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Abstract

Our previous paper [9] applied a lopsided version of the Lovász
Local Lemma that allows negative dependency graphs [5] to the
space of random matchings in K2n, deriving new proofs to a num-
ber of results on the enumeration of regular graphs with excluded
cycles through the configuration model [3]. Here we extend this from
excluded cycles to some excluded balanced subgraphs, and derive
asymptotic results on the probability that a random regular multi-
graph from the configuration model contains at least one from a
family of balanced subgraphs in question.

1 The Tool

In [9] we proved the following theorem on extensions of (partial) matchings
that allows (among other things) proving asymptotic enumeration results
about regular graphs through the configuration model.

Theorem 1 Let Ω be the uniform probability space of perfect matchings
in the complete graph KN (N even) or the complete bipartite graph KN,N ′

(with N ≤ N ′). Let r = r(N) be a positive integer and 1/16 > ε = ε(N) > 0
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as N approaches infinity. Let M = M(N) be a collection of (partial)
matchings in KN or KN,N ′ , respectively, such that none of these matchings
is a subset of another. For any M ∈ M, let AM be the event consisting of
perfect matchings extending M . Set µ = µ(N) =

∑
M∈M Pr(AM ). Suppose

that M satisfies

1. |M | ≤ r, for each M ∈M.

2. Pr(AM ) < ε for each M ∈M.

3.
∑
M ′:AM′∩AM=∅ Pr(AM ′) < ε for each M ∈M.

4.
∑
M :uv∈M∈M Pr(AM ) < ε for each single edge uv.

5.
∑
H∈MF

PrN−2r(AH) < ε for each F ∈M.

Then, if rε = o(1), we have

Pr(∧M∈MAM ) = e−µ+O(rεµ), (1)

and furthermore, if rεµ = o(1), then

Pr(∧M∈MAM ) =
(

1 +O(rεµ)
)
e−µ. (2)

In the theorem above Pr(AM ) denotes the probability according to the
counting measure, and PrN−2r(AH) indicates the probability of AH in a
setting, when 2r of the N vertices (none of them is an endpoint of an edge
in the partial matching H) are eliminated, and the probability is considered
in this smaller instance of the problem.

2 The Configuration Model and the Enumer-
ation of d-Regular Graphs

For a given sequence of positive integers with an even sum, (d1, d2, . . . , dn) =
d, the configuration model of random multigraphs with degree sequence d is
defined as follows [3].

1. Let us be given a set U that contains N =
∑n
i=1 di distinct mini-

vertices. Let U be partitioned into n classes such that the ith class
consists of di mini-vertices. This ith class will be associated with
vertex vi after identifying its elements through a projection.

2. Choose a random matching M of the mini-vertices in U uniformly.



3. Define a random multigraph G associated with M as follows: For any
two (not necessarily distinct) vertices vi and vj , the number of edges
joining vi and vj in G is equal to the total number of edges in M
between mini-vertices associated with vi and mini-vertices associated
with vj .

The configuration model of random d-regular multigraphs on n vertices
is the instance d1 = d2 = · · · = dn, where nd is even.

Bender and Canfield [2], and independently Wormald, showed in 1978
that for any fixed d, with nd even, the number of d-regular graphs is

(√
2 + o(1)

)
e

1−d2
4

(
ddnd

ed(d!)2

)n
2

. (3)

Bollobás [3] introduced probability to this enumeration problem by defining
the configuration model, and brought the result (3) to the alternative form

(1 + o(1))e
1−d2

4
(dn− 1)!!

(d!)n
, (4)

where the term (1 + o(1))e
1−d2

4 in (4) can be explained as the probabil-
ity of obtaining a simple graph after the projection. (The semifactorial
(dn− 1)!! = (dn)!

(dn/2)!2dn/2
equals the number of perfect matchings on dn ele-

ments, and (d!)n is just the number of ways matchings can yield the same
simple graph after projection. Non-simple graphs, unlike simple graphs,
can arise with different frequencies.) Bollobás also extended the range of
the asymptotic formula to d <

√
2 log n, which was further extended to

d = o(n1/3) by McKay [10] in 1985. The strongest result is due to McKay
and Wormald [11] in 1991, who refined the probability of obtaining a simple

graph after the projection to (1 + o(1))e
1−d2

4 − d3
12n+O( d

2
n ) and extended the

range of the asymptotic formula to d = o(n1/2). Wormald’s Theorem 2.12
in [15] (originally published in [14]) asserts that for any fixed numbers d ≥ 3
and g ≥ 3, the number of labelled d-regular graphs with girth at least g, is

(1 + o(1))e−
Pg−1
i=1

(d−1)i

2i
(dn− 1)!!

(d!)n
. (5)

[9] reproved the following theorem of McKay, Wormald and Wysocka [12]
using Theorem 1, under a slightly stronger condition than (d−1)2g−3 = o(n)
in [12]: (note that a power of g in (6) only restricts a second term in the
asymptotic series of the bound on g):



Theorem 2 In the configuration model, assume d ≥ 3 and

g6(d− 1)2g−3 = o(n). (6)

Then the probability that the random d-regular multigraph has girth at least
g ≥ 1 is (1 + o(1)) exp

(
−
∑g−1
i=1

(d−1)i

2i

)
, and hence the number of d-regular

graphs on n vertices with girth at least g ≥ 3 is

(1 + o(1))e−
Pg−1
i=1

(d−1)i

2i
(dn− 1)!!

(d!)n
.

(The case g = 3 means that the random d-regular multigraph is actually a
simple graph.) Furthermore, the number of d-regular graphs not containing
cycles whose length is in a set C ⊆ {3, 4, ..., g − 1}, is

(1 + o(1))e−
d−1
2 −

(d−1)2

4 −
P
i∈C

(d−1)i

2i
(dn− 1)!!

(d!)n
.

This is a special case of a more general result. The following definitions
are used in random graph theory [1]. The excess of a graph G, denoted by
κ(G), is |E(G)| − |V (G)|. A graph G is balanced, if κ(H) < κ(G) for any
proper subgraph H with at least one vertex. We first prove the following
Lemma.

Lemma 3 Suppose that G is a connected balanced simple graph with κ(G) ≥
0. Then the number of subgraphs H with κ(H) = κ(G) − 1 is at most
2|V (G)|2.

Proof: First we claim that G has no leaf vertex. Otherwise, if v is a leaf
vertex, then κ(G− v) = κ(G), a contradiction.

Let H be a subgraph of G with κ(H) = κ(G) − 1. If V (H) = V (G),
then H is obtained by deleting one edge from G. The number of such
H’s is |E(G)|. Now we assume V (H) 6= V (G). For any vertex set S,
let Γ(S) be the neighborhood of S in G. We define a sequence of graphs
H0, H1, H2, . . . as follows. Let H0 = H. For i ≥ 1, if V (Hi−1) 6= V (G),
we define the graph Hi as follows: V (Hi) = V (Hi−1) ∪ Γ(V (Hi−1)) and
E(Hi) = E(Hi−1) ∪ {uv : u ∈ V (Hi−1), v ∈ Γ(V (Hi−1)), and uv ∈ E(G)}.
Let Hr be the last graph in the sequence. We have V (Hr) = V (G). Observe

κ(H) = κ(H0) ≤ κ(H1) ≤ κ(H2) · · · ≤ κ(Hr) ≤ κ(G).

Since κ(H) = κ(G)− 1, equalities hold for all but at most one in the chain
above. We have |Γ(V (Hi)) \ V (Hi)| ≤ 2 for all i ≤ r − 1, as G has no leaf.



H H

Figure 1: G−H is either a ρ-shape or a path when κ(H) = κ(G)− 1.

It is easy to check that the difference of G and H either forms a ρ-shape or
is a path as shown in Figure 1. An H with a ρ-shape may occur at most
2|E(G)| times, an H with a path may occur at most most

(|V (G)|
2

)
times.

Finally, |E(G)|+ 2|E(G)|+
(|V (G)|

2

)
≤ 2|V (G)|2. �

Let G be a family of connected balanced simple graphs with excess
κ. We would like to estimate the probability that a random d-regular
multigraph contains no graph in G. Given a simple graph G, let |Aut(G)|
be the number of automorphisms of G. For any k ≥ 2, let ak(G) be the
number of vertices with degree at least k. We define a polynomial fG(d) =∏∞
k=2(d−k+1)ak(G) =

∏
v∈V (G)

(
d−1
dv−1

)
(dv−1)! = 1

d|V (G)|

∏
v∈V (G)

(
d
dv

)
dv! ≤

(d− 1)2|E(G)|−|V (G)|. We have the following theorem.

Theorem 4 Let G be a family of connected balanced simple graphs with
non-negative excess κ. Set r = maxG∈G |E(G)|. In the configuration model,
assume d ≥ 3 and

r3

n

∑
G∈G

(d− 1)|E(G)|−1 = o(1) and ` =
r3d

nκ+1

(∑
G∈G

(d− 1)|E(G)|−1
)2

= o(1).

(7)
Then the probability that the random d-regular multigraph arising from the
configuration model contains no subgraph in G is

(1 +O(`)) exp
(
−
∑
G∈G

fG(d)
|Aut(G)|(nd)κ(G)

)
.

Proof: Let ε = Kr2

n

∑
G∈G(d − 1)|E(G)|−1 with a large constant K.

The first condition makes sure rε = o(1), the second condition makes sure
rεµ = O(`) = o(1) in Theorem 1.

For any G ∈ G, let MG be the family of (partial) matchings of U whose
projection is a copy of G. Suppose that G has s vertices v1, . . . , vs and
t edges e1, . . . , et. For 1 ≤ i ≤ s, let Ci be the class of d mini-vertices



associated to vi and Qi be an (ordered) queue of dvi mini-vertices in Ci. Let
C be the parameter space of all possible (C1, . . . , Cs, Q1, . . . , Qs). We define
a mapping ψ : C →MG as follows. For 1 ≤ j ≤ t, suppose that the edge ej
has two end-vertices vj1 and vj2 . We pop a mini-vertex xj from the queue
Qj1 , pop a mini-vertex yj from the queue Qj2 , and join xjyj . Denote by M
the collection of edges {xjyj}1≤j≤t. Clearly M forms a partial matching
whose projection is a copy of G. We define ψ(C1, . . . , Cs, Q1, . . . , Qs) = M .
Since every partial matching in MG can be constructed in this way, ψ is
surjective.

For any M ∈ MG and any (C1, . . . , Cs, Q1, . . . , Qs) ∈ ψ−1(M), it
uniquely determines an ordering of edges in M . The number of such or-
derings that give the same projection G is exactly |Aut∗(G)|, the number
of edge automorphisms of G. By Whitney’s Theorem [7], for a connected
G, which is not K2 or K1, |Aut∗(G)| = |Aut(G)|. We have |ψ−1(M)| =
|Aut(G)|.

There are
(

n
|V (G)|

)
|V (G)|! ways to choose (C1, . . . , Cs). For 1 ≤ i ≤ s,

there are
(
d
dvi

)
dvi ! ways to choose the queue Qi. We have

|C| =
(

n

|V (G)|

)
|V (G)|!

∏
v∈V (G)

(
d

dv

)
dv!.

Thus,

|MG| =
|C|

|Aut(G)|

=
1

|Aut(G)|

(
n

|V (G)|

)
|V (G)|!

∏
v∈V (G)

(
d

dv

)
dv!

=
fG(d)
|Aut(G)|

(
n

|V (G)|

)
|V (G)|!d|V (G)|. (8)

For i ≥ 1, let Gi be the set of graphs in G with exactly i edges. LetMi

be the set of matchings of U whose projection gives a graph G ∈ Gi; there
are exactly |MG| of them, and they are counted in (8). The bad events to be
avoided are the projection of some matching from the unionM = ∪ri=1Mi.
For each Mi ∈Mi (i = 1, 2, . . . , r), we have

Pr(AMi) =
1

(nd− 1)(nd− 3) · · · (nd− 2i+ 1)
. (9)



We have

µ =
∑
M∈M

Pr(AM )

=
r∑
i=1

∑
G∈Gi

fG(d)
|Aut(G)|

(
n

|V (G)|

)
|V (G)|!d|V (G)|

1
(nd− 1)(nd− 3) · · · (nd− 2i+ 1)

=
r∑
i=1

∑
G∈Gi

fG(d)
|Aut(G)|(nd)i−|V (G)|

(
1 +O

(
i2

n

))

=
(

1 +O

(
r2|G|
n

))(∑
G∈G

fG(d)
|Aut(G)|(nd)κ(G)

)
. (10)

Observe from (10) that µ = O(
∑
G∈G

(d−1)|E(G)|+κ

(nd)κ ) = O(
∑
G∈G

(d−1)|E(G)|

nκ ).
Now we verify the conditions of Theorem 1. Item 1 and 2 are trivial by the
definition of r and ε. Item 3 can be verified as follows. For two matchings
M and M ′, AM ∩AM ′ = ∅ if any only if M and M ′ conflict. For M ∈Mj ,
we have ∑

M ′:AM′∩AM=∅

Pr(AM ′) =
r∑
i=1

∑
M ′∈Mi:AM′∩AM=∅

Pr(AM ′)

(by symmetry argument) ≤
r∑
i=1

∑
M ′∈Mi

2j
nd

Pr(AM ′)

≤ 2r
nd

r∑
i=1

∑
M ′∈Mi

Pr(AM ′)

=
2r
nd
µ

< ε. (11)

Now we verify item 4. For any uv ∈M ∈M, we have

∑
M :uv∈M∈M

Pr(AM ) ≤
r∑
i=2

∑
G∈Gi

(
n

|V (G)|−2

)
(|V (G)| − 2)!d−2

∏
v∈V (G)

(
d
dv

)
dv!

(nd− 1)(nd− 3) · · · (nd− 2i+ 1)

<

r∑
i=2

∑
G∈Gi

fG(d)
(nd)i−|V (G)|+2

(
1 +O

(
i2

n

))
< ε. (12)



(We omitted a 1
nd−1 additive term from the estimate, which was there in

[9], as it was there to handle a loop.)

Finally, we have to verify item 5. For any F ∈M, we have to estimate∑
M∈MF

PrN−2r(AM ). By the inequality below, this boils down to esti-
mating

∑
M∈MF

Pr(AM ) =
∑
M∈MF

PrN (AM ), as with |M | = i,

PrN−2r(AM )
PrN (AM )

≤
i∏

j=1

nd− 2j − 1
nd− r − 2j − 1

≤
i∏

j=1

(
1 +

2r
n− 2r − 2j − 1

)
≤ e

2r2
nd−4r−1 .

Assume that M ′ ∈ M intersects F , M = M ′ \ F 6= ∅, and the projection
of M ′ is a graph G′ ∈ G. Let H be the projection of F ∩M ′. The graph
H is a subgraph of G satisfying 0 < |E(H)| < |E(G)|. (Otherwise, G′ ⊂ G
contradicts to the assumption that G is balanced.)

We have∑
M∈MF

Pr(AM )

≤
r∑
i=2

∑
G′∈Gi

∑
H⊂G′
E(H)6=∅

(
n− |V (G)|

)
|V (G′)|−|V (H)|(d(d− 1))(|E(G′)|−|E(H)|)∏|E(G′)|−|E(H)|
j=1 (nd− 2j + 1)

=
r∑
i=2

∑
G′∈Gi

(
1 +O

(
i2

n

)) ∑
H⊂G′
E(H)6=∅

(d− 1)|E(G′)|−|E(H)|

nκ(G′)−κ(H)

=
(

1 +O

(
r2|G|
n

)) ∑
G′∈G

∑
H⊂G′
E(H)6=∅

(d− 1)|E(G′)|−|E(H)|

nκ(G′)−κ(H)
.

(For the d(d − 1) base term in the second line, consider that we can build
up G′ sequentially by always adding an edge incident to a pre-existing
component with at least one edge, starting with the components of H with
at least one edge.)

Since G′ is balanced, we have κ(G′) − κ(H) ≥ 1 for any subgraph
H with 0 < |E(H)| < |E(G)|. The last summation can be partitioned
into summations over two classes. The first class C1 consists of H with
κ(H) = κ(G′)−1. By Lemma 3, the number of such H is at most |V (G′)|2.
The second class C2 consists of H with κ(H) ≤ κ(G′) − 2; there are most



2|E(G′)| of them. We bound (d − 1)|E(G′)|−|E(H)| by (d − 1)|E(G′)|−1. We
have∑

M∈MF

Pr(AM ) ≤ 2
∑
G′∈G

∑
H⊂G′
E(H) 6=∅

(d− 1)|E(G′)|−|E(H)|

nκ(G′)−κ(H)

≤ 2
∑
G′∈G

(d− 1)|E(G′)|−1

(
2|V (G′)|2

n
+

2|E(G′)|

n2

)
< ε.

Finally, the error in (10) does not hurt, as

e−µ = e
−
„

1+O

„
r2|G|
n

««„P
G∈G

fG(d)

|Aut(G)|(nd)κ(G)

«

= e
−
P
G∈G

fG(d)

|Aut(G)|(nd)κ(G) e
−O
„
r2|G|
n

«P
G∈G

fG(d)

|Aut(G)|(nd)κ(G)

= e
−
P
G∈G

fG(d)

|Aut(G)|(nd)κ(G)

(
1−O

(
r2|G|
n

)∑
G∈G

fG(d)
|Aut(G)|(nd)κ(G)

)

= (1−O(`))e
−
P
G∈G

fG(d)

|Aut(G)|(nd)κ(G) ,

and e
−
P
G∈G

fG(d)

|Aut(G)|(nd)κ(G) = (1 +O(`))e−µ. �

Corollary 4.1 We obtain Theorem 2 from Theorem 4, with the following
condition, which is slightly weaker than (6) in [9]:

g3(d− 1)2g−3 = o(n) (13)

Proof: Note that cycles are exactly the connected balanced graphs with
κ = 0. Let C1 denote the graph of a one-vertex loop and C2 the graph of
a pair of multiedges between two vertices. These are balanced multigraphs
with κ = 0. Formally, we did not allow in Theorem 4 balanced multigraphs,
however, minor changes in the arguments will allow the inclusion of these
two graphs (see in [9] how to handle loops and parallel edges). The formulas
extend for C2 and C1, if we use as definition |Aut(C2)| = 4 and fC2(d) =
(d − 1)2; |Aut(C1)| = 2 and fC1(d) = d − 1. Applying Theorem 4 to the
family G = C ∪ {C1, C2}, where C ⊆ {C3, . . . , Cg−1} for g ≥ 3 one obtains
Theorem 2. �

Corollary 4.2 Under the conditions of Theorem 4, the probability of ob-
taining a balanced graph from G after projection in the configuration model,



(i) if
∑
G∈G

fG(d)
|Aut(G)|(nd)κ(G) is separated from zero, is

1− e−
P
G∈G

fG(d)

|Aut(G)|(nd)κ(G) +O(`)e
−
P
G∈G

fG(d)

|Aut(G)|(nd)κ(G) ,

(ii) if
∑
G∈G

fG(d)
|Aut(G)|(nd)κ(G) = o(1), and the first part of (7) is strength-

ened to r3

n

∑
G∈G(d− 1)|E(G)|−1 = o( fG(d)

dκ|Aut(G)| ) uniformly, is

∑
G∈G

fG(d)
|Aut(G)|(nd)κ(G)

+O
(
`+

(∑
G∈G

fG(d)
|Aut(G)|(nd)κ(G)

)2)
,

where ` is little-oh of the main term.

Proof: (i) is straightforward. To obtain (ii), use 1 − (1 + O(`))ex = x +
O(` + x2) for ` = o(1), x = o(1). The fact that ` is little-oh of the main
term follows from the extra assumption in (ii). �

In the bipartite configuration model we have two sets, U and V , each
containing N mini-vertices, a fixed partition of U into d1, ..., dn element
classes, and a fixed partition of V into δ1, ..., δn element classes. Any perfect
matching between U and V defines a bipartite multigraph with partite sets
of size n after a projection contracts every class to single vertex. In the
regular case, d1 = · · · = dn = δ1 = · · · = δn = d. We have the following
theorem

Theorem 5 Let G be a family of connected balanced simple bipartite graphs
with non-negative excess κ and r = maxG∈G |E(G)|. In the regular case of
the bipartite configuration model, assume d ≥ 3 and condition (7). Then
the probability that the random d-regular multigraph contains no graph in
G is

(1 + o(1))e
−
P
G∈G

2fG(d)

|Aut(G)|(nd)κ(G) .

Proof: We outline the proof. For i = 2, . . . , r, letMi be the set of match-
ings of U and V , whose projection gives a graph G ∈ G with i edges. For
a fixed G ∈ G, since G is bipartite, let n1(G) and n2(G) be the size of
vertex partition classes. The number of matchings, whose projection is G,
is exactly

2
|Aut(G)|

(
n

n1(G)

)
n1(G)!

(
n

n2(G)

)
n2(G)!

∏
v∈V (G)

(
d

dv

)
dv!.

This formula is similar to Equation (8). If G has no automorphism switch-
ing its two colorclasses (in particular when n1 6= n2), then we can select



n1(G) classes from the n classes of U and select n2(G) classes from the n
classes of V , or vice versa. This explains the constant factor 2. If G has an
automorphism switching its two colorclasses, then selecting n1 = n2 classes
from U and V , we obtain each copy of G |Aut∗(G)|/2 times from matchings.
The bad events correspond to a matching from the union M = ∪ri=1Mi.
For each Mi ∈Mi (i = 1, 2, . . . , r), we have

Pr(AMi
) =

(dn− 2i)!
(dn)!

. (14)

We have ∑
M∈M

Pr(AM )

=
r∑
i=2

∑
G∈Gi

2
|Aut(G)|

(n)n1(G)(n)n2(G)

∏
v∈V (G)

(
d

dv

)
dv!

(dn− 2i)!
(dn)!

=
(

1 +O

(
r2|G|
n

))∑
G∈G

2fG(d)
|Aut(G)|(nd)κ(G)

. (15)

All the estimates go through as in the proof of Theorem 2. �

Applying Theorem 5 to a family

G = {C2} ∪ C with C ⊆ {C4, C6, . . . , C2g−2}

(a slight extension to include C2, like in [9]), we get another theorem of
McKay, Wormald and Wysocka [12], who actually had it without g3 in
(16). [9] reproved this theorem with g6 in the condition using Theorem 1.

Theorem 6 In the regular case of the bipartite configuration model, as-
sume that g is even, d ≥ 3, and

g3(d− 1)2g−3 = o(n). (16)

Then the probability that the random bipartite d-regular multigraph does not
contain a cycle of length C ⊆ {2, 4, 6, ..., g − 2}, is

(1 + o(1))e−
P
i∈C

(d−1)i

i .

Corollary 6.1 Corollary 4.2 applies to the bipartite regular configuration
model, changing fG(d) to 2fG(d).

We are left with an open problem of finding asymptotics for the occur-
rence of an element of G and obtaining a simple multigraph simultaneously.
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