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Abstract

Our previous paper [9] applied a lopsided version of the Lovész
Local Lemma that allows negative dependency graphs [5] to the
space of random matchings in Ks,, deriving new proofs to a num-
ber of results on the enumeration of regular graphs with excluded
cycles through the configuration model [3]. Here we extend this from
excluded cycles to some excluded balanced subgraphs, and derive
asymptotic results on the probability that a random regular multi-
graph from the configuration model contains at least one from a
family of balanced subgraphs in question.

1 The Tool

In [9] we proved the following theorem on extensions of (partial) matchings
that allows (among other things) proving asymptotic enumeration results
about regular graphs through the configuration model.

Theorem 1 Let Q) be the uniform probability space of perfect matchings
in the complete graph Ky (N even) or the complete bipartite graph Ky n
(with N < N'). Letr = r(N) be a positive integer and 1/16 > € = ¢(N) > 0
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as N approaches infinity. Let M = M(N) be a collection of (partial)
matchings in Ky or Ky nv, respectively, such that none of these matchings
is a subset of another. For any M € M, let Apr be the event consisting of
perfect matchings extending M. Set = p(N) = > ;e Pr(Anr). Suppose
that M satisfies

1. |M| <, for each M € M.

2. Pr(An) < € for each M € M.

8 2o, nay=o PT(Anr) <€ for each M € M.

4 D aruveriem Pr(Anr) < e for each single edge uv.

5. Y temp Prv—20-(Am) < € for each F € M.

Then, if re = o(1), we have
Pr(AnemAn) = e #FHOIeam, (1)

and furthermore, if rep = o(1), then
Pr(AmemAnm) = (1 + O(reﬂ))e_“. (2)

In the theorem above Pr(A,;) denotes the probability according to the
counting measure, and Pry_o,.(Ap) indicates the probability of Ay in a
setting, when 2r of the N vertices (none of them is an endpoint of an edge
in the partial matching H) are eliminated, and the probability is considered
in this smaller instance of the problem.

2 The Configuration Model and the Enumer-
ation of d-Regular Graphs

For a given sequence of positive integers with an even sum, (dy,ds, ..., d,) =
d, the configuration model of random multigraphs with degree sequence d is
defined as follows [3].

1. Let us be given a set U that contains N = Y 7 | d; distinct mini-
vertices. Let U be partitioned into n classes such that the ith class
consists of d; mini-vertices. This ith class will be associated with
vertex v; after identifying its elements through a projection.

2. Choose a random matching M of the mini-vertices in U uniformly.



3. Define a random multigraph G associated with M as follows: For any
two (not necessarily distinct) vertices v; and v;, the number of edges
joining v; and v; in G is equal to the total number of edges in M
between mini-vertices associated with v; and mini-vertices associated
with ’Uj.

The configuration model of random d-regular multigraphs on n vertices
is the instance dy = dy = - -+ = d,,, where nd is even.

Bender and Canfield [2], and independently Wormald, showed in 1978
that for any fixed d, with nd even, the number of d-regular graphs is

1—d2 ddnd H
(V2+o(1))e = <ed(dv)2> . (3)

Bollobés [3] introduced probability to this enumeration problem by defining
the configuration model, and brought the result (3) to the alternative form

(1+ 0(1))6171"2(617&!‘)5)”7 (4)

g2
where the term (1 + 0(1))6% in (4) can be explained as the probabil-
ity of obtaining a simple graph after the projection. (The semifactorial

(dn— Dl = wn/(%% equals the number of perfect matchings on dn ele-
ments, and (d!)" is just the number of ways matchings can yield the same
simple graph after projection. Non-simple graphs, unlike simple graphs,
can arise with different frequencies.) Bollobés also extended the range of
the asymptotic formula to d < v/2logn, which was further extended to
d = o(n'/?) by McKay [10] in 1985. The strongest result is due to McKay

and Wormald [11] in 1991, who refined the probability of obtaining a simple

T2
graph after the projection to (1 + 0(1))6%_%4_0(%2) and extended the
range of the asymptotic formula to d = o(n'/?). Wormald’s Theorem 2.12
in [15] (originally published in [14]) asserts that for any fixed numbers d > 3
and g > 3, the number of labelled d-regular graphs with girth at least g, is

g-1 @=1° (dn — 1)l

(1+o0(1))e” 2= ~= I (5)

[9] reproved the following theorem of McKay, Wormald and Wysocka [12]
using Theorem 1, under a slightly stronger condition than (d—1)2973 = o(n)
in [12]: (note that a power of g in (6) only restricts a second term in the
asymptotic series of the bound on g):



Theorem 2 In the configuration model, assume d > 3 and
9°(d—1)*7% = o(n). (6)

Then the probability that the random d-regular multigraph has girth at least

g>1is(1+0(1)) exp(— Y G

graphs on n vertices with girth at least g > 3 is

), and hence the number of d-regular

_ g—ld;_li(dn—l)”
(14 o(1))e~ Tt U5 @

(The case g = 3 means that the random d-regular multigraph is actually a
simple graph.) Furthermore, the number of d-reqular graphs not containing
cycles whose length is in a set C C {3,4,...,g — 1}, is

1 w2 —ni (dn — 1)!!
(14 o(1))e= 7 - S 52 ?d!)n)

This is a special case of a more general result. The following definitions
are used in random graph theory [1]. The excess of a graph G, denoted by
k(Q), is |[E(G)| — |V(G)|. A graph G is balanced, if k(H) < k(G) for any
proper subgraph H with at least one vertex. We first prove the following
Lemma.

Lemma 3 Suppose that G is a connected balanced simple graph with k(G) >
0. Then the number of subgraphs H with k(H) = &(G) — 1 is at most
2lV(G)P.

Proof: First we claim that G has no leaf vertex. Otherwise, if v is a leaf
vertex, then k(G — v) = k(G), a contradiction.

Let H be a subgraph of G with k(H) = k(G) — 1. If V(H) = V(G),
then H is obtained by deleting one edge from G. The number of such
H’s is |E(G)|. Now we assume V(H) # V(G). For any vertex set S,
let T'(S) be the neighborhood of S in G. We define a sequence of graphs
Hy, Hy, Ho, ... as follows. Let Hy = H. For i > 1, if V(H;_1) # V(G),
we define the graph H; as follows: V(H;) = V(H;—1) UT(V(H;-1)) and
E(H;)=E(H;—1) U{uv: u € V(H;_1),v € I'(V(H;-1)), and wv € E(G)}.
Let H, be the last graph in the sequence. We have V(H,) = V(G). Observe

k(H) = k(Hy) < k(Hy) < k(H2) -+ < k(H,) < &k(G).

Since k(H) = k(G) — 1, equalities hold for all but at most one in the chain
above. We have [['(V(H;)) \ V(H;)| <2 for all i <r — 1, as G has no leaf.



Figure 1: G — H is either a p-shape or a path when k(H) = k(G) — 1.

It is easy to check that the difference of G and H either forms a p-shape or
is a path as shown in Figure 1. An H with a p-shape may occur at most
2|E(G)| times, an H with a path may occur at most most ('V(Qg)l) times.

Finally, |E(G)| + 2|E(G)| + (VD)) < 2v(G) . O

Let G be a family of connected balanced simple graphs with excess
k. We would like to estimate the probability that a random d-regular
multigraph contains no graph in G. Given a simple graph G, let |Aut(G)|
be the number of automorphisms of G. For any k > 2, let ar(G) be the
number of vertices with degree at least k. We define a polynomial fa(d) =
T2 (d=k4+1)*D =T ev () (4 5) (do= D! = goter [oeve) (4)do! <
(d — 1)2E@I=IV(G)] We have the following theorem.

Theorem 4 Let G be a family of connected balanced simple graphs with
non-negative excess k. Set r = maxgeg |E(G)|. In the configuration model,
assume d > 3 and

r’ |B(G)|-1 _ _ rd BG)-1)2_
3@ — o(1) and Eanl(Z(dfl) ) = o(1).

n Geg Geg
(7)

Then the probability that the random d-reqular multigraph arising from the
configuration model contains no subgraph in G is

fa(d)
(1+0(0)) exp - G%:g ‘Aut(GC)’Knd)H(G)).

Proof: Let e = KTHZGGQQJ — DIE@I-1 with a large constant K.
The first condition makes sure re = o(1), the second condition makes sure
repw = O(¢) = o(1) in Theorem 1.

For any G € G, let Mg be the family of (partial) matchings of U whose
projection is a copy of G. Suppose that G has s vertices vq,...,vs and
t edges e1,...,e;. For 1 < i < s, let C; be the class of d mini-vertices



associated to v; and @); be an (ordered) queue of d,,, mini-vertices in C;. Let
C be the parameter space of all possible (C1,...,Cs, Q1,...,Qs). We define
a mapping 1: C — Mg as follows. For 1 < j <, suppose that the edge e;
has two end-vertices v;, and v;,. We pop a mini-vertex x; from the queue
Qj,, pop a mini-vertex y; from the queue @);,, and join x;y;. Denote by M
the collection of edges {x;y;}1<j<¢. Clearly M forms a partial matching
whose projection is a copy of G. We define ¢(C1,...,Cs,Q1,...,Qs) = M.
Since every partial matching in Mg can be constructed in this way, 1 is
surjective.

For any M € Mg and any (Cy,...,Cs,Q1,...,Qs) € Y~ 1(M), it
uniquely determines an ordering of edges in M. The number of such or-
derings that give the same projection G is exactly |[Aut*(G)|, the number
of edge automorphisms of G. By Whitney’s Theorem [7], for a connected
G, which is not Ky or Ky, |Aut*(G)| = |Aut(G)|. We have |[¢~1(M)| =
|[Aut(G)].

There are (\VELG)|)|V(G)|! ways to choose (C1,...,Cs). For 1 <i <,
there are ( dj)dm! ways to choose the queue @Q;. We have

1= (yiey V@ T (4 )a

veV(G)
Thus,

]
Mol = — 1 _
Mel = Xu@)

@ (vion) V@ T (i)

veV(G)

_ _feld [ n V(@)
Aut ()] <V<G>> V(G ®)

For i > 1, let G; be the set of graphs in G with exactly 7 edges. Let M;
be the set of matchings of U whose projection gives a graph G € G;; there
are ezactly |M¢| of them, and they are counted in (8). The bad events to be
avoided are the projection of some matching from the union M = U]_; M,.
For each M; € M; (i =1,2,...,r), we have

1
(nd—1)(nd—3)---(nd —2i+ 1)

Pr(Awy,) = 9)



We have

po= > Pr(Ay)

MeM

_ c(d) V(@)
Y Au(G >|( <>|)'V(G)"d

i=1 GEG;
1

(nd —1)(nd—3)---(nd —2i +1)

- L3 rawegeve (HO(i))

i=1 Geg;

(0 (%9) (5 ki) 00

Observe from (10) that u = O(Zceg %) (deg (d— 1,)LLE(G)|)

Now we verify the conditions of Theorem 1. Item 1 and 2 are trivial by the
definition of r and e. Item 3 can be verified as follows. For two matchings
M and M’', Ay N Ay = 0 if any only if M and M’ conflict. For M € M,
we have

Z PI‘(AM/) = Z Z PI‘(AM/)

M’:AM/mAM:(Z) i=1 ]W’EMiZAZM/ﬁAJWZ(D

T 2 .
(by symmetry argument) < Z Z il Pr(Ay/)

i=1 M'eM; nd
< T3 Pr(Aw)
=1 M’"eM;
_ 2r
< e (11)

Now we verify item 4. For any uv € M € M, we have

S Pr(An) < ZZ (v =) V() = 21 [Leve) (4,) !

M:uveMeM i=2 Geg; nd - 1 (nd 3) (nd 21 + 1)

< ZZ ndz |v )|+2 <1+O(i>>

i=2 Geg;
< € (12)



(We omitted a ﬁ additive term from the estimate, which was there in
[9], as it was there to handle a loop.)

Finally, we have to verify item 5. For any F' € M, we have to estimate
> memy PIN—2-(An). By the inequality below, this boils down to esti-
mating 3 e v, Pr(Anr) = X prenm,. Prv(Aar), as with [ M| =4,

Pry_or(An) Lond—2j—1
Droany <11

Pry(An) e nd—r—2j—1

[
2r 272
< 1 ——— Gy v
= J_I_Il< +n—2r—2j—1>_e

Assume that M’ € M intersects F;, M = M’ \ F # (), and the projection
of M’ is a graph G’ € G. Let H be the projection of FF N M’'. The graph
H is a subgraph of G satisfying 0 < |E(H)| < |E(G)|. (Otherwise, G' C G
contradicts to the assumption that G is balanced.)

‘We have

> Pr(Awn)

MGMF
XT: D> (n = V(O (= v amy (@l = 1) IPEDZIEEDD
i=2G'€G; HCG' H‘ji(lel)‘_lE(H)‘(nd —2j+1)

E(H)#0

IN

(d — 1)/ E@)I=IE®)

Z nk(G")—rk(H)

I
Mﬁ
lng

/,_.\

_|_

Q
VRS
3|
N——
N————

=2 G'€g HCG'
E(H)#0

r2|G| (d — 1)|E(G’)\7\E(H)\

- (ro("I)) T ¥ e
G'eG HcCG'
E(H)#0

(For the d(d — 1) base term in the second line, consider that we can build
up G’ sequentially by always adding an edge incident to a pre-existing
component with at least one edge, starting with the components of H with
at least one edge.)

Since G’ is balanced, we have k(G') — k(H) > 1 for any subgraph
H with 0 < |E(H)| < |E(G)|. The last summation can be partitioned
into summations over two classes. The first class C; consists of H with
k(H) = k(G")— 1. By Lemma 3, the number of such H is at most [V (G")|%.
The second class Co consists of H with x(H) < k(G’) — 2; there are most



21EG) of them. We bound (d — 1)EGI=IEME] 1y (g — 1)IEEGEDI-1 We
have

— 1)\E(G')\—\E(H)\

d
Z PI“(AM) < 22 Z ( nk(G")—rK(H)

MeMp G'€G Hcw
E(H)20
/ 2 nEZ o 9lBE(G)]
< 23 (d-1)EEI- ( V(&) s
n n
G'eg
< €.

Finally, the error in (10) does not hurt, as

_ r2|g| fa(d)
et = ¢ (HO( " ))(ZGGQ [Aut(G)|(nd)~(G)

2
— _ fe@  _pf fa(d)
e 2geg [Aut(Q) | (nd) (&) o ( n 2aeg |Aut(G)|(nd)(G)

7ZGGQW 1-0 7’2|g| fa(d)
c n Xe: |Aut(G)|(nd)~(©)

(d)

_ _ fed
= (1-0())e 226€6 TRur(c)|(na) (@) ,

fg(d)

and e =<8 Trnt@) a® @ — (1 4 O(f))eH, -

Corollary 4.1 We obtain Theorem 2 from Theorem 4, with the following
condition, which is slightly weaker than (6) in [9]:

g*(d=1)*7% = o(n) (13)

Proof: Note that cycles are exactly the connected balanced graphs with
k = 0. Let C denote the graph of a one-vertex loop and Cs the graph of
a pair of multiedges between two vertices. These are balanced multigraphs
with k = 0. Formally, we did not allow in Theorem 4 balanced multigraphs,
however, minor changes in the arguments will allow the inclusion of these
two graphs (see in [9] how to handle loops and parallel edges). The formulas
extend for Cy and C1, if we use as definition |Aut(Cs)| = 4 and fe,(d) =
(d —1)% |Aut(Cy)| = 2 and f¢,(d) = d — 1. Applying Theorem 4 to the
family G = C U {C1,C5}, where C C {Cj,...,Cy_1} for g > 3 one obtains
Theorem 2. [l

Corollary 4.2 Under the conditions of Theorem 4, the probability of ob-
taining a balanced graph from G after projection in the configuration model,



. . d . .
(1) if > geg W is separated from zero, is

Yy —fa@ Yo —fa@
1—e 99 An@Ind D L Of)e T IAn(@)a)~ D

(i) i Dgeg W = o(1), and the first part of (7) is strength-

ened to % Yaegld—1IE@IRT = 0(#&‘?@) uniformly, is

fa(d) fa(d) 2
GEE:Q AUt(G)|(nd) =) +O(e+ (@) (@) )

where £ is little-oh of the main term.

Proof: (i) is straightforward. To obtain (ii), use 1 — (1 + O(¢))e® = x +
Ol + 2?) for £ = o(1),z = o(1). The fact that ¢ is little-oh of the main
term follows from the extra assumption in (ii). O

In the bipartite configuration model we have two sets, U and V, each
containing N mini-vertices, a fixed partition of U into dy,...,d, element
classes, and a fixed partition of V into 41, ..., §,, element classes. Any perfect
matching between U and V defines a bipartite multigraph with partite sets
of size n after a projection contracts every class to single vertex. In the
regular case, dy = -+ =d, = 6 = -+ = 6, = d. We have the following
theorem

Theorem 5 Let G be a family of connected balanced simple bipartite graphs
with non-negative excess k and r = maxgeg |E(G)|. In the reqular case of
the bipartite configuration model, assume d > 3 and condition (7). Then
the probability that the random d-regular multigraph contains no graph in
g is

2fg(d)

(1+ o(1))e Z¢ Tam@) (@

Proof: We outline the proof. For ¢ = 2,...,r, let M; be the set of match-
ings of U and V, whose projection gives a graph G € G with i edges. For
a fixed G € G, since G is bipartite, let ni(G) and ns(G) be the size of
vertex partition classes. The number of matchings, whose projection is G,
is exactly

@ (o)™ ()@ T ()0

This formula is similar to Equation (8). If G has no automorphism switch-
ing its two colorclasses (in particular when n; # ns), then we can select



n1(G) classes from the n classes of U and select ny(G) classes from the n
classes of V', or vice versa. This explains the constant factor 2. If G has an
automorphism switching its two colorclasses, then selecting n; = no classes
from U and V, we obtain each copy of G |Aut*(G)|/2 times from matchings.
The bad events correspond to a matching from the union M = U]_; M,.

For each M; € M; (i =1,2,...,r), we have
(dn — 2i)!
Pr(Ay,) = T (14)
We have
> Pr(Au)
MeM
d (dn — 2i)!
= dyl———+
g% \Aut nl(G)( )n2(G) Ue];{G) (dv> (dn)'
_ ’19] 2fc(d
- (1+0< Z|Aut ndn(c (15)
All the estimates go through as in the proof of Theorem 2. O

Applying Theorem 5 to a family
g = {CQ} U C with C Q {04, CG; ey 02972}

(a slight extension to include Cs, like in [9]), we get another theorem of
McKay, Wormald and Wysocka [12], who actually had it without g3
(16). [9] reproved this theorem with g® in the condition using Theorem 1.

Theorem 6 In the regular case of the bipartite configuration model, as-
sume that g is even, d > 3, and

g°(d=1)*7% = o(n). (16)

Then the probability that the random bipartite d-reqular multigraph does not
contain a cycle of length C C {2,4,6,...,g — 2}, is

(1+ o(1))e~ Tiee T

Corollary 6.1 Corollary 4.2 applies to the bipartite reqular configuration
model, changing fc(d) to 2fc(d).

We are left with an open problem of finding asymptotics for the occur-
rence of an element of G and obtaining a simple multigraph simultaneously.
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