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Duplication Models for Biological Networks
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ABSTRACT

Are biological networks different from other large complex networks? Both large biologi-
cal and nonbiological networks exhibit power-law graphs (number of nodes with degree k,
N.k/ » k¡¯ ), yet the exponents, ¯ , fall into different ranges. This may be because dupli-
cation of the information in the genome is a dominant evolutionary force in shaping bio-
logical networks (like gene regulatory networks and protein–protein interaction networks)
and is fundamentally different from the mechanisms thought to dominate the growth of
most nonbiological networks (such as the Internet). The preferential choice models used
for nonbiological networks like web graphs can only produce power-law graphs with expo-
nents greater than 2. We use combinatorial probabilistic methods to examine the evolution
of graphs by node duplication processes and derive exact analytical relationships between
the exponent of the power law and the parameters of the model. Both full duplication
of nodes (with all their connections) as well as partial duplication (with only some con-
nections) are analyzed. We demonstrate that partial duplication can produce power-law
graphs with exponents less than 2, consistent with current data on biological networks. The
power-law exponent for large graphs depends only on the growth process, not on the starting
graph.

INTRODUCTION

Networks of interactions are fundamental to all biological systems. The interactions among
species in ecosystems, between cells in an organism, and among molecules in a cell are all parts of

complex biological networks. There is considerable current interest in networks within the cell—genetic reg-
ulatory networks and protein–protein interaction networks, in particular—about which we can now acquire
extensive data using new technological advances. The duplication of the information in the genome—genes
and their controlling elements—is a central force in evolution and should be determinative of biological
networks.

The process of duplication is quite different from the mechanisms thought to dominate the growth of
most nonbiological networks (such as the Internet, social networks, or citation networks [Barabasi et al.,
1999; Barabasi and Albert, 1999; Albert et al., 1999; Albert and Barabasi, 1999; Lu, 2001]), which involve
the simple addition of nodes with preferential connection to existing nodes. These latter processes produce
only power-law graphs with exponents greater than 2 (Barabasi et al., 1999; Barabasi and Albert, 1999;
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Albert et al., 1999; Albert and Barabasi, 1999, Strogatz, 2001; Aiello et al., 2000). A power-law graph
is one in which the number of nodes of degree k (the number of edges impinging on a vertex), N.k/,
has a distribution that follows a power law: N.k/ » k¡¯ . We present new mathematical results here on
the evolution of graphs by different duplication processes. Using a combinatorial-probabilistic approach to
analyze both the full duplication of nodes (with all their connections) as well as partial duplication (with
only some of their connections), we � nd that full duplication retains a strong “memory” of the starting
graph—certain topological properties of the starting graph are conserved under duplication—while breaking
the parent–daughter symmetry of the growth process by partial duplication induces nonconservation of
certain topological properties and causes some “memory” of the starting graph to be lost. We � nd that full
duplication does not produce power-law graphs, but partial duplication does. For partial duplication, the
power-law exponent depends, as the graph grows without bound, only on the growth process, and not on
the starting graph.

A survey of existing results on scaling of large networks shows a striking difference between biological
and nonbiological networks. Biological networks often have exponents that are between 1 and 2; that is,
1 < ¯ < 2 (Aiello et al., 2000). The non-biological networks, on the other hand, have exponents that
commonly range from 2 to 4 (see Table 1). While it is dif� cult to draw a strong conclusion from the
limited observations to date, it does raise the question as to whether biological networks evolve differently.

A seminal idea in molecular evolution is that through gene duplication biological information is co-
opted, or “reused,” for different purposes (Ohno, 1970). This notion recognizes that the information in
biomolecules, selected over hundreds of millions of years, represents a rich starting point for many useful
modi� cations. This “reuse” occurs by the duplication and subsequent mutation of genes and other genetic
elements, including both genes and cis regulatory sequences. The recent availability of genomic sequence
information from a wide range of organisms provides abundant evidence of the widespread occurrence of
gene duplication and the validity of the early hypotheses of Ohno and others. There is strong evidence,
for example, that the genome of the � rst eukaryote ever sequenced, that of a model organism, the yeast
Saccharomyces ceriviciae (baker’s yeast), is the result of an almost complete genome duplication in the
distant past (Stubbs, 2002; Friedman and Hughes, 2002). There is abundant evidence of duplication of large
stretches of gene-containing DNA in humans (Venter et al., 2001; International Human Genome Sequencing
Consortium, 2001), mice (Dehal et al., 2001; Stubbs, 2002) and many other organisms (Stubbs, 2002;
Friedman and Hughes, 2002; Wolfe and Shields, 1997; Seioghe and Wolfe, 1999; Sidow, 1996; Gu et al.,
2002). In addition, it is clear that many extensive “gene families” have evolved in which a basic amino
acid sequence theme is used in modi� ed form again and again for a variety of different purposes. Together
with the variations that occur in parallel (including more complex processes, such as gene conversion),

Table 1. Power Law Exponents for Some Networksa

Nonbiological

Network Approx. exponent ¯ References

Internet 2.1 (in), 2.5 (out) 1–6
Citations 3 6
Actors 2.3 6
Power-grid 4 1, 6
Phone calls 2.1–2.3 6

Biological

Yeast protein–protein net 1.5, 1.6, 1.7, 2.5 7, 9, 24, 25
E. coli metabolic net 1.7, 2.2 1, 10
Yeast gene expression net 1.4–1.7 9
Gene functional interactions 1.6 11

aSome examples of power-law distributions that have been examined and the
exponent estimated for each of them. The references are indicated on the right.
This is intended to be a representative sample of power-law behaviors.
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duplication provides the fundamental raw material that natural selection acts upon to evolve the genomes of
living species and is, therefore, a central process in the evolution of genome-determined networks (Wagner,
1994, 2001; Wagner and Fell, 2001).

In our previous simulations of gene duplication (Bhan et al., 2002), we found that duplication models
in which all of the connections of the duplicated node are retained (full duplication models) do not exhibit
a power-law distribution. On the other hand, modi� cations of the full duplication model in which only
a fraction of the connections of each duplicated node are also duplicated and/or some of the duplicated
connections are “re-wired” do exhibit power-law behavior. When the strong parent–daughter symmetry of
the process of full duplication is broken by these modi� cations, scale-free behavior emerges. In particular,
partial duplication appears to re� ect most of the observed properties of known biological networks (Bhan
et al., 2002).

DUPLICATION SYMMETRY

We have focused on the invariant properties of graphs under the processes of duplication and have
devised a representation that makes the invariant evident. By “full duplication,” we mean the following:
A random vertex, u, of graph G0, that we call the sampling vertex, is selected. Then a new vertex v

is added to G0 in such a way that for each neighbor w of u, a new edge vw is added. This process is
then repeated to evolve the graph under full duplication. The adjacency matrix, A, (n £ n) determines the
graph completely (n is the number of vertices of the graph) (see Fig. 1). However, we can use a more
concise description which consists of a smaller matrix, C, derived from A, and a vector of integers. The
reduced matrix, C, is obtained by removing all exactly repeated rows and columns to create a matrix made
up only of unique rows and columns (if A is symmetric as for a nondirected graph, then so is C). The
vector, v, is de� ned as the vector of the number of each kind of rows and columns removed to create C,

FIG. 1. A diagram illustrating the process of node duplication (above) and partial duplication (below) as described
in the text. The nodes u and v are labeled as referred to in the text.
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FIG. 2. A graph, shown on the left, can be described as a set of orbits (middle diagram) connected as shown on
the right. Matrix C is the adjacency matrix of the right graph, and v is the vector of the occupation numbers. The
rightmost panel shows how the vertices can be grouped into the four orbits of the graph; thus, the v vector is simply
(4, 4, 1, 2).

plus 1—the number of identical rows and columns of each kind. It is evident that A can be reconstructed
by adding back the number of rows and columns de� ned by v—thus the descriptions are equivalent. We
de� ne the orbits of the graph as subsets of nodes that are connected to exactly the same set of other nodes;
that is, they have the same neighbors. Thus, orbits can be said to be equivalent to duplicated sets of nodes.
Matrix C describes the connections between orbits—the “adjacency matrix for orbits.” This description
can be diagrammed as shown in an example in Fig. 2.

DUPLICATION

Now we consider a node duplicationprocess in which each node has equal probability of being duplicated
in a single time step (see Fig. 1). The probability of randomly choosing a node for duplication in a particular
orbit, then, is equal to the fractional weighting of the orbit, as indicated by v. During growth by duplicating
nodes at random, the probability of adding to a given orbit is simply the fraction of all nodes contained in
that orbit, or P .i/ D viP

j vj
. If the node in orbit i is duplicated, the vector element vi then increases by 1.

As this process proceeds, the probability of duplication in any orbit is in� uenced by the history of prior
duplications. This process results therefore in a “random asymptote” outcome in which the asymptotic
occupation fraction of any orbit is a random variable. The degree of the nodes in any orbit, of course, does
not change when a duplication occurs in that orbit, but the degrees of some of the other orbits do change.
This can be seen by explicitly writing the expression for the degree of the ith orbit in terms of the matrix
C and the vector v (where the sum is over all orbits):

ki D
X

j

ci;j vj or Ek D C ¢ v: (1)

In these terms, the number of edges s, then, is simply

2s D v ¢ Ek D v ¢ C ¢ v (2)

and t D
P

i vi , the total number of nodes of the graph.
The invariance under duplication is now transparent. The dynamics of the duplication process in this

description only change the elements of v, the orbit populations, and leave C entirely unchanged. Note
that C is the adjacency matrix of the reduced sub-graph of the starting graph—it never changes under full
duplication. The vector k, like v, changes under duplication, however, and is not an invariant.

Since the occupation numbers of the orbits, v, together with the invariant matrix C, de� ne the graph
completely, it is clear that the process of full duplication is commutative—it makes no difference in what
order nodes of a de� ned set are duplicated. The history-independent “state vector,” v, de� nes the graph
with matrix C. Also, it is clear that under duplication only the orbits present in the starting graph, G0, are
present in any of the progeny graphs, and we need keep track only of the changes of occupation of each
orbit. This “memory” of the starting graph then is fully determined by C.
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Note also that the chromatic number of a graph (the number of colors required to color all vertices
while avoiding adjacent colors) is also conserved under duplication—it is invariant—and does not depend
on the orbit occupation vector. Partial duplication also conserves the chromatic number. This can be seen
by noting that removing edges after duplication cannot require recoloring since the number of connected
vertex pairs is reduced over full duplication, which is known to conserve the chromatic number.

In the full duplication process, the sizes of the orbits (i.e., the coordinates of v) change at each time
step. Assume that all orbits in the starting graphs have the same size, and suppose that n is the num-
ber of orbits in the starting graph. If t is the number of vertices at time t , the average orbit size is
a D t=n. Then the distribution of the sizes of the orbits can be approximated by a density function
f .x/ D e¡x for orbits of size ax since the probability for an orbit having size ax is proportional to
.1 ¡ x=n/n¡1 » e¡x .

THE PARTIAL DUPLICATION MODEL

To consider partial duplication, the network is again represented by a nondirected, unweighted graph as
above. Let t0 be a constant and Gt0 be a graph on t0 vertices (see Fig. 1). For t > t0, Gt is constructed by
partial duplication from Gt¡1 as follows: A random vertex, u, of Gt¡1, the sampling vertex, is selected.
Then a new vertex v is added to Gt¡1 in such a way that for each neighbor w of u, with probability p,
a new edge v-w is added. The complete, or full duplication model results from setting p D 1. Previous
computational simulations indicate that after many such partial duplications, the degree distribution exhibits
a power law with an exponent, ¯ (Bhan et al., 2002). We show the following:

Theorem 1. With probability approaching 1 as the number n of vertices becomes in� nitely large,
the partial duplication model with selection probability p generates power-law graphs with the exponent
satisfying

p.¯ ¡ 1/ D 1 ¡ p¯¡1: (3)

In particular, if 1=2 < p < 1, then ¯ < 2.

The solutions for (3) that are illustrated in Fig. 3 consist of two curves. One is the line ¯ D 1. The
other curve for ¯ is a montonically decreasing function of p. The two curves intersect at .x; 1/ where
x D 0:56714329 : : : the solution of x D ¡lnx. One very interesting range for ¯ occurs when p is near
1/2. To get a power law with exponent 1.5, for example, one should choose p D 0:535898: : : : This
result is consistent with our previous simulation results for p D 1=2 (Bhan et al., 2002). Also, we see

that the second curve for ¯ intersects zero at p D
p

5¡1
2 , which is an intriguing number (the “golden

mean”). At p D 1=2, one solution for ¯ is 2. Although there are two solutions of ¯ for each p, the
stable solutions are on the right curve when p < 0:56714329 : : : and ¯ D 1 for p > 0:56714329: : : : (A
solution is considered unstable if the value of f in the recurrence (Lu, 2001) below at a nearby point,
¯ C ", diverges as indicated in the second ordered terms.) This is marked as the center curved line in the
� gure.

Let us consider now a slightly more complex model in which a vertex may either be duplicated fully or
partially.

Theorem 2. With probability approaching 1 as the number of vertices becomes in� nitely large, the
mixed model, having full duplication with probability 1 ¡ q and partial duplication (with selection proba-
bility p) with probability q, generates power-law graphs with the exponent ¯ satisfying

¯.1 ¡ q/ C pq.¯ ¡ 1/ D 1 ¡ qp¯¡1: (4)

To prove Theorem 1, we need to establish a basic relationship between the number of vertices of
speci� c degree at successive time steps. Recall that duplication starts adding one node per time step at
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FIG. 3. Solutions for the equations of Theorems 1 and 2. The graph of the exponent ¯ as a function of p from
Theorem 1 is plotted as the right curved line in this plot (same as Theorem 2 with q D 1). The zero for the solution
curve is indicated. Curves for two other values of q (the probability of partial duplication of a vertex) in the equation
of Theorem 2 are q D 0:5 and q D 0:8, while ¯ D 1 (the dark horizontal line) is always a solution for any q. The
stable solution is always above ¯ D 1 (including ¯ D 1 for p large enough). The light curved line that becomes
horizontal shows the stable solutions for q D 1.

t0. Let f .k; t/ be the expected number of vertices with degree k at time t . Its expected value satis� es the
following recurrence for t ¸ t0:

f .k; t C 1/ D
±

1 ¡
p

t

²k
f .k; t/ C .k ¡ 1/

p

t

±
1 ¡

p

t

²k¡1
f .k ¡ 1; t/

C
X

j¸k

³
j

k

´
pk.1 ¡ p/j¡k 1

t
f .j; t /:

(5)

The � rst term in the sum is due to those vertices of degree k at time t that are still vertices of degree k

at time t C 1. The second term is due to those vertices of degree k ¡ 1 at time t , but of degree k at time
t C 1. The third term is the expected value of a new vertex of degree k that is generated at time t C 1
expressed as a sum ranging over all j where j ¸ k (where a sampling vertex is chosen of degree j ). A
certain simpli� cation can be achieved by showing that f .k; t/ D ak t C o.t/. Namely, ak is essentially the
fraction of vertices of degree k at time t—recall that one vertex is added each time step. Then ak must
satisfy the following recurrence relation:

.1 C kp/ak D .k ¡ 1/pak¡1 C
1X

jDk

³
j

k

´
aj pk.1 ¡ p/j¡k : (6)

Two lemmas will be useful in solving this recurrence relation, from which we can prove the theorem.
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Lemma 1. For a constant c and a real x that approaches in� nity, we have

0.x ¡ c/

0.x/
D

³
1 C O

³
1
x

´´
x¡c and

³
x ¡ c

k

´

³
x

k

´ D
³

1 C O

³
1

x ¡ k

´´ ³
1 ¡

k

x

´c

for all k · x.

Lemma 2. For a � xed k, we have

1X

jDk

³
j

k

´
pk.1 ¡ p/j¡k

³
k

j

´b

D
³

1 C O

³
1
k

´´
pb¡1:

These two lemmas (whose proofs are found in the endnotes) can now be used to prove Theorem 1.

Proof of Theorem 1. We wish to show that ak D ck¡b for some b and c to be determined later. Using
Lemma 2, Equation 6 can be rewritten as follows:

.1 C kp ¡ pb¡1/k¡b D .k ¡ 1/p.k ¡ 1/¡b C O.k¡¯¡1/: (7)

This implies that

1 C kp ¡ pb¡1 D p
.k ¡ 1/¡bC1

k¡b
C O.1=k/;

1 ¡ pb¡1 D ¡p C bp C O.1=k/:

Then, by taking the limit as k increases without bound and de� ning b at that limit as ¯, we see that ¯

satis� es the equation

1 ¡ p¯¡1 D ¡p C ¯p or p.¯ ¡ 1/ D 1 ¡ p¯¡1;

which was to be proved.

Proof of Theorem 2. Let g.k; t / be the expected number of vertices with degree k at time t for the
mixed duplication model. Its expected value satis� es the following recurrence for t ¸ 1:

g.k; t C 1/ D .1 ¡ q/

Á³
1 ¡

1
t

´k

g.k; t/ C .k ¡ 1/
1
t

³
1 ¡

1
t

´k¡1

g.k ¡ 1; t/ C
1
t

g.k; t/

!

C q

0

@
³

1 ¡
p

t

´k

g.k; t/ C .k ¡ 1/
p

t

³
1 ¡

p

t

´k¡1

g.k ¡ 1; t/

C
X

j¸k

³
j

k

´
pk.1 ¡ p/j¡k 1

t
g.j; t/

1

A :

(8)

We want to show that g.k; t / D ¯k t C o.t/ and ¯k D ck¡¯ . By substituting into the above recurrence
relation, ¯ satis� es ¯.1 ¡ q/ C pq.¯ ¡ 1/ D 1 ¡ qp¯¡1.
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DISCUSSION

We have investigated a node duplication model of network growth and present analytic results on the
scaling of connectivities. This model, motivated by biological considerations, shows distinctively different
scaling behavior from other models used to describe the growth of large networks, particularly the Internet.
For full duplication growth, we present a simple reduced matrix representation that captures the growth-
invariant structure of the system. This way of looking at evolution under duplication makes it clear that
the “memory” of the starting graph is retained under full duplication even though the nodes are chosen
randomly for duplication. We demonstrate that network growth by full duplication does not result in power-
law distribution of connectivities, while partial duplication models do yield such behavior. Under partial
duplication, a signi� cant part of the “memory” of the starting graph is lost. The distribution of degrees of
the vertices, as shown by Theorems 1 and 2, is independent of the starting graph, and the reduced matrix
is no longer invariant. There is clearly some retained memory under partial duplication, however, in that
the chromatic number of the graph, for example, is conserved, even under partial duplication.

Analytic relationships between the probability of edge duplication, p, in the partial duplication model,
and the exponent of the resulting power law, ¯, are presented in Theorem 1. This simple relation shows that
¯ is a monotonically decreasing function of p, for most of the domain 0 < p < 1. Equation 3, however,
has two solutions: ¯ D 1 and the more complex function shown in Fig. 3. For real graph evolution, the
intersection of the two curves represents a transition point. The generalization of these results, that includes
the probability that a partial duplication, q , occurs, is presented in Theorem 2. The behavior of this model
is also illustrated in Fig. 3. The upper of the two curves for all values of q appears to represent the actual
solution, since these are the only stable solutions.

For the partial duplication model (Theorem 1), it is interesting that the range of signi� cant interest of
¯, between 1 and 2, is produced by only a relatively small range of selection probabilities p: 0:5 < p <

0:56714329: : : : Note that in this region, 2 > ¯ > 1, the dependence of ¯ on p is approximately linear:
¯ ¼ 9:45 ¡ 14:9p. We � nd it interesting that one of the solution curves intersects zero at the curious
number p D .

p
5¡1/=2. This is the “golden mean,” which is the limit of the ratio of successive Fibonnaci

numbers. In the mixed model, however, the solution curves also intersect for all q < 1, but the upper curve
gives the stable solution with ¯ ¸ 1 for all values of p.

What do our mathematical results have to do with biology? The sequencing of genomes in the past few
years has made it clear that biological processes of evolution depend heavily on duplication of segments
of the genome (Venter et al., 2001; International Human Genome Sequencing Consortium, 2001; Dehal
et al., 2001; Stubbs, 2002; Friedman and Hughes, 2002; Wolfe and Shields, 1997; Seioghe and Wolfe,
1999; Sidow, 1996; Gu et al., 2002). It is likely that the process of duplication is a major force in shaping
real biological networks. While the abstraction of real biological networks studied here is unlikely to
capture many properties of these biological networks, the global statistical properties of the networks
and their topologies may be well represented by these kinds of models. It is certainly encouraging that
the model analyzed here exhibits exponents of the degree distribution in the proper range and that the
high cluster coef� cients, like those seen for biological networks, are also seen (Bhan et al., 2002). Recent
work in modeling segmentation in development (Von Dassow et al., 2000) underlines the importance of the
topology of regulatory networks. These authors made the intriguing observation that their model was rather
insensitive to solution sets of the quantitative parameters of the model within large ranges of variation, but
very sensitive to the topology of the network. This supports the idea that the statistical properties of the
models considered here, which focus only on the connectivity of the network, are biologically important.

While naturally occurring networks need not grow by a single mechanism, it may be possible to infer
general growth and design principles from the global network properties of these networks. The comparisons
made so far with nonbiologicalnetworks, such as the Internet, show striking differences presumably because
these examples evolve largely by nonbiologically signi� cant mechanisms. Successful models for Internet-
like structures (Barabasi et al., 1999; Barabasi and Albert, 1999; Albert et al., 2002; Albert and Barabasi,
1999; Lu, 2001; Strogatz, 2001) involve adding new nodes and connecting them preferentially to existing
nodes of high degree. A striking difference between Internet growth modes and biology is that biology
has only previously de� ned relationships to work with (this information is carefully stored in the genome)
while new web sites can be invented and attached to the Net without copying previously invented web
sites and their connections. If the Internet evolved by random copying of previous web sites, we would
expect a much more “biological” process, and one that could be modeled by duplication. In that case, the
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exponent of the Web power law might be less than 2 rather than greater than 2 as observed. An important
aspect of the differences between models is that the partial duplication model considered here can produce
all values greater than 1 for scaling exponents, ¯ , while the preferential connection models (Barabasi
et al., 1999; Barabasi and Albert, 1999; Albert et al., 2002; Albert and Barabasi, 1999; Aiello et al.,
2000; Krapivsky et al., 2000; Rzhetsky and Gomez, 2001) can produce only exponents greater than 2.
While many biological networks appear to exhibit power-law distributions with exponents between 1 and
2 (Table 1), this is not a constraint of the model, however, and some have been described with exponents
greater than 2 (Jeong et al., 2000). The preferential connection models fail in biology for at least two
reasons. They cannot explain the small exponents exhibited by some biological networks, but neither do
they predict high clustering coef� cients (Bhan et al., 2002). A “copying” model for Web growth has been
proposed and analyzed by Kleinberg et al. (1999). While similar in some ways, this model is quite distinct
from ours and predicts exponents greater than 2, like the preferential connection models.

The present simple model is a starting point from which more detailed and biologically accurate models
can be derived. Inherent in all models that represent a biological network as a graph of this kind is that the
strength of connections is ignored—the graph is unweighted. This leaves out some important complexity,
for example, whether a regulatory connection between nodes is positive or negative. Another limitation is
the nondirected nature of the graphs considered here. We expect that, while somewhat more complex, the
results for digraphs will re� ect the same basic behaviors. The probability of duplication of edges is assumed
to be uniform, which is another signi� cant limitation in that in a real network some connections may well
be much more important than others and therefore selection in a real network will prefer to duplicate some
edges more frequently than others. It is also likely that a certain amount of “rewiring” takes place during
growth; that is, connections of the new node to nodes that are not neighbors of the duplicated node can
be made, and this is not considered in the present work. Finally, the absence of selection, a major driver
in biological evolution, in these models is a limitation to be remedied in future work.

We conclude from our results and their limitations that, while more complex models will be needed,
there is real biological content to the partial duplication model considered here that will likely provide
some insights into the processes of evolution and the way in which biological networks function. A number
of new problems suggested by these results, including extensions of the analysis of graphs produced by
duplication processes, should provide a fruitful line of inquiry.

APPENDIX 1

Proof of Lemma 1. Since we have

0.x/ D
r

2¼

x

³
x

e

´x ³
1 C 1

12x
C O

³
1
x2

´´

then

0.x ¡ c/

0.x/
D

³
1 C O

³
1
x

´´ s
2¼=.x ¡ c/

2¼=x
;

³
x ¡ c

e

´x¡c

³
x

e

´x

D
³

1 C O

³
1
x

´´
x¡c:

Also
³

x ¡ c

k

´

³
x

k

´ D
0.x ¡ c C 1/= 0.x ¡ c C 1 ¡ k/

0.x C 1/= 0.x C 1 ¡ k/

D
³

1 C O

³
1

x ¡ k

´´
x¡c

.x C 1 ¡ k/¡c
D

³
1 C O

³
1

x ¡ k

´´ ³
1 ¡

k

x

´c

which proves Lemma 1.
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APPENDIX 2

Proof of Lemma 2. Using Lemma 1 we write

1X

jDk

³
j

k

´
pk.1 ¡ p/j¡k

³
k

j

´b

D
1X

jDk

³
j

j ¡ k

´
pk.1 ¡ p/j¡k

³
k

j

´b

D
³

1 C O

³
1
k

´´ 1X

jDk

³
j ¡ b

j ¡ k

´
pk.1 ¡ p/j¡k

D
³

1 C O

³
1
k

´´
pk

1X

mD0

³
m C k ¡ b

m

´
.1 ¡ p/m

D
³

1 C O

³
1
k

´´
pk

1X

mD0

³
b ¡ k ¡ 1

m

´
.¡1/m.1 ¡ p/m

D
³

1 C O

³
1
k

´´
pkpb¡k¡1 D

³
1 C O

³
1
k

´´
pb¡1

and Lemma 2 is proved.
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NOTE

Since completion of this paper the authors have become aware of work in which a version of our
Theorem 1 is presented (Kim, J, Karpivsky, PL, Khang, B, and Redner, S 2002. Phys. Rev. E. 66, 055101).
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