Connected Balanced Subgraphs in Random Regular Multigraphs Under the Configuration Model^{*}

Linyuan Lu Austin Mohr László Székely Department of Mathematics University of South Carolina 1523 Greene Street, Columbia, SC 29208 lu@mailbox.sc.edu, mohrat@email.sc.edu, laszlo@mailbox.sc.edu

Abstract

Our previous paper [9] applied a lopsided version of the Lovász Local Lemma that allows negative dependency graphs [5] to the space of random matchings in K_{2n} , deriving new proofs to a number of results on the enumeration of regular graphs with excluded cycles through the configuration model [3]. Here we extend this from excluded cycles to some excluded balanced subgraphs, and derive asymptotic results on the probability that a random regular multigraph from the configuration model contains at least one from a family of balanced subgraphs in question.

1 The Tool

In [9] we proved the following theorem on extensions of (partial) matchings that allows (among other things) proving asymptotic enumeration results about regular graphs through the configuration model.

Theorem 1 Let Ω be the uniform probability space of perfect matchings in the complete graph K_N (N even) or the complete bipartite graph $K_{N,N'}$ (with $N \leq N'$). Let r = r(N) be a positive integer and $1/16 > \epsilon = \epsilon(N) > 0$

^{*}This research was supported in part by the NSF DMS contract 1000475.

as N approaches infinity. Let $\mathcal{M} = \mathcal{M}(N)$ be a collection of (partial) matchings in K_N or $K_{N,N'}$, respectively, such that none of these matchings is a subset of another. For any $M \in \mathcal{M}$, let A_M be the event consisting of perfect matchings extending M. Set $\mu = \mu(N) = \sum_{M \in \mathcal{M}} \Pr(A_M)$. Suppose that \mathcal{M} satisfies

- 1. $|M| \leq r$, for each $M \in \mathcal{M}$.
- 2. $\Pr(A_M) < \epsilon \text{ for each } M \in \mathcal{M}.$
- 3. $\sum_{M':A_{M'}\cap A_M=\emptyset} \Pr(A_{M'}) < \epsilon \text{ for each } M \in \mathcal{M}.$
- 4. $\sum_{M:uv \in M \in \mathcal{M}} \Pr(A_M) < \epsilon$ for each single edge uv.
- 5. $\sum_{H \in \mathcal{M}_F} \Pr_{N-2r}(A_H) < \epsilon \text{ for each } F \in \mathcal{M}.$

Then, if $r\epsilon = o(1)$, we have

$$\Pr(\wedge_{M \in \mathcal{M}} \overline{A_M}) = e^{-\mu + O(r\epsilon\mu)},\tag{1}$$

and furthermore, if $r\epsilon\mu = o(1)$, then

$$\Pr(\wedge_{M \in \mathcal{M}} \overline{A_M}) = \left(1 + O(r\epsilon\mu)\right)e^{-\mu}.$$
 (2)

In the theorem above $Pr(A_M)$ denotes the probability according to the counting measure, and $Pr_{N-2r}(A_H)$ indicates the probability of A_H in a setting, when 2r of the N vertices (none of them is an endpoint of an edge in the partial matching H) are eliminated, and the probability is considered in this smaller instance of the problem.

2 The Configuration Model and the Enumeration of *d*-Regular Graphs

For a given sequence of positive integers with an even sum, $(d_1, d_2, \ldots, d_n) = \mathbf{d}$, the configuration model of random multigraphs with degree sequence \mathbf{d} is defined as follows [3].

- 1. Let us be given a set U that contains $N = \sum_{i=1}^{n} d_i$ distinct minivertices. Let U be partitioned into n classes such that the *i*th class consists of d_i minivertices. This *i*th class will be associated with vertex v_i after identifying its elements through a projection.
- 2. Choose a random matching M of the mini-vertices in U uniformly.

3. Define a random multigraph G associated with M as follows: For any two (not necessarily distinct) vertices v_i and v_j , the number of edges joining v_i and v_j in G is equal to the total number of edges in M between mini-vertices associated with v_i and mini-vertices associated with v_j .

The configuration model of random *d*-regular multigraphs on *n* vertices is the instance $d_1 = d_2 = \cdots = d_n$, where *nd* is even.

Bender and Canfield [2], and independently Wormald, showed in 1978 that for any fixed d, with nd even, the number of d-regular graphs is

$$\left(\sqrt{2} + o(1)\right)e^{\frac{1-d^2}{4}} \left(\frac{d^d n^d}{e^d (d!)^2}\right)^{\frac{n}{2}}.$$
 (3)

Bollobás [3] introduced probability to this enumeration problem by defining the configuration model, and brought the result (3) to the alternative form

$$(1+o(1))e^{\frac{1-d^2}{4}}\frac{(dn-1)!!}{(d!)^n},\tag{4}$$

where the term $(1 + o(1))e^{\frac{1-d^2}{4}}$ in (4) can be explained as the probability of obtaining a simple graph after the projection. (The semifactorial $(dn-1)!! = \frac{(dn)!}{(dn/2)!2^{dn/2}}$ equals the number of perfect matchings on dn elements, and $(d!)^n$ is just the number of ways matchings can yield the same simple graph after projection. Non-simple graphs, unlike simple graphs, can arise with different frequencies.) Bollobás also extended the range of the asymptotic formula to $d < \sqrt{2\log n}$, which was further extended to $d = o(n^{1/3})$ by McKay [10] in 1985. The strongest result is due to McKay and Wormald [11] in 1991, who refined the probability of obtaining a simple graph after the projection to $(1 + o(1))e^{\frac{1-d^2}{4} - \frac{d^3}{12n} + O(\frac{d^2}{n})}$ and extended the range of the asymptotic formula to $d = o(n^{1/2})$. Wormald's Theorem 2.12 in [15] (originally published in [14]) asserts that for any fixed numbers $d \geq 3$ and $g \geq 3$, the number of labelled d-regular graphs with girth at least g, is

$$(1+o(1))e^{-\sum_{i=1}^{g-1}\frac{(d-1)^i}{2i}}\frac{(dn-1)!!}{(d!)^n}.$$
(5)

[9] reproved the following theorem of McKay, Wormald and Wysocka [12] using Theorem 1, under a slightly stronger condition than $(d-1)^{2g-3} = o(n)$ in [12]: (note that a power of g in (6) only restricts a second term in the asymptotic series of the bound on g):

Theorem 2 In the configuration model, assume $d \ge 3$ and

$$g^{6}(d-1)^{2g-3} = o(n).$$
(6)

Then the probability that the random d-regular multigraph has girth at least $g \ge 1$ is $(1+o(1)) \exp\left(-\sum_{i=1}^{g-1} \frac{(d-1)^i}{2i}\right)$, and hence the number of d-regular graphs on n vertices with girth at least $g \ge 3$ is

$$(1+o(1))e^{-\sum_{i=1}^{g-1}\frac{(d-1)^i}{2i}}\frac{(dn-1)!!}{(d!)^n}.$$

(The case g = 3 means that the random d-regular multigraph is actually a simple graph.) Furthermore, the number of d-regular graphs not containing cycles whose length is in a set $C \subseteq \{3, 4, ..., g - 1\}$, is

$$(1+o(1))e^{-\frac{d-1}{2}-\frac{(d-1)^2}{4}-\sum_{i\in \mathcal{C}}\frac{(d-1)^i}{2i}}\frac{(dn-1)!!}{(d!)^n}.$$

This is a special case of a more general result. The following definitions are used in random graph theory [1]. The *excess* of a graph G, denoted by $\kappa(G)$, is |E(G)| - |V(G)|. A graph G is *balanced*, if $\kappa(H) < \kappa(G)$ for any proper subgraph H with at least one vertex. We first prove the following Lemma.

Lemma 3 Suppose that G is a connected balanced simple graph with $\kappa(G) \geq 0$. Then the number of subgraphs H with $\kappa(H) = \kappa(G) - 1$ is at most $2|V(G)|^2$.

Proof: First we claim that G has no leaf vertex. Otherwise, if v is a leaf vertex, then $\kappa(G - v) = \kappa(G)$, a contradiction.

Let H be a subgraph of G with $\kappa(H) = \kappa(G) - 1$. If V(H) = V(G), then H is obtained by deleting one edge from G. The number of such H's is |E(G)|. Now we assume $V(H) \neq V(G)$. For any vertex set S, let $\Gamma(S)$ be the neighborhood of S in G. We define a sequence of graphs H_0, H_1, H_2, \ldots as follows. Let $H_0 = H$. For $i \geq 1$, if $V(H_{i-1}) \neq V(G)$, we define the graph H_i as follows: $V(H_i) = V(H_{i-1}) \cup \Gamma(V(H_{i-1}))$ and $E(H_i) = E(H_{i-1}) \cup \{uv: u \in V(H_{i-1}), v \in \Gamma(V(H_{i-1})), \text{ and } uv \in E(G)\}$. Let H_r be the last graph in the sequence. We have $V(H_r) = V(G)$. Observe

$$\kappa(H) = \kappa(H_0) \le \kappa(H_1) \le \kappa(H_2) \dots \le \kappa(H_r) \le \kappa(G).$$

Since $\kappa(H) = \kappa(G) - 1$, equalities hold for all but at most one in the chain above. We have $|\Gamma(V(H_i)) \setminus V(H_i)| \le 2$ for all $i \le r - 1$, as G has no leaf.

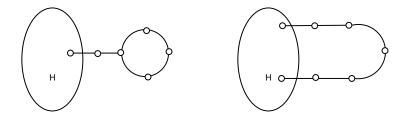


Figure 1: G - H is either a ρ -shape or a path when $\kappa(H) = \kappa(G) - 1$.

It is easy to check that the difference of G and H either forms a ρ -shape or is a path as shown in Figure 1. An H with a ρ -shape may occur at most 2|E(G)| times, an H with a path may occur at most most $\binom{|V(G)|}{2}$ times.

Finally,
$$|E(G)| + 2|E(G)| + {\binom{|V(G)|}{2}} \le 2|V(G)|^2$$
.

Let \mathcal{G} be a family of connected balanced simple graphs with excess κ . We would like to estimate the probability that a random *d*-regular multigraph contains no graph in \mathcal{G} . Given a simple graph G, let $|\operatorname{Aut}(G)|$ be the number of automorphisms of G. For any $k \geq 2$, let $a_k(G)$ be the number of vertices with degree at least k. We define a polynomial $f_G(d) = \prod_{k=2}^{\infty} (d-k+1)^{a_k(G)} = \prod_{v \in V(G)} {d-1 \choose d_v-1} (d_v-1)! = \frac{1}{d^{|V(G)|}} \prod_{v \in V(G)} {d \choose d_v} d_v! \leq (d-1)^{2|E(G)|-|V(G)|}$. We have the following theorem.

Theorem 4 Let \mathcal{G} be a family of connected balanced simple graphs with non-negative excess κ . Set $r = \max_{G \in \mathcal{G}} |E(G)|$. In the configuration model, assume $d \geq 3$ and

$$\frac{r^3}{n} \sum_{G \in \mathcal{G}} (d-1)^{|E(G)|-1} = o(1) \text{ and } \ell = \frac{r^3 d}{n^{\kappa+1}} \left(\sum_{G \in \mathcal{G}} (d-1)^{|E(G)|-1} \right)^2 = o(1).$$
(7)

Then the probability that the random d-regular multigraph arising from the configuration model contains no subgraph in \mathcal{G} is

$$(1+O(\ell))\exp\Big(-\sum_{G\in\mathcal{G}}\frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}\Big).$$

Proof: Let $\epsilon = \frac{Kr^2}{n} \sum_{G \in \mathcal{G}} (d-1)^{|E(G)|-1}$ with a large constant K. The first condition makes sure $r\epsilon = o(1)$, the second condition makes sure $r\epsilon \mu = O(\ell) = o(1)$ in Theorem 1.

For any $G \in \mathcal{G}$, let M_G be the family of (partial) matchings of U whose projection is a copy of G. Suppose that G has s vertices v_1, \ldots, v_s and t edges e_1, \ldots, e_t . For $1 \leq i \leq s$, let C_i be the class of d mini-vertices associated to v_i and Q_i be an (ordered) queue of d_{v_i} mini-vertices in C_i . Let \mathcal{C} be the parameter space of all possible $(C_1, \ldots, C_s, Q_1, \ldots, Q_s)$. We define a mapping $\psi \colon \mathcal{C} \to M_G$ as follows. For $1 \leq j \leq t$, suppose that the edge e_j has two end-vertices v_{j_1} and v_{j_2} . We pop a mini-vertex x_j from the queue Q_{j_1} , pop a mini-vertex y_j from the queue Q_{j_2} , and join $x_j y_j$. Denote by M the collection of edges $\{x_j y_j\}_{1 \leq j \leq t}$. Clearly M forms a partial matching whose projection is a copy of G. We define $\psi(C_1, \ldots, C_s, Q_1, \ldots, Q_s) = M$. Since every partial matching in M_G can be constructed in this way, ψ is surjective.

For any $M \in M_G$ and any $(C_1, \ldots, C_s, Q_1, \ldots, Q_s) \in \psi^{-1}(M)$, it uniquely determines an ordering of edges in M. The number of such orderings that give the same projection G is exactly $|\operatorname{Aut}^*(G)|$, the number of edge automorphisms of G. By Whitney's Theorem [7], for a connected G, which is not K_2 or K_1 , $|\operatorname{Aut}^*(G)| = |\operatorname{Aut}(G)|$. We have $|\psi^{-1}(M)| =$ $|\operatorname{Aut}(G)|$.

There are $\binom{n}{|V(G)|} |V(G)|!$ ways to choose (C_1, \ldots, C_s) . For $1 \leq i \leq s$, there are $\binom{d}{d_{v_i}} d_{v_i}!$ ways to choose the queue Q_i . We have

$$|\mathcal{C}| = \binom{n}{|V(G)|} |V(G)|! \prod_{v \in V(G)} \binom{d}{d_v} d_v!$$

Thus,

$$|M_G| = \frac{|\mathcal{C}|}{|\operatorname{Aut}(G)|}$$

$$= \frac{1}{|\operatorname{Aut}(G)|} \binom{n}{|V(G)|} |V(G)|! \prod_{v \in V(G)} \binom{d}{d_v} d_v!$$

$$= \frac{f_G(d)}{|\operatorname{Aut}(G)|} \binom{n}{|V(G)|} |V(G)|! d^{|V(G)|}.$$
(8)

For $i \geq 1$, let \mathcal{G}_i be the set of graphs in \mathcal{G} with exactly *i* edges. Let \mathcal{M}_i be the set of matchings of U whose projection gives a graph $G \in \mathcal{G}_i$; there are *exactly* $|M_G|$ of them, and they are counted in (8). The bad events to be avoided are the projection of some matching from the union $\mathcal{M} = \bigcup_{i=1}^r \mathcal{M}_i$. For each $M_i \in \mathcal{M}_i$ (i = 1, 2, ..., r), we have

$$\Pr(A_{M_i}) = \frac{1}{(nd-1)(nd-3)\cdots(nd-2i+1)}.$$
(9)

We have

$$\mu = \sum_{M \in \mathcal{M}} \Pr(A_M)$$

$$= \sum_{i=1}^{r} \sum_{G \in \mathcal{G}_i} \frac{f_G(d)}{|\operatorname{Aut}(G)|} \binom{n}{|V(G)|} |V(G)|! d^{|V(G)|}$$

$$\frac{1}{(nd-1)(nd-3)\cdots(nd-2i+1)}$$

$$= \sum_{i=1}^{r} \sum_{G \in \mathcal{G}_i} \frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{i-|V(G)|}} \left(1+O\left(\frac{i^2}{n}\right)\right)$$

$$= \left(1+O\left(\frac{r^2|\mathcal{G}|}{n}\right)\right) \left(\sum_{G \in \mathcal{G}} \frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}\right). \quad (10)$$

Observe from (10) that $\mu = O(\sum_{G \in \mathcal{G}} \frac{(d-1)^{|E(G)|+\kappa}}{(nd)^{\kappa}}) = O(\sum_{G \in \mathcal{G}} \frac{(d-1)^{|E(G)|}}{n^{\kappa}})$. Now we verify the conditions of Theorem 1. Item 1 and 2 are trivial by the definition of r and ϵ . Item 3 can be verified as follows. For two matchings M and M', $A_M \cap A_{M'} = \emptyset$ if any only if M and M' conflict. For $M \in \mathcal{M}_j$, we have

$$\sum_{M':A_{M'}\cap A_{M}=\emptyset} \Pr(A_{M'}) = \sum_{i=1}^{r} \sum_{M'\in\mathcal{M}_{i}:A_{M'}\cap A_{M}=\emptyset} \Pr(A_{M'})$$

(by symmetry argument)
$$\leq \sum_{i=1}^{r} \sum_{M'\in\mathcal{M}_{i}} \frac{2j}{nd} \Pr(A_{M'})$$
$$\leq \frac{2r}{nd} \sum_{i=1}^{r} \sum_{M'\in\mathcal{M}_{i}} \Pr(A_{M'})$$
$$= \frac{2r}{nd} \mu$$
$$< \epsilon.$$
(11)

Now we verify item 4. For any $uv \in M \in \mathcal{M}$, we have

$$\sum_{M:uv \in M \in \mathcal{M}} \Pr(A_M) \leq \sum_{i=2}^r \sum_{G \in \mathcal{G}_i} \frac{\binom{n}{|V(G)| - 2} (|V(G)| - 2)! d^{-2} \prod_{v \in V(G)} \binom{d}{d_v} d_v!}{(nd - 1)(nd - 3) \cdots (nd - 2i + 1)} \\ < \sum_{i=2}^r \sum_{G \in \mathcal{G}_i} \frac{f_G(d)}{(nd)^{i - |V(G)| + 2}} \left(1 + O\left(\frac{i^2}{n}\right)\right) \\ < \epsilon.$$
(12)

(We omitted a $\frac{1}{nd-1}$ additive term from the estimate, which was there in [9], as it was there to handle a loop.)

Finally, we have to verify item 5. For any $F \in \mathcal{M}$, we have to estimate $\sum_{M \in \mathcal{M}_F} \Pr_{N-2r}(A_M)$. By the inequality below, this boils down to estimating $\sum_{M \in \mathcal{M}_F} \Pr(A_M) = \sum_{M \in \mathcal{M}_F} \Pr(A_M)$, as with |M| = i,

$$\frac{\Pr_{N-2r}(A_M)}{\Pr_N(A_M)} \le \prod_{j=1}^i \frac{nd-2j-1}{nd-r-2j-1}$$
$$\le \prod_{j=1}^i \left(1 + \frac{2r}{n-2r-2j-1}\right) \le e^{\frac{2r^2}{nd-4r-1}}$$

Assume that $M' \in \mathcal{M}$ intersects $F, M = M' \setminus F \neq \emptyset$, and the projection of M' is a graph $G' \in \mathcal{G}$. Let H be the projection of $F \cap M'$. The graph H is a subgraph of G satisfying 0 < |E(H)| < |E(G)|. (Otherwise, $G' \subset G$ contradicts to the assumption that \mathcal{G} is balanced.)

We have

$$\begin{split} &\sum_{M \in \mathcal{M}_{F}} \Pr(A_{M}) \\ &\leq \sum_{i=2}^{r} \sum_{G' \in \mathcal{G}_{i}} \sum_{\substack{H \subset G' \\ E(H) \neq \emptyset}} \frac{\left(n - |V(G)|\right)_{|V(G')| - |V(H)|} (d(d-1))^{(|E(G')| - |E(H)|)}}{\prod_{j=1}^{|E(G')| - |E(H)|} (nd - 2j + 1)} \\ &= \sum_{i=2}^{r} \sum_{G' \in \mathcal{G}_{i}} \left(1 + O\left(\frac{i^{2}}{n}\right)\right) \sum_{\substack{H \subset G' \\ E(H) \neq \emptyset}} \frac{(d-1)^{|E(G')| - |E(H)|}}{n^{\kappa(G') - \kappa(H)}} \\ &= \left(1 + O\left(\frac{r^{2}|\mathcal{G}|}{n}\right)\right) \sum_{G' \in \mathcal{G}} \sum_{\substack{H \subset G' \\ E(H) \neq \emptyset}} \frac{(d-1)^{|E(G')| - |E(H)|}}{n^{\kappa(G') - \kappa(H)}}. \end{split}$$

(For the d(d-1) base term in the second line, consider that we can build up G' sequentially by always adding an edge incident to a pre-existing component with at least one edge, starting with the components of H with at least one edge.)

Since G' is balanced, we have $\kappa(G') - \kappa(H) \geq 1$ for any subgraph H with 0 < |E(H)| < |E(G)|. The last summation can be partitioned into summations over two classes. The first class C_1 consists of H with $\kappa(H) = \kappa(G') - 1$. By Lemma 3, the number of such H is at most $|V(G')|^2$. The second class C_2 consists of H with $\kappa(H) \leq \kappa(G') - 2$; there are most

 $2^{|E(G')|}$ of them. We bound $(d-1)^{|E(G')|-|E(H)|}$ by $(d-1)^{|E(G')|-1}.$ We have

$$\sum_{M \in \mathcal{M}_{F}} \Pr(A_{M}) \leq 2 \sum_{G' \in \mathcal{G}} \sum_{\substack{H \subset G' \\ E(H) \neq \emptyset}} \frac{(d-1)^{|E(G')| - |E(H)|}}{n^{\kappa(G') - \kappa(H)}}$$
$$\leq 2 \sum_{G' \in \mathcal{G}} (d-1)^{|E(G')| - 1} \left(\frac{2|V(G')|^{2}}{n} + \frac{2^{|E(G')|}}{n^{2}} \right)$$
$$< \epsilon.$$

Finally, the error in (10) does not hurt, as

$$e^{-\mu} = e^{-\left(1+O\left(\frac{r^{2}|\mathcal{G}|}{n}\right)\right)\left(\sum_{G\in\mathcal{G}}\frac{f_{G}(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}\right)}$$

$$= e^{-\sum_{G\in\mathcal{G}}\frac{f_{G}(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}}e^{-O\left(\frac{r^{2}|\mathcal{G}|}{n}\right)\sum_{G\in\mathcal{G}}\frac{f_{G}(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}}$$

$$= e^{-\sum_{G\in\mathcal{G}}\frac{f_{G}(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}}\left(1-O\left(\frac{r^{2}|\mathcal{G}|}{n}\right)\sum_{G\in\mathcal{G}}\frac{f_{G}(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}\right)$$

$$= (1-O(\ell))e^{-\sum_{G\in\mathcal{G}}\frac{f_{G}(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}},$$

and $e^{\sum_{G \in \mathcal{G}} |\operatorname{Aut}(G)|(nd)^{\kappa(G)}} = (1 + O(\ell))e^{-\mu}.$

Corollary 4.1 We obtain Theorem 2 from Theorem 4, with the following condition, which is slightly weaker than (6) in [9]:

$$g^{3}(d-1)^{2g-3} = o(n) \tag{13}$$

Proof: Note that cycles are exactly the connected balanced graphs with $\kappa = 0$. Let C_1 denote the graph of a one-vertex loop and C_2 the graph of a pair of multiedges between two vertices. These are balanced multigraphs with $\kappa = 0$. Formally, we did not allow in Theorem 4 balanced multigraphs, however, minor changes in the arguments will allow the inclusion of these two graphs (see in [9] how to handle loops and parallel edges). The formulas extend for C_2 and C_1 , if we use as definition $|\operatorname{Aut}(C_2)| = 4$ and $f_{C_2}(d) = (d-1)^2$; $|\operatorname{Aut}(C_1)| = 2$ and $f_{C_1}(d) = d - 1$. Applying Theorem 4 to the family $\mathcal{G} = \mathcal{C} \cup \{C_1, C_2\}$, where $\mathcal{C} \subseteq \{C_3, \ldots, C_{g-1}\}$ for $g \geq 3$ one obtains Theorem 2.

Corollary 4.2 Under the conditions of Theorem 4, the probability of obtaining a balanced graph from \mathcal{G} after projection in the configuration model,

(i) if $\sum_{G \in \mathcal{G}} \frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}$ is separated from zero, is

$$1 - e^{-\sum_{G \in \mathcal{G}} \frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}} + O(\ell) e^{-\sum_{G \in \mathcal{G}} \frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}},$$

(ii) if
$$\sum_{G \in \mathcal{G}} \frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}} = o(1)$$
, and the first part of (7) is strength-
ened to $\frac{r^3}{n} \sum_{G \in \mathcal{G}} (d-1)^{|E(G)|-1} = o(\frac{f_G(d)}{d^{\kappa}|\operatorname{Aut}(G)|})$ uniformly, is

$$\sum_{G \in \mathcal{G}} \frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}} + O\Big(\ell + \big(\sum_{G \in \mathcal{G}} \frac{f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}\big)^2\Big),$$

where ℓ is little-oh of the main term.

Proof: (i) is straightforward. To obtain (ii), use $1 - (1 + O(\ell))e^x = x + O(\ell + x^2)$ for $\ell = o(1), x = o(1)$. The fact that ℓ is little-oh of the main term follows from the extra assumption in (ii).

In the *bipartite configuration model* we have two sets, U and V, each containing N mini-vertices, a fixed partition of U into $d_1, ..., d_n$ element classes, and a fixed partition of V into $\delta_1, ..., \delta_n$ element classes. Any perfect matching between U and V defines a bipartite multigraph with partite sets of size n after a projection contracts every class to single vertex. In the regular case, $d_1 = \cdots = d_n = \delta_1 = \cdots = \delta_n = d$. We have the following theorem

Theorem 5 Let \mathcal{G} be a family of connected balanced simple bipartite graphs with non-negative excess κ and $r = \max_{G \in \mathcal{G}} |E(G)|$. In the regular case of the bipartite configuration model, assume $d \geq 3$ and condition (7). Then the probability that the random d-regular multigraph contains no graph in \mathcal{G} is

$$(1+o(1))e^{-\sum_{G\in\mathcal{G}}\frac{2f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}}.$$

Proof: We outline the proof. For i = 2, ..., r, let \mathcal{M}_i be the set of matchings of U and V, whose projection gives a graph $G \in \mathcal{G}$ with i edges. For a fixed $G \in \mathcal{G}$, since G is bipartite, let $n_1(G)$ and $n_2(G)$ be the size of vertex partition classes. The number of matchings, whose projection is G, is exactly

$$\frac{2}{|\operatorname{Aut}(G)|} \binom{n}{n_1(G)} n_1(G)! \binom{n}{n_2(G)} n_2(G)! \prod_{v \in V(G)} \binom{d}{d_v} d_v!$$

This formula is similar to Equation (8). If G has no automorphism switching its two colorclasses (in particular when $n_1 \neq n_2$), then we can select $n_1(G)$ classes from the *n* classes of *U* and select $n_2(G)$ classes from the *n* classes of *V*, or vice versa. This explains the constant factor 2. If *G* has an automorphism switching its two colorclasses, then selecting $n_1 = n_2$ classes from *U* and *V*, we obtain each copy of $G |Aut^*(G)|/2$ times from matchings. The bad events correspond to a matching from the union $\mathcal{M} = \bigcup_{i=1}^r \mathcal{M}_i$. For each $M_i \in \mathcal{M}_i$ (i = 1, 2, ..., r), we have

$$\Pr(A_{M_i}) = \frac{(dn - 2i)!}{(dn)!}.$$
(14)

We have

$$\sum_{M \in \mathcal{M}} \Pr(A_M)$$

$$= \sum_{i=2}^r \sum_{G \in \mathcal{G}_i} \frac{2}{|\operatorname{Aut}(G)|} (n)_{n_1(G)} (n)_{n_2(G)} \prod_{v \in V(G)} \binom{d}{d_v} d_v! \frac{(dn-2i)!}{(dn)!}$$

$$= \left(1 + O\left(\frac{r^2|\mathcal{G}|}{n}\right)\right) \sum_{G \in \mathcal{G}} \frac{2f_G(d)}{|\operatorname{Aut}(G)|(nd)^{\kappa(G)}}.$$
(15)

All the estimates go through as in the proof of Theorem 2.

Applying Theorem 5 to a family

$$\mathcal{G} = \{C_2\} \cup \mathcal{C} \text{ with } \mathcal{C} \subseteq \{C_4, C_6, \dots, C_{2g-2}\}$$

(a slight extension to include C_2 , like in [9]), we get another theorem of McKay, Wormald and Wysocka [12], who actually had it without g^3 in (16). [9] reproved this theorem with g^6 in the condition using Theorem 1.

Theorem 6 In the regular case of the bipartite configuration model, assume that g is even, $d \ge 3$, and

$$g^{3}(d-1)^{2g-3} = o(n).$$
(16)

Then the probability that the random bipartite d-regular multigraph does not contain a cycle of length $C \subseteq \{2, 4, 6, ..., g - 2\}$, is

$$(1+o(1))e^{-\sum_{i\in\mathcal{C}}\frac{(d-1)^i}{i}}.$$

Corollary 6.1 Corollary 4.2 applies to the bipartite regular configuration model, changing $f_G(d)$ to $2f_G(d)$.

We are left with an open problem of finding asymptotics for the occurrence of an element of \mathcal{G} and obtaining a *simple* multigraph simultaneously.

References

- N. Alon, J. H. Spencer, *The Probabilistic Method* (Second Edition, John Wiley and Sons, New York, 2000).
- [2] E. A. Bender, E. R. Canfield, The asymptotic number of non-negative integer matrices with given row and column sum. J. Comb. Theory Ser. A 24 (1978), 296–307.
- [3] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. *Europ. J. Combinatorics* 1 (1980), 311–316.
- [4] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions. *Infinite and Finite Sets*, A. Hajnal et. al., Eds., *Colloq. Math. Soc. J. Bolyai*, North Holland, Amsterdam, 11 (1975), 609–627.
- [5] P. Erdős and J.H. Spencer, Lopsided Lovász local lemma and latin transversals. *Discrete Appl. Math.* 30 (1991), 151–154.
- [6] C.D. Godsil, B. D. McKay, Asymptotic enumeration of Latin rectangles. J. Comb. Theory B 48 (1990), 19–44.
- [7] H.A. Jung, Zu einem Isomorphiesatz von H. Whitney f
 ür Graphen, Ann. Math. 164 (1966), 270–271.
- [8] L. Lu and L.A. Székely, Using Lovász Local Lemma in the space of random injections. *Electronic J. Comb.* 14 (2007), R63.
- [9] Linyuan Lu and L. A. Székely, A new asymptotic enumeration technique: the Lovász Local Lemma. arXiv:0905.3983v3 [math.CO] (2012+).
- [10] B.D. McKay, Asymptotics for symmetric 0-1 matrices with prescribed row sums. Ars Combinatoria 19A (1985), 15–25.
- [11] B.D. McKay and N.C. Wormald, Asymptotic enumeration by degree sequence of graphs with degrees $o(n^{1/2})$. Combinatorica 11 (1991), 369–382.
- [12] B.D. McKay, N.C. Wormald, and B. Wysocka, Short cycles in random regular graphs. *Electronic J. Combinatorics* 11 (2004), #R66, 12 pages.
- [13] J.H. Spencer, Ten Lectures on the Probabilistic Method, (CBMS 52, SIAM, 1987).

- [14] N.C. Wormald, The asymptotic distribution of short cycles in random regular graphs. J. Comb. Theory Series B 31 (1981), 168–182.
- [15] N.C. Wormald, Models of random regular graphs. Surveys in combinatorics, (Canterbury), London Math. Soc. Lecture Note Ser. 267 (Cambridge Univ. Press, Cambridge, 1999), 239–298.