

2
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All of the examples above agree with the conjecture, and Griggs and Lu verified it for additional
examples, including tree posets of height 2. For the crown O2k , k � 2, which is the poset of height 2
that is a cycle of length 2k as an undirected graph, they extended the butterfly result above and
proved that La(n, O2k) ∼ ( n

� n
2 �

)
for all even k � 4. For odd k � 3, it remains a daunting problem to

determine the asymptotic behavior of La(n, O2k). At least, Griggs and Lu can show La(n, O2k)/
( n
� n

2 �
)

is

asymptotically at most 1 + 1√
2

, which is less than 2.

When Griggs lectured on this work on forbidden subposets in 2008, Mike Saks and Peter Winkler
observed a pattern in all of the examples where π(P ) was determined, which we describe as follows.
For poset P define e(P ) to be the maximum m such that for all n, the union of the m middle levels
B(n,m) does not contain P as a subposet. Their observation was π(P ) = e(P ). For instance, the mid-
dle two levels B(n,2) contain no butterfly B, since no two sets of the same size k contain the same
two subsets of size k − 1. One gets that e(B) = 2, which is π(B). In general, it is clear that when it
exists, π(P ) must be at least e(P ).

Impressive progress in the development of the theory is the result of Bukh [2] that for any tree
poset T (meaning that the Hasse diagram is a tree), π(T ) = e(T ), so that the conjecture (and obser-
vation) are satisfied. It is easily verified that e(T ) = h(T ) − 1.

Is there a connection for general P between π(P ) and the height h(P )? The result of DeBonis and
Katona for complete bipartite posets Ks,t implies that for any poset P of height 2, π(P ) � 2, when
it exists. However, there is no such bound for taller posets, as observed by Jiang and Lu (see [11]).
Let the k-diamond poset Dk , k � 2, consist of k + 2 elements A < B1, . . . , Bk < C . Then h(Dk) = 3 for
general k, while for k = 2r − 1, the middle r + 1 levels B(n, r + 1) cannot contain Dk , since an interval
in B(n, r + 1) with an element in the lowest level and an element in the highest level has at most 2r

elements (a subposet Br ), and so at most 2r − 2 elements in the middle. Hence it is Dk-free.
The diamond D2 is the most challenging poset on at most four elements in this theory. (It is also

the Boolean lattice B2.) It is easily seen that e(D2) = 2. On the other hand, it is a subposet of the path
P4. So, if π(D2) exists (which has still not been shown), it would have to be in [2,3]; Its conjectured
value is 2.

As an illustration of the Lubell function method introduced in the next section, a short application
is given that reduces the upper bound on π(D2) from 3 to 2.5. A refinement of the Lubell func-
tion method, which involves partitioning the set of full chains in an appropriate way, gives our first
improvement on the 2.5 bound:

Proposition 2.3. For all sufficiently large n, La(n, D2)/
( n
� n

2 �
)
< 2.296.

We display this bound, not our best one, since its proof is simpler than our best bound, and since
its proof gives us further insight into the Lubell function for D2. Some time after we had announced
our bound above, Axenovich, Manske, and Martin [1] came up with a new approach which improves
the upper bound to 2.283. Now using our methods with a much more careful analysis of diamond-
free families for n � 12, we can provide a further slight improvement, which is the best-known upper
bound:

Theorem 2.4. For all sufficiently large n, La(n, D2)/
( n
� n

2 �
)
< 2 3

11 + on(1) < 2.273. Consequently, if it exists,

π(D2) ∈ [2,2 3
11 ].

Because this new bound requires considerably more care, its proof is given in its own section fol-
lowing the proofs of our other results. We shall see diamond-free families in the proof for which the
Lubell function method cannot improve the upper bound on π(D2) below 2.25. Therefore, new ideas
are required to bring the upper bound down to the conjectured value of 2. Likewise, it appears that
the methods of [1] cannot move below 2.25. See the final section of the paper for more discussion of
how we can do better.
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Given the great effort that has gone into improving the upper bound on π(D2), it is then quite
surprising that we can solve the π problem for many of the general diamonds Dk with k > 2. This
can be regarded as our main result.

Theorem 2.5. Let k � 2, and define m := �log2(k + 2)	.

(1) If k ∈ [2m−1 − 1,2m − ( m
� m

2 �
) − 1], then

La(n, Dk) = Σ(n,m).

Hence, π(Dk) = e(Dk) = m. Moreover, if F attains the bound La(n, Dk), then F = B(n,m).

(2) If k ∈ [2m − ( m
� m

2 �
)
,2m − 2], then,

Σ(n,m) � La(n, Dk) �
(

m + 1 − 2m − k − 1( m
� m

2 �
)

)(
n

�n
2 �

)
.

Hence, if π(Dk) exists, then

m = e(Dk) � π(Dk) �
(

m + 1 − 2m − k − 1( m
� m

2 �
)

)
< m + 1.

For π(D2) this new theorem gives an upper bound of 2.5, not as good as the theorem before.
However, this new result determines π(Dk) for “most” values of k, in that for the 2m−1 values of k in
the range [2m−1 − 1,2m − 2], case (1) applies to all but

( m
� m

2 �
) ∼ C2m/m1/2 of them. Moreover, we are

able to give La(n, Dk) exactly, not just asymptotically for large n, for such values of k.
The poset Dk can be viewed as the “suspension” of an independent set of size k, where we mean

that a maximum and a minimum element are added to it. We can consider a more general suspension
of disjoint paths (chains). For k � 1 let l1 � · · · � lk � 3, and define the harp poset H(l1, . . . , lk) to
consist of paths Pl1 , . . . , Plk with their top elements identified and their bottom elements identified.
For instance, in this notation we have Dk is the harp H(3, . . . ,3) where there are k 3’s.

Theorem 2.6. If l1 > · · · > lk � 3, then

La
(
n, H(l1, . . . , lk)

) = Σ(n, l1 − 1).

Hence, for such harps, π = e = l1 − 1. Moreover, for such harps, if F is a harp-free family of subsets of [n] of
maximum size, then F is B(n, l1 − 1).

The theorem above only determines π(H) for harps H that have strictly decreasing path lengths.
However, for the general case in which path lengths can be equal there is no bound independent
of k, since we have seen that for Dk , which is a harp, π(Dk) is arbitrarily large as k grows. It is then
remarkable that we can completely solve the problem of maximizing La(n, H) for harps with distinct
path lengths. Another novel aspect of this result is that for k � 2 the harps it concerns are not ranked
posets.

3. The Lubell function

For now let us fix some family F ⊆ 2[n] . Let C := Cn denote the collection of all n! full (maximal)
chains ∅ ⊂ {i1} ⊂ {i1, i2} ⊂ · · · ⊂ [n] in the Boolean lattice Bn . A method used by Katona et al. involves
counting the number of full chains that meet F . Here we collect information about the average
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number of times chains C ∈ C meet F , which can be used to give an upper bound on |F |. Recall that
the height of F , viewed as a poset, is

h(F ) := max
C∈C

|F ∩ C |.
We consider what we call the Lubell function of F , which is

h̄(F ) = h̄n(F ) := ave
C∈C

|F ∩ C |.

This is the expected value E(|F ∩ C |) over a random full chain C in Bn . Then h̄(F ) is essentially
the function of F at the heart of Lubell’s elegant proof of Sperner’s Theorem ([15], cf. [7]) with the
observation.

Lemma 3.1. Let F be a collection of subsets of [n]. Then h̄(F ) = ∑
F∈F 1/

( n
|F |

)
.

Proof. We have that h̄(F ) = E(|F ∩ C |), where C is picked at random from C . This expected value
is, in turn, the sum over F ∈ F of the probability that a random C contains F . Since C meets the(n

k

)
subsets of cardinality k with equal probability, it means that each set F contributes 1/

( n
|F |

)
to the

sum. �
Lubell’s proof uses the simple facts that |A ∩ C | � 1 for any antichain A and that

(n
k

)
is maximized

by taking k = � n
2 �, to derive Sperner’s Theorem that |A| �

( n
� n

2 �
)
. By similar reasoning for general

families F we obtain a general upper bound.

Lemma 3.2. Let F be a collection of subsets of [n]. If h̄(F ) � m, for real number m > 0, then |F | � m
( n
� n

2 �
)
.

Moreover, if m is an integer, then |F | � Σ(n,m), and equality holds if and only if F = B(n,m) (when n +m is
odd), or if F = B(n,m − 1) together with any

( n
(n−m)/2

)
subsets of sizes (n − m)/2 or (n + m)/2 (when n + m

is even).

Proof. We use the symmetry and strict unimodality of the sequence of binomial coefficients
(n

k

)
,

0 � k � n. If h̄(F ) � m, then |F | = ∑
A∈F 1 �

∑
A∈F

( n
� n

2 �
)
/
( n
|A|

)
� m

( n
� n

2 �
)
. Now assume m > 0 is an

integer. We construct a family F of maximum size, subject to h̄(F ) � m, by selecting subsets A that
contribute the least to h̄(F ), which means that we minimize 1/

( n
|A|

)
. Essentially, we are solving the

linear program of maximizing
∑

i xi
(n

i

)
subject to

∑
i xi � m, 0 � xi � 1 for all i. We maximize |F | by

selecting F to be the m middle levels, B(n,m).
Further, if |F | = Σ(n,m), it must be that F is B(n,m) when n + m is odd. If n + m is even, the

subsets of sizes (n − m)/2 and (n + m)/2 will tie for the m-th largest size, and we can freely choose
any

( n
(n−m)/2

)
subsets of the two sizes so that |F | = Σ(n,m). �

We see that upper bounds on the average intersection size |F ∩ C | lead to upper bounds on the
ratio of particular interest in this paper, |F |/( n

� n
2 �

)
. Hence, we get upper bounds on π(P ), when it

exists, from upper bounds on h̄(F ) for P -free families F .
To illustrate how this can be useful, we now give a short proof that, if it exists, π(D2) � 2.5. Con-

sider a diamond-free family F ⊆ 2[n] . No full chain C ∈ Cn meets F four times, or else F contains P4,
which has D2 as a subposet. If no chain meets F three times, we immediately get h̄(F ) � h(F ) � 2.
Else, consider any three elements of F X ⊂ Y ⊂ Z , and let Y ′ be any set not equal to Y such that
X ⊂ Y ′ ⊂ Z . Let σ be a permutation of [n] that fixes X and Z and sends Y to Y ′ . Then σ sends full
chains C ∈ Cn through X, Y , Z to full chains C ′ ∈ C through X, Y ′, Z . These chains C ′ meet F only
twice, as F is diamond-free. These chains C ′ are distinct. We find then that h̄(F ) = E(|F ∩ C |) � 2.5.

Unfortunately, the behavior of h̄(F ) does not match that of |F |/( n
� n

2 �
)

asymptotically – there can

be a gap. We shall see examples of this for diamond-free families. Nonetheless, in many cases we
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can obtain π(P ) from h̄(F ). Besides that, it is interesting in its own right to maximize h̄(F ) for P -
free families F , though obtaining a good bound on h̄(F ) can be difficult. We have discovered that a
“partition method” can be fruitful.

Specifically, we partition the set C of full chains into blocks C(i) and then, for each i separately, we
bound the average size |F ∩ C | over full chains C ∈ C(i). The principle is that the average size |F ∩ C |
over all full chains C is at most the maximum over i of the average over block C(i). An analogy to
baseball is helpful for some readers: A hitter’s average over a whole season is never more than his
maximum monthly average over the months in the season.

We illustrate the partition method by sketching a derivation of La(n, B). Let F be a butterfly-
free family of subsets of [n], n � 3. One can check that if F contains ∅ or [n], then |F | < Σ(n,2)

(although, one may have h̄(F ) > 2). Else, suppose ∅, [n] /∈ F . We show h̄(F ) � 2. Define the collection
M of subsets M ∈ F of [n] for which there exists a chain C ∈ C passing through A, M, B ∈ F with
A ⊂ M ⊂ B . Notice that since F contains no butterfly B, it contains no P4, and so the collection M
is an antichain. Now partition the set of full chains C as follows: For M ∈ M, CM consists of all full
chains meeting M , while C∅ contains all full chains that do not meet M.

By definition of M, no chain in C∅ meets F three times, and so aveC∈C∅ |F ∩ C | � 2. For M ∈ M,
similar to the argument above for D2-free families, for any chain C ∈ CM meeting F three times, it
must meet F in A, M, B , and there is a corresponding chain in CM meeting F only at M and avoiding
A, B , so that aveC∈CM |F ∩ C | � 2. Hence, we have partitioned C into blocks such that F meets chains
in each block at most twice, on average, and hence at most twice, on average, over all of C . Thus,
h̄(F ) � 2, and it follows that La(n, B) = Σ(n,2), since B(n,2) is butterfly-free.

Regarding the extremal butterfly-free families as far as achieving La(n, B), Lemma 3.2 above ap-
plies. In fact, it is known that F must be B(n,2) for n � 5, though it is not true for n = 4: Consider
F consisting of {{1}, {2}, {1,3,4}, {2,3,4}} and all six 2-subsets.

However, in some cases we can show that La(n, P ) is attained only by F = B(n,k):

Lemma 3.3. Suppose that for poset P , e(P ) = m, an integer. Suppose that for all n, all P -free families F ⊆ 2[n]
satisfy h̄(F ) � m. Then for all n, La(n, P ) = Σ(n,m), and if F is an extremal family, then F = B(n,m).

Proof. Let F be a P -free family with size La(n, P ). According to Lemma 3.2, La(n, P ) = Σ(n,m),
since h̄(F ) � m. Further, F = B(n,m) when n + m is odd. Hence, suppose n + m is even, so that
F = B(n,m − 1) together with any

( n
(n−m)/2

)
subsets of sizes (n − m)/2 or (n + m)/2. Suppose for

contradiction that F contains subsets of both sizes (n − m)/2 and (n + m)/2. By the natural gen-
eralization of Sperner’s proof of Sperner’s Theorem (or by using the normalized matching property
on the ranks

( [n]
(n−m)/2

)
and

( [n]
(n+m)/2

)
) [7], we can find subsets A, B ∈ F with A ⊂ B , |A| = (n − m)/2

and |B| = (n + m)/2. Then the interval [A, B] ⊂ F . This interval is a Boolean lattice, Bm . However,
h̄m(Bm) = m + 1 > m, so that by hypothesis, Bm must contain subposet P , which contradicts our as-
sumption that F is P -free. Hence, F only contains one of the two sizes (n −m)/2 and (n +m)/2. �

We saw that the conclusion of the lemma above fails for the butterfly P = B (but only for small n).
The reason we could not apply this lemma to P = B is that the hypothesis fails for n = 2: The full
Boolean lattice B2, which has one more element than B(2,2), is butterfly-free.

4. Proofs of results 2.3, 2.5, 2.6

We now illustrate our partition method to bring the bound for D2-free families below 2.5. Our
best bound is derived in the next section.

Proof of Proposition 2.3. Let F be a D2-free family of subsets of [n] with maximum Lubell function
value h̄(F ), and let dn denote this value. We claim that dn is nonincreasing for n � 2. By easy direct
case study we get that d2 = 2.5 and d3 = d4 = 7/3 ≈ 2.33.

For n � 5, if both ∅ and [n] are in F , then we have only one more subset in F , and h̄(F ) �
2 + 1

n � 2.2. We will later give examples of families with Lubell function > 2.2, so F cannot satisfy
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this condition. Then we may assume by symmetry that [n] /∈ F . We partition the set C of full chains
into the blocks Cn,i , where the chains C ∈ Cn,i pass through set [n] \ {i}. A random full chain in C is
equally likely to belong to each Cn,i , and h̄(F ) is simply the average over i of the values E(|F ∩ C |)
taken over C ∈ Cn,i , viewed as the Lubell function for the subsets of [n] \ {i}. That is, h̄(F ) is the
average of n terms, each of which is at most dn−1. Hence, dn = h̄(F ) � dn−1.

Returning to the calculations, for d5 we note that since h̄(F ) is a sum of terms, each 1 or 1/5
or 1/10, d5 is a multiple of 1/10, and hence at most 2.3 since it is at most 7/3. Then d7, which is
similarly a multiple of 1/105, must be less than 2.3, and hence at most 241/105 < 2.2953, and so by
Lemma 3.2, for n � 7, |F | < 2.2953

( n
� n

2 �
)
, which implies the theorem. �

Next is the result for Dk-free families for general k.

Proof of Theorem 2.5. Let n,k � 2, and define m := �log2(k + 2)	.
For the lower bounds, consider F = B(n,m). We have |B − A| � m − 1 for any two subsets A ⊆ B

in F . There are at most 2m−1 −2 subsets S satisfying A ⊂ S ⊂ B . Hence F is Dk-free. So m � e(Dk) �
π(Dk).

Now we derive the upper bounds. Let F be a largest Dk-free family in Bn . We take what we call
the min–max partition of the set C of full chains in Bn according to F : For subsets A ⊆ B ⊆ [n] with
A, B ∈ F , the block C A,B consists of the full chains C such that the smallest and the largest subsets
in F ∩ C are A and B , respectively. We denote by C∅ the block of full chains that do not meet F at
all. For C ∈ C∅ , we have |F ∩ C | = 0.

We now bound the expected size of |F ∩ C | for a random chain C in C A,B . If |B − A| � m − 1, then
this is at most m immediately.

For the remainder, assume |B − A| � m. We use the Lubell function Lemma 3.1 to calculate
E(|F ∩ C |) by adding the contributions of each subset S ∈ F ∩ [A, B], which is 1/

(|B−A|
|S−A|

)
. Since F

is Dk-free and contains both A and B , there are at most k − 1 subsets S ∈ F ∩[A, B] besides A and B .
Then E(|F ∩ C |) is maximized if we take the k − 1 terms with largest contribution, i.e., with minimum(|B−A|
|S−A|

)
, which means the sets S closest to the ends A or B , so with |S − A| equal to 1 or |B − A| − 1,

then 2 or |B − A| − 2, and so on. The contribution from each full level we include is then one.
For the case (1), where k − 1 � 2m − 2 − ( m

� m
2 �

)
, we see that for |B − A| = m, the k − 1 terms

are at most enough to account for all subsets S ∈ [A, B] with |S − A| not equal to �m/2�, that is,
we get Lubell function at most m (when we include the terms for A and B). For |B − A| > m, since
the levels working up from A or down from B are larger, the k − 1 terms are no longer sufficient
to cover as many full levels, and the Lubell function is strictly less than m. Since every block in
our partition has expected value at most m, we conclude that h̄(F ) � m. Lemma 3.2 gives us |F | �
Σ(n,m). Furthermore, we also have e(Dk) � m. Hence m = e(Dk) = π(Dk) � h̄(F ) � m. By Lemma 3.3
the extremal family F must in fact be B(n,m).

For the case (2), where k − 1 > 2m − 2 − ( m
� m

2 �
)
, we see that for |B − A| = m, the largest sum of

k − 1 terms leads to Lubell function at most m + 1 − (2m − k − 1)/
( m
� m

2 �
)
. As in case (1), if |B − A| > m,

then since the levels working up from the bottom or down from the top in [A, B] are larger, the
Lubell function is strictly less than this bound. The bound holds for every block C A,B of the min–max
partition. Therefore, if π(Dk) exists, π(Dk) � h̄(F ) � m + 1 − (2m − k − 1)/

( m
� m

2 �
)
. �

Now we use the min–max partition of the set of full chains to prove the Harp Theorem.

Proof of Theorem 2.6. We argue that h̄(F ) � l1 − 1 for any H(l1, . . . , lk)-free F using induction on k.
The case k = 1 concerns a family F that contains no chain of height l1, for which we get immediately
that h̄(F ) = E(|F ∩ C |) � maxC |F ∩ C | � l1 − 1 (which implies Erdős’s Theorem 2.1).

Let k � 2, and assume the bound on h̄ for harps with k − 1 paths. Let F be an H-free family of
subsets of [n], where H = H(l1, . . . , lk), and consider a block C A,B in the min–max partition of the set
of full chains C induced by F . Let t be the largest height of any chain in F ∩ [A, B]. If t < l1 we get
that for full chains C in this block, E(|F ∩ C |) � l1 − 1.
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Otherwise, t � l1. Consider a largest chain Z in F ∩ (A, B), say S1 ⊂ · · · ⊂ St−2, where A ⊂ S1 and
St−2 ⊂ B . Let F ′ be F ∩ [A, B] with the sets in Z removed.

Then Z and F ′ are disjoint and E(F ∩ C) for random full chains C in this block is the sum of
E(Z ∩ C) and E(F ′ ∩ C). For the Z term, by Lemma 3.1 we get

∑
i 1/

( |B−A|
|Si−A|

)
� (t − 2)/|B − A| < 1. For

the other term, we observe that F ′ is H(l2, . . . , lk)-free in the Boolean lattice of subsets of [A, B]. By
induction on k, h̄(F ′) � l2 − 1 � l1 − 2. So C meets F ′ on average at most l1 − 2 times. Combining
terms, we find that C meets F at most l1 − 1 times on average for C in this block, and hence for all
random full chains C ∈ C . We have that h̄(F ) � l1 −1. By Lemma 3.2 we get that La(n, H(l1, . . . , lk)) �
Σ(n, l1 − 1).

The family B(n, l1 − 1) achieves the upper bound just given, since it does not contain an l1-chain,
and is thus H(l1, . . . , lk)-free. We see that

e
(

H(l1, . . . , lk)
) = π

(
H(l1, . . . , lk)

) = l1 − 1.

Moreover, by Lemma 3.3, the only harp-free family of maximum size is B(n, l1 − 1). �
5. Proof of D2 Theorem 2.4

We investigate the structure of D2-free families with maximum Lubell function, and use this in-
formation to improve our earlier bound. Before proving Theorem 2.4, we continue from the proof of
Proposition 2.3 in the last section, assuming all notation and facts from that.

We adopt the notation that for any families F1, . . . , Fm of sets, F1 ∨ · · · ∨ Fm denotes the family
{F1 ∪ · · · ∪ Fm | ∀i F i ∈ Fi}. Given disjoint sets S, T we define the following three constructions:

Construction. C1(S, T ): F = {∅} ∪ (S
1

) ∪ (
(S

1

) ∨ (T
1

)
) ∪ (T

2

)
.

Construction. C2(S, T ): F = {∅} ∪ (S
2

) ∪ (T
2

) ∪ (
(S

2

) ∨ (T
1

)
) ∪ (

(S
1

) ∨ (T
2

)
).

Construction. C3(S, T ): F = ([n]
1

) ∪ (S
2

) ∪ (T
2

) ∪ (
(S

2

) ∨ (T
1

)
) ∪ (

(S
1

) ∨ (T
2

)
).

We will typically partition [n] into subsets S, T in using these constructions, and we write
Ci(s,n − s) for Ci([s], [n] \ [s]), for integers s, 0 < s < n. The families above are D2-free and each
h̄(Ci(s,n − s)) = 2 + s(n−s)

n(n−1)
. For n � 2, the maximum value over s is 2 + �n/2	�n/2�

n(n−1)
> 2.25, achieved by

s = �n/2	 or �n/2�.
In our approach the key to proving Theorem 2.4 is to focus on D2-free families F that contain ∅.

Let δn be the maximum value of h̄(F ) for all such families. Definitions give that 2 + �n/2	�n/2�
n(n−1)

�
δn � dn . Even though we do not obtain the values of dn , we can obtain δn for n up to 12. This
technical information (including the extremal families for δn) makes up the following lemma, which
is the hard part in proving the theorem.

Lemma 5.1. The sequence {δn} satisfies the following properties.

(1) It is nonincreasing for n � 4.
(2) For 4 � n � 12, if F contains ∅ and h̄n(F ) � 2 3

11 , then up to relabeling elements of [n], F is C1(s,n − s)

for s = � n
2 � or � n

2 	, or C2(� n
2 �, � n

2 	). Hence, δn = 2 + �n/2	�n/2�
n(n−1)

.

Proof. To show (1), let F be a D2-free family of subsets of [n] such that h̄n(F ) = δn . For n � 5, if
both ∅ and [n] are in F , then we have only one more subset in F , and h̄n(F ) � 2 + 1

n � 2.2. Thus
[n] /∈ F . Then similar to the proof of Proposition 2.3, we partition the set C of full chains into the
blocks Cn,i , where the chains C ∈ Cn,i pass through set [n] \ {i}. Again, h̄(F ) is the average over i of
the values E(|F ∩ C |) taken over C ∈ Cn,i , viewed as the Lubell function for the subsets of [n] \ {i}.
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That is, h̄n(F ) is the average of n terms, each of which is at most δn−1. In other words, for 1 � i � n,
let Fi = {F ∈ F | i /∈ F }. Then each Fi is a D2-free family in 2[n]\{i} . We have

h̄n(F ) = ave
1�i�n

(
ave

C∈Cn,i

|F ∩ C |
)

= 1

n

n∑
i=1

h̄n−1(Fi).

Hence, δn = h̄n(F ) � δn−1.
We claim the following two facts which are needed in showing (2).

Claim 1. The inequality 2 + �n/2	�n/2�
n(n−1)

− 1
(n

3)
< 2 3

11 holds for all n � 12.

This can be verified by a simple computation.

Claim 2. For 4 � n � 12, suppose F ⊂ C1(s,n − s) with h̄n(F ) � 2 3
11 . Then F = C1(s,n − s) with

s = � n
2 	 or � n

2 �. Similarly, if F ⊂ C2(s,n − s) with h̄n(F ) � 2 3
11 , then F = C2(� n

2 �, � n
2 	) (the same as

C2(� n
2 	, � n

2 �) by relabeling the elements).
One can calculate that if |s−(n−s)| > 1, then h̄n(Ci(s,n−s)) < 2 3

11 . Furthermore, if F � C1(s,n−s)

with s = � n
2 	 or � n

2 �, then h̄n(F ) � 2 + �n/2	�n/2�
n(n−1)

− 1
(n

2)
< 2 3

11 . Similarly, if F � C2(� n
2 �, � n

2 	), then

h̄n(F ) � 2 + �n/2	�n/2�
n(n−1)

− 1
(n

3)
< 2 3

11 . So Claim 2 holds.

We show (2) by induction on n. When n = 4, it can be directly verified by enumeration. There are
17 classes (up to relabeling of elements of [n]) of D2-free families containing ∅. The classes C1(2,2)

and C2(2,2) satisfy h̄(F ) = 2 1
3 while the rest of them have h̄(F ) at most 2 1

4 which is less than

2 3
11 .

Assume n � 5 and the statements are true for n − 1. Now we consider a D2-free family F ⊂
2[n] satisfying h̄n(F ) � 2 3

11 and ∅ ∈ F . Again, the full set [n] is not in F . Otherwise, F contains at
most one more subset other than ∅ and [n], and h̄n(F ) � 2 + 1

n < 2 3
11 . Since h̄n(F ) � 2 3

11 , there
exists i so that h̄n−1(Fi) � 2 3

11 . We may assume h̄n−1(Fn) � 2 3
11 . By inductive hypothesis, Fn is

C1(�n−1
2 �, �n−1

2 	), C1(�n−1
2 	, �n−1

2 �), or C2(�n−1
2 �, �n−1

2 	). We consider two cases.

Case 1. Fn = C1(S, T ) where |S| = �n−1
2 � or �n−1

2 	.

It remains to decide the subsets in F \ Fn . Here are two subcases depending on whether {n} is
in F .

Subcase 1a. {n} ∈ F .
Since F is D2-free, it contains no subsets of forms {s1,n}, {s1, s2,n, . . .}, {s1, t1,n, . . .}, and

{t1, t2,n, . . .} for si,∈ S and ti ∈ T . Thus, F ⊂ C1(S ∪ {n}, T ). Since h̄n(F ) � 2 3
11 , we conclude that

|S| + 1 must be � n
2 � or � n

2 	. Thus, by relabeling elements of [n] we have that F = C1(� n
2 	, � n

2 �).

Subcase 1b. {n} /∈ F .
Let S ′ = {s ∈ S | {s,n} ∈ F } and T ′ = {t′ ∈ T | {t′,n} ∈ F }. Since F is D2-free, F cannot have subsets

of forms {s1, s2,n, . . .}, {s1, t1,n, . . .}, {t1, t′,n, . . .}, and {t1, t2, t3, . . .} for si ∈ S , ti ∈ T , and t′ ∈ T ′ .
Equivalently,

F ⊂ Fn ∪
((

S ′

1

)
∨ {{n}}

)
∪

((
T ′

1

)
∨ {{n}}

)
∪

((
T \ T ′

2

)
∨ {{n}}

)
.
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Then

h̄n(F ) �
(

1 + |S|
n

+ |S||T | + (|T |
2

)
(n

2

)
)

+ |S ′| + |T ′|(n
2

) +
(|T −T ′|

2

)
(n

3

)

� 1 + |S|
n

+ |S||T | + (|T |
2

) + |S ′|(n
2

) + f
(∣∣T ′∣∣).

Here f (|T ′|) = (|T −T ′ |
2 )

(n
3)

+ |T ′|
(n

2)
is a quadratic function of |T ′| defined on the integer points of the interval

[0, |T |]. Its maximum is reached at one of the two ends, namely |T ′| = 0 or |T ′| = |T |.

Claim 3. If h̄(F ) � 2 3
11 , then |T ′| = |T |.

For n = 5, we have |S| = |T | = 2. If |T ′| < |T |, then f (|T ′|) � max{ f (0), f (|T | − 1)} = 1
10 . Thus,

h̄(F ) � 1 + |S|
n + |S||T |+(|T |

2 )+|S ′|
(n

2)
+ f (|T ′|) < 2 3

11 , which contradicts our assumption, and so |T ′| = |T |.
For n = 6, we have either |S| = 2 and |T | = 3, or else |S| = 3, |T | = 2. If |T ′| < |T |, then

f (|T ′|) � max{ f (0), f (|T | − 1)} = 3
20 for (|S|, |T |) = (2,3), and f (|T ′|) � max{ f (0), f (|T | − 1)} = 1

15

for (|S|, |T |) = (3,2). By direct computation, both cases give h̄(F ) � 1+ |S|
n + |S||T |+(|T |

2 )+|S ′ |
(n

2)
+ f (|T ′|) <

2 3
11 , which is again a contradiction.

For 7 � n � 12, both f (0) and f (|T | − 1) are at most |T |
(n

2)
− 1

(n
3)

. Thus,

h̄n(F ) � 1 + |S|
n

+ |S||T | + (|T |
2

) + |S ′| + |T |(n
2

) − 1(n
3

)

� h̄n
(
C1

(|S|, |T | + 1
)) − 1(n

3

)

� 2 + �n/2	�n/2�
n(n − 1)

− 1(n
3

) < 2
3

11
.

This contradiction again proves |T ′| = |T |, and completes the proof of Claim 3.

Hence,
(T \T ′

2

)∨{{n}} is a null family. Namely, F ⊂ C1(S, T ∪{n}). By the condition h̄n(F ) � 2 3
11 , we

conclude by relabeling elements of [n] that F = C1(� n
2 �, � n

2 	), which is one of the listed possibilities
in (2).

Case 2. Fn = C2(S, T ) where |S| = �n−1
2 � and |T | = �n−1

2 	.

We determine what are the possible subsets in F \ Fn . Consider the two subcases depending on
whether {n} ∈ F .

Subcase 2a. {n} ∈ F .
Since F is D2-free, F cannot contain subsets of forms {s1, s2,n, . . .}, {t1, t2,n, . . .}, and {u, v, w,

n, . . .} for s1, s2 ∈ S , t1, t2 ∈ T and u, v, w ∈ [n]. Let S ′ = {s ∈ S | {s,n} ∈ F } and T ′ = {t ∈ T | {t,n} ∈ F }.
Then

F ⊂ Fn ∪ {{n}} ∪
((

S ′

1

)
∨ {{n}}

)
∪

((
T ′

1

)
∨ {{n}}

)
∪

((
S \ S ′

1

)
∨

(
T \ T ′

1

)
∨ {{n}}

)
.
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We have

h̄n(F ) �
(

1 +
(|S|

2

) + (|T |
2

)
(n

2

) +
(|T |

2

)|S| + (|S|
2

)|T |(n
3

)
)

+ 1

n
+ |S ′| + |T ′|(n

2

) + (|S| − |S ′|)(|T | − |T ′|)(n
3

)
= h̄n

(
C2

(|S| + 1, |T |)) − b,

where we see that b := − 1
n + |S|−|S ′|−|T ′|

(n
2)

+ (|T |
2 )+|S ′||T |+|S||T ′|−|S ′||T ′|

(n
3)

is a bilinear function of (|S ′|, |T ′|)
defined on [0, |S|]×[0, |T |]. To find the extremal values of b it suffices to check the four corner points

(0,0), (|S|,0), (0, |T |), (|S|, |T |). We find the minimum value of b, at (|S|, |T |), is
|S||T |−(|S|

2 )
3(n

3)
� 1

(n
3)

.

Hence,

h̄n(F ) � 2 + �n/2	�n/2�
n(n − 1)

− 1(n
3

) < 2
3

11
,

which contradicts our assumption, so this subcase is impossible.

Subcase 2b. {n} /∈ F .
Similar to Subcase 2a, let S ′ = {s ∈ S | {s,n} ∈ F } and T ′ = {t ∈ T | {t,n} ∈ F }. The family F cannot

have subsets of forms {s, s′,n, . . .}, {s′, t′,n, . . .}, {t, t′,n, . . .}, and {u, v, w,n, . . .} for s ∈ S , t ∈ T , s′ ∈ S ′ ,
t′ ∈ T ′ and u, v, w ∈ [n]. Then

F ⊂ Fn ∪
((

S ′

1

)
∨ {{n}}

)
∪

((
T ′

1

)
∨ {{n}}

)

∪
((((

S

1

)
∨

(
T

1

))
\

((
S ′

1

)
∨

(
T ′

1

)))
∨ {{n}}

)

∪
((

S \ S ′

2

)
∨ {{n}}

)
∪

((
T \ T ′

2

)
∨ {{n}}

)
.

We have

h̄n(F ) �
(

1 +
(|S|

2

) + (|T |
2

)
(n

2

) +
(|T |

2

)|S| + (|S|
2

)|T |(n
3

)
)

+ |S ′| + |T ′|(n
2

)

+ |S||T | − |S ′||T ′| + (|S\S ′|
2

) + (|T \T ′|
2

)
(n

3

)
= h̄n

(
C2(|S| + 1, |T |)) − g(n

3

) ,

where

g =
(

n

3

)( |S| − |S ′| − |T ′|(n
2

)
)

+
(|T |

2

)
+ |S ′||T ′| −

(|S \ S ′|
2

)
−

(|T \ T ′|
2

)

= ε1
∣∣T ′∣∣ + ε2

∣∣S \ S ′∣∣,
with

ε1 = 2(n − 2)

3
− |T ′| − 1

2
− 5(|S \ S ′|)

6
and ε2 = n − 2

3
− |S| − |S ′| − 1

2
− |T ′|

6
.

If (|S ′|, |T ′|) = (|S|,0) or (0, |T |), then F ⊂ C2(S ∪{n}, T ) or F ⊂ C2(S, T ∪{n}). Since h̄n(F ) � 2 3
11 ,

we have, by relabeling elements of [n], F = C2(� n
2 �, � n

2 	), which is another of the alternatives listed
in (2).
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Claim 4. When (|S ′|, |T ′|) �= (|S|,0) or (0, |T |), then g � 1.

Recall that 0 � |S ′| � |S| = �n−1
2 � and 0 � |T ′| � |T | = �n−1

2 	.
Suppose n = 2k, so we have |S| = k − 1 and |T | = k, k � 2. Rewrite

ε1 = (
3
∣∣T \ T ′∣∣ + 5

∣∣S ′∣∣)/6 and ε2 = (∣∣T \ T ′∣∣ + 3
∣∣S ′∣∣ + 2

)
/6.

Note that |S ′| and |T \ T ′| are not both zero, nor are |T ′| and |S \ S ′| both zero. One can see that ε1
and ε2 are each at least 1/2, and so g � 1 unless |T ′| = 1 and |S \ S ′| = 0, or |T ′| = 0 and |S \ S ′| = 1.
But either pair of conditions increases the ε’s and still leads to g � 1.

Else, suppose n = 2k + 1, |S| = |T | = k and k � 2. This time rewrite

ε1 = (
3
∣∣T \ T ′∣∣ + 5

∣∣S ′∣∣ − 1
)
/6 and ε2 = (∣∣T \ T ′∣∣ + 3

∣∣S ′∣∣ + 1
)
/6.

Again it is simple to check that g � 1, and Claim 4 holds.
From Claim 4, we have if (|S ′|, |T ′|) �= (|S|,0) or (0, |T |), then once again we get the contradiction

h̄n(F ) � 2 + �n/2	�n/2�
n(n − 1)

− 1(n
3

) < 2
3

11
.

This completes the Case 2 and the proof of the lemma. �
Now we are ready to prove our improved bound.

Proof of Theorem 2.4. Let F be a D2-free family of subsets of [n]. Partition F into Fk and F ′ such
that Fk contains subsets of sizes in [k,n −k] where k = n

2 − 2
√

n ln n, and F ′ = F \ Fk . We know that
|F ′|/( n

� n
2 �

)
< 2

n2 for large n (see [11], Lemma 1).

Now concentrate on the family of sets near the middle, Fk . We take what we call the min partition
of the set C of full chains in Bn: Let C∅ be the block containing the full chains that do not meet Fk at
all. For each subset A ∈ Fk , let C A be the block containing all full chains C having A as the minimal
element in Fk ∩ C . We see that the average number of times a chain in C A meets Fk is obtained by
considering only the subsets in Fk that contain A and viewing them (after removing A from each) as
a diamond-free family of subsets of [n] \ A containing ∅. We deduce that aveC∈C A (|Fk ∩ C |) � δn−|A| .
For n large enough, we have n − |A| > n

2 − 2
√

n ln n � 12. Since the δn are nonincreasing, we have for
large n that h̄(Fk) � δ12 = 2 3

11 . It follows that for sufficiently large n, all D2-free families F in Bn
satisfy

|F |( n
� n

2 �
) = |Fk| + |F ′|( n

� n
2 �

) � 2
3

11
+ 2

n2
.

Consequently, if it exists, the limit π(D2) � 2 3
11 . �

6. Further research

Beyond diamonds Dk , we continue to investigate why the limit π(P ) exists for general posets P .
The methods introduced in this paper have proven to be useful for determining π(P ) for several other
small posets P , which we are collecting separately [9,10,14]. One example is the subposet J of D2
consisting of four elements A, B, C, D with B < A and B < C < D . Forbidding J is more restrictive
than forbidding D2. We show that for n � 1, La(n, J ) = Σ(n,2), and hence π(J ) = 2. All known
values of π(P ) satisfy Conjecture 2.2.

In order to resolve the asymptotics for diamond-free posets, and show that π(D2) = 2 as expected,
it is not enough to work with the Lubell function due to families such as those in the constructions
Ci described above. These examples show that the terms in the sequence δn , which was shown to be
nonincreasing for n � 2, are at least 2.25 for all n � 2. We suspect that the limit limn→∞ dn , which is
known to exist, is 2.25. This would follow from the conjecture below. Here, the conjugate of F is the
family F̄ = { F̄ | F ∈ F } where F̄ = [n] \ F is the complement of F .
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Conjecture 6.1. For every n � 4, the value h̄(F ) of any D2-free family F ⊂ 2[n] satisfies h̄n(F ) � 2 + � n2
4 �

n(n−1)

and equality holds if and only if, up to relabeling elements of [n], F or F̄ is Ci(S, T ) (i = 1,2,3) with
||S| − |T || � 1.

Then how might we reduce our upper bound on π(D2) (if it exists) to below 2.25? The examples
above are nowhere near as large as 2

( n
� n

2 �
)
, yet have very small sets that make large contributions to

the Lubell function. To build large diamond-free families, we should restrict our attention to families
with no small nor large sets, say F ⊆ B(n,k) with k = n − f (n) < n. If we could show that |F | is at
most (2 + on(1))

( n
� n

2 �
)
, for suitable f (n), we would have π(D2) = 2 as we expect, since most of the

2n subsets are concentrated near the middle rank.
Another indication of the challenge facing us for D2 is that we have constructed three D2-free

families for n = 6 of size 36, which is one more than Σ(6,2). This is in contrast to the values k for
which Theorem 2.5 determines La(n, Dk) completely, and its value is exactly Σ(n,m). Thus, the solu-
tion for D2, and probably also Dk for the unsettled values k, is likely going to be more complicated.
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