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in 2-colorings of Zn
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Abstract

This paper is motivated by a recent result of Wolf [12] on the mini-
mum number of monochromatic 4-term arithmetic progressions (4-APs,
for short) in Zp, where p is a prime number. Wolf proved that there
is a 2-coloring of Zp with 0.000386% fewer monochromatic 4-APs than
random 2-colorings; the proof is probabilistic and non-constructive. In
this paper, we present an explicit and simple construction of a 2-coloring
with 9.3% fewer monochromatic 4-APs than random 2-colorings. This
problem leads us to consider the minimum number of monochromatic 4-
APs in Zn for general n. We obtain both lower bound and upper bound
on the minimum number of monochromatic 4-APs in all 2-colorings of
Zn. Wolf proved that any 2-coloring of Zp has at least (1/16 + o(1))p2

monochromatic 4-APs. We improve this lower bound into (7/96+o(1))p2.
Our results on Zn naturally apply to the similar problem on [n] (i.e.,

{1, 2, . . . , n}). In 2008, Parillo, Robertson, and Saracino [5] constructed
a 2-coloring of [n] with 14.6% fewer monochromatic 3-APs than ran-
dom 2-colorings. In 2010, Butler, Costello, and Graham [1] extended
their methods and used an extensive computer search to construct a 2-
coloring of [n] with 17.35% fewer monochromatic 4-APs (and 26.8% fewer
monochromatic 5-APs) than random 2-colorings. Our construction gives
a 2-coloring of [n] with 33.33% fewer monochromatic 4-APs (and 57.89%
fewer monochromatic 5-APs) than random 2-colorings.

1 Introduction

Let G be a finite subset of a commutative group. For any integer k ≥ 3, a
k-term arithmetic progression (or k-AP, for short) is an (ordered) sequence of k
elements in G of the form (a, a+d, . . . , a+(k−1)d), where a is the first element
and d is the common difference. A 2-coloring of G is a map c : G → {0, 1}. A
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k-AP (a, a + d, . . . , a + (k − 1)d) is monochromatic if c(a) = c(a + d) = · · · =
c(a + (k − 1)d). Let mk(G, c) be the number of monochromatic k-APs in the
2-coloring c. A natural question is how small mk(G, c) can be? Let APk(G) be
the number of all k-APs in G. Define

mk(G) := min
c

mk(G, c)

APk(G)
. (1)

We are interested in the asymptotic value of mk(G) as |G| approaches infinity.
(This is similar to those questions on Schur Triples [3, 7, 9] or on general patterns
[1, 4].)

In this paper, we consider only the cases that G = [n] and G = Zn. Here
[n] = {1, 2, . . . , n} and Zn is the cyclic group of order n. When n is a prime
number p, we write Zn as Zp for emphasis. A k-AP is degenerated if it contains
repeated terms; it is non-degenerated otherwise. The mirror image of a k-AP
(a, a+d, . . . , a+(k−1)d) is another k-AP (a+(k−1)d, . . . , a+d, a). Here we allow
k-APs to be degenerated; a k-AP differs from its mirror image except for d = 0.
In contrast, many papers require k-APs to be non-degenerated and treat a k-
AP the same as its mirror image. The two different definitions of k-APs derive
two different versions of mk(G). However, they are asymptotically equivalent
as |G| goes to infinity; this is because the number of degenerated k-APs is only
O(n) while the number of all APs is Ω(n2). A k-AP (a, a+ d, . . . , a+ (k− 1)d)
is parametrized by a pair (a, d). The parameter space of all k-APs in [n] can
be described as {(a, d) : 1 ≤ a ≤ n, 1 ≤ a + (k − 1)d ≤ n}. A k-AP (a, a +
d, . . . , a + (k − 1)d) in [n] is degenerated if and only if d = 0. The parameter
space of all k-APs in Zn is simply Z

2
n. A k-AP (a, a + d, . . . , a + (k − 1)d) in

Zn is degenerated if jd ≡ 0 mod n for some 0 ≤ j ≤ k − 1. In both cases, the
number of degenerated k-APs is O(n).

Random 2-colorings of [n] (or Zn) give the following upper bounds.

mk([n]) ≤ 21−k + o(1); (2)

mk(Zn) ≤ 21−k + o(1). (3)

Van der Waerden’s number [11] W = W (2, k) can be used to provide a
lower bound on mk([n]). For example, using a double counting method, one

can prove mk([n]) ≥ 2(k−1)
W 3 + o(1) (see [1]). A similar argument can show

mk(Zn) ≥ 2(k−1)
W 2 + o(1). These bounds are usually too weak; stronger bounds

exist for k = 3 and k = 4.
The case Zp is of particular interest. The number of monochromatic 3-APs

in Zp depends only on the size of the coloring classes, but not on the coloring
itself (see [3]). Namely, if c is a 2-coloring of Zp such that the size of red class
is αp, then we have

m3(Zp, c) = (1− 3α+ 3α2)p2. (4)

The minimum is achieved when α is closed to 1
2 . Thus m3(Zp) is achieved by

random 2-colorings.
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For k = 4, Wolf [12] proved that for any sufficiently large prime number p,
we have

1

16
+ o(1) ≤ m4(Zp) ≤

1

8
(1− 1

259200
) + o(1). (5)

This lower bound improved a previous lower bound due to Cameron, Cilleruelo,
and Serra [2],

m4(Zn) ≥
2

33
+ o(1), (6)

where n is relatively prime to 6 and large enough. (Cameron, Cilleruelo, and
Serra’s result actually holds for any Abelian group of order n provided gcd(n, 6) =
1.)

Wolf’s upper bound indicates that m4(Zp) is not achieved by random 2-
colorings. This is a nice result. However, the quantity is only slightly less than
1
8 — the density of monochromatic 4-APs in random 2-colorings. Her method
for the upper bound relies heavily on the method initialized by Gowers (see
[12]). The existence of such 2-coloring is proved by probabilistic methods; it is
non-constructive.

To get a better upper bound for mk(Zn), we introduce a construction con-
sisting of periodic blocks. For a fixed b, let B be a good 2-coloring of Zb with
mk(Zb)b

2 monochromatic k-APs. (Here B is viewed as a 0-1 string of length b.)
Write n = bt + r with 0 ≤ r ≤ b − 1. We consider the following periodic

construction c
BB · · ·B
︸ ︷︷ ︸

t

R. (7)

Here R is any bit-string of length r.
If n is divisible by b, then R is empty. In this case, it is easy to see that the

periodic construction above gives mk(Zb)n
2 monochromatic k-APs. Thus, we

have
mk(Zn) ≤ mk(Zb) if b | n. (8)

If n is not divisible by b, then the computation of mk(Zn, c) is more com-
plicated in general. Note that the number of k-APs containing some element(s)
in R is a lower order term as n goes to infinity; the value mk(Zn, c) can be still
determined asymptotically by B. (See Lemma 4 and 5.)

Two colorings c and c′ of Zn are isomorphic if there is an integer m such
that gcd(m,n) = 1 and c′(v) = c(mv) for any v ∈ Zn. Two colorings c and
c′ of Zn are conjugated if c′(v) = 1 − c(v) for any v ∈ Zn. It is clear that
mk(Zn, c) = mk(Zn, c

′), whenever c and c′ are isomorphic or conjugated to each
other. To find a good coloring B, we implement an efficient bread-first search
algorithm reducing isomorphic copies. From the proof of the lower bound for
m4(Zn), we need pay attention to those n divisible by 4. Using this efficient
program, we find a good 2-coloring B20 of Z20 for 4-APs,

B20 = (1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0).

This coloring B20 gives m4(Z20) =
9

100 .
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We also search the coloring of Zp without any non-degenerated monochro-
matic 4-APs. At p = 11, there is a unique coloring with this property up to
isomorphisms. Since 0’s and 1’s are not balanced in this coloring, we search good
colorings in Z22 instead. We found a good 2-coloring B22 of Z22 for 4-APs,

B22 = (1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0).

In this coloring, all monochromatic 4-APs in B22 are degenerated; there are 22
monochromatic 4-APs with d = 0 and 20 monochromatic 4-APs with d = 11.
This coloring B22 gives m4(Z22) =

42
222 = 21

242 .
The following theorem improves both Wolf’s lower bound and upper bound

on m4(Zp). Our lower bound is obtained by combining Wolf’s elegant method
and an exhaustive search. Our upper bound is proved by a novel method of
analyzing the number of monochromatic k-APs in the periodic construction
(7).

Theorem 1 If p is prime and large enough, then we have

0.07291666 <
7

96
≤ m4(Zp) ≤

17

150
+ o(1) < 0.1133334. (9)

In fact, our methods naturally lead (asymptotic) bounds on m4(Zn) for
general n. The results depend on n case-wisely. For simplicity, we split it into
two theorems: one on the lower bound and the other one on the upper bound.

Theorem 2 If n is sufficiently large, then we have

m4(Zn) ≥
{

7
96 if n is not divisible by 4,
2
33 if n is divisible by 4.

Here is a theorem for the upper bound on m4(Zn) for general n.

Theorem 3 For n sufficiently large, we have

m4(Zn) ≤
{

17
150 + o(1) < 0.1133334 if n is odd,
8543
72600 + o(1) < 0.1176722 if n is even.

Note that Theorem 1 is a corollary of Theorem 2 and 3. The upper bound above
is small enough to beat the bound 1

8 reached by random 2-colorings. Using
inequality (8), we can get a much better bound for certain n’s. For example,

m4(Zn) ≤
{

0.09 if 20 | n,
0.086777 if 22 | n,

For m5(Zn), we use the periodic construction with the following good color-
ing of Z74:
B74 = (1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,

1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0).

All monochromatic 5-APs in B74 are degenerated ones. Among them there
are 74 5-APs with d = 0 and 72 5-APs with d = 37. This coloring gives
m5(Z74) =

146
742 = 73

2738 . We have the following theorem.
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Theorem 4 If n is sufficiently large, then we have

m5(Zn) ≤
{

3629
65712 + o(1) < 0.055226 if n is odd,
3647
65712 ++o(1) < 0.0554998 if n is even.

Once again, the upper bound above is small enough to beat the bound 1
16 ,

which is reached by random 2-colorings. Using inequality (8), we can get a much
better upper bound for certain n. For example, we have

m5(Zn) ≤
73

2738
= 0.026661 · · · if 74 | n.

The following theorem gives the best lower bounds (for some n’s).

Theorem 5 We have

lim
n→∞

m4(Zn) ≤
1

12

lim
n→∞

m5(Zn) ≤
1

38
.

In fact, we show for any ǫ, there is an odd integer n with m4(Zn) ≤ 1
12 + ǫ.

Combining this result with Theorem 2, we get

7

96
≤ inf{m4(Zn) : n is not divisible by 4 } ≤ 1

12
.

Note the gap is pretty small. Here we conjecture that the upper bound is tight.

Conjecture 1 inf{m4(Zn) : n is not divisible by 4 } = 1
12 .

Maybe it is true even if the condition that “n is not divisible by 4” is removed.
The periodic construction also works for mk([n]). We have

Lemma 1 For any k ≥ 3 and any positive integer b, we have

lim
n→∞

mk([n]) ≤ mk(Zb).

In particular, we have

lim
n→∞

mk([n]) ≤ lim
n→∞

mk(Zn).

When we consider the similar problems for [n], the k-AP and its mirror
image are often not distinguished in the literature. To avoid the ambiguity, we
call a k-AP (in [n]) with d > 0 an increasing k-AP. For k ≥ 3, let ck be the
largest number satisfying “for any ǫ > 0, there is a sufficiently large n such
that any 2-coloring of [n] contains at least (ck − ǫ)n2 monochromatic increasing
k-APs”. Since [n] has ( 1

2(k−1) + o(1))n2 increasing k-APs, it is equivalent to say

ck =
1

2(k − 1)
lim
n→∞

mk([n]). (10)
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In 2008, Parillo, Robertson, and Saracino [5] proved

0.05111 <
1675

32768
≤ c3 ≤ 117

2192
< 0.053376. (11)

Their construction was generalized by Butler, Costello, and Graham, who [1]
proved c4 < 0.0172202 . . . and c5 < 0.005719619 . . . via an extensive computa-
tion. Both bounds beat random 2-colorings.

Combining Theorem 5 with Lemma 1, we have

c4 ≤ 1

72
= 0.01388888 . . . , (12)

c5 ≤ 1

304
= 0.003289474 . . . . (13)

These numerical results indicate that the periodic construction is often better
than the block construction used in [1]. We believe the following conjecture
holds.

Conjecture 2 For fixed k ≥ 4, we have limn→∞ mk([n]) = limn→∞ mk(Zn).

Bounding c3 is very different from bounding c4. This conjecture above is
not true for k = 3. We have the following theorem.

Theorem 6 If the integer n is large enough, then any 2-coloring of Zn contains
at least 1

4n
2 monochromatic arithmetic progressions. In particular, we have

m3(Zn) =
1

4
+ o(1). (14)

With the help of computer search, we found three good 2-colorings B20, B22,
and B74, which are used as building blocks in constructing good 2-colorings of
Zn and [n]. The data in Table 1, 2, 3, and 4, can be easily verified by anyone
with limited programming experience. Some lower bound requires nontrivial
exhaustive search in the same way as Cameron, Cilleruelo, and Serra [2] proved
the previous lower bounds. However, those lower bounds using an exhaustive
computer search are not the focus of this paper.

The organization of the paper is following. In section 2, we will prove a
necessary lemma and Theorem 6. In the section 3, we first prove a lemma and a
corollary on counting lattice points in a polygon; then we prove Theorem 3 for
odd n and Theorem 4. In section 4, we introduce a recursive construction and
then use it to prove Theorem 5 and Theorem 3 for even n. In the last section,
we will deal with the lower bounds and prove Theorem 2.

2 Notations and the proof of Theorem 6

Let c : Zn → {0, 1} be a 2-coloring of Zn. The coloring c is often viewed as
a bit-string of length n. For convenience, we say an element v ∈ Zn is red if

6



c(v) = 0 and blue if c(v) = 1. The coloring c induces a partition Zn = A ∪ B,
where A is the set of red elements while B is the set of blue elements.

Let k ≥ 3 be an integer and |A| = αn. We have |B| = (1− α)n.
For each 1 ≤ i ≤ k, let Ai (or Bi) be the set of all k-APs whose i-th number

is red (or blue), respectively; we have

|Ai| = αn2, (15)

|Bi| = (1− α)n2. (16)

Lemma 2 For 1 ≤ i < j ≤ k, if gcd(j − i, n) = 1, then we have

|Ai ∩ Aj | = α2n2, (17)

|Bi ∩Bj | = (1 − α)2n2. (18)

If gcd(j − i, n) 6= 1, then we have

|Ai ∩ Aj | ≥ α2n2, (19)

|Bi ∩Bj | ≥ (1 − α)2n2. (20)

Proof: For 1 ≤ i < j ≤ k, the value of |Ai ∩ Aj | equals the number of k-APs
whose i-th and j-th terms are red. If gcd(j − i, n) = 1, then every ordered pair
of elements (distinct or not) in Zn can be extended into a unique k-AP whose
i-th and j-th terms are the given pair. Note the number of ordered pairs of red
(and blue) elements is exactly α2n2 (and (1 − α)2n2), respectively. Equations
(17) and (18) follow.

If gcd(j − i, n) 6= 1, then every pair of elements in Zn may or may not
be extended into a k-AP whose i-th and j-th terms are the given pair. Let
r = gcd(j − i, n). For 0 ≤ l ≤ r− 1, let xl be the number elements z in Zn such
that z is red and z ≡ l mod r. For any pair (z1, z2), the elements z1 and z2 are
the i-th and j-th elements of an arithmetic progression if

z2 − z1 = (j − i)d, (21)

for some element d in Zn. Equivalently, z2 − z1 ≡ 0 mod r. Moreover, if
z2 − z1 ≡ 0 mod r, then equation (21) has r solutions. It follows that

|Ai ∩ Aj | = r

r−1∑

l=0

x2
l (22)

≥ (

r−1∑

l=0

xl)
2

= α2n2.

Equation (20) can be proved similarly. �
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Proof of theorem 6: Observe that if we assign red and blue to each number
equally likely, then the expected value of m3(Zn, c) is n

2/4 +O(n). Therefore,
there is a 2-coloring c such that m3(Zn, c) ≤ n2/4 + O(n), that is m3(Zn) ≤
1/4 +O(1/n).

For the other direction, let c be any 2-coloring of Zn. We use the notations
α, Ai, and Bi defined in the beginning of this section.

We have the following inclusion-exclusion formula.

|A1 ∪ A2 ∪A3| =
3∑

i=1

|Ai| −
∑

1≤i<j≤3

|Ai ∩ Aj |+ |A1 ∩ A2 ∩ A3|. (23)

Note that A1∪A2∪A3 = B1 ∩B2 ∩B3 and
∣
∣B1 ∩B2 ∩B3

∣
∣ = n2−|B1∩B2∩B3|.

By the definition ofm3(Zn, c), we have |A1∩A2∩A3|+|B1∩B2∩B3| = m3(Zn, c).
Applying Lemma 2, we have

m3(Zn, c) = n2 −
3∑

i=1

|Ai|+
∑

1≤i<j≤3

|Ai ∩ Aj |

≥ n2 − 3αn2 + 3α2n2

= (1− 3α(1− α))n2.

Note that α(1−α) reaches the maximum value at α = 1/2. We havem3(Zn, c) ≥
n2/4. Therefore m3(Zn) ≥ 1/4 and the lemma follows. �

3 Proofs of Theorem 3 and Theorem 4

In this section, we will examine the number of monochromatic k-APs in the
periodic construction (7).

3.1 Proof of Lemma 1

We need a tool to count the grid points inside a polygon on the plane.
A point in R

2 is a grid point if both coordinates are integers. Let Q be a
simple polygon whose vertices are grid points. Let A(Q) be the area of Q, I(Q)
be the number of grid points inside Q, and B(Q) be the number of grid points
on the boundary of Q. The classical Pick’s theorem [6] states

A(Q) = I(Q) +
B(Q)

2
− 1.

Intuitively, if B(Q) is a lower order term, then I(Q) ≈ A(Q). Let P be a
simple polygon in the plane R

2. For any t > 0 and a point v, a new polygon
v + tP is obtained by first scaling P by a factor of t and then translating by a
vector v. We have the following lemma.
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Lemma 3 Suppose P is a simple polygon with m vertices and circumference L.
For any point v and sufficiently large t, we have

|I(v + tP )−A(P )t2| ≤ 3Lt+ 5m.

Proof: Since P has m vertices, let v1, . . . , vm be the vertices of the polygon
v + tP . For i = 1, . . . ,m, let ui be a grid point closest to vi (if there are more

than one choice, then break ties arbitrarily). We have |uivi| ≤
√
2
2 . Let Q be

the polygon with vertices u1, u2, . . . , um. (For convenience, we write vm+1 = v0
and um+1 = u0.) The polygon Q can be viewed as an approximation of the
polygon v + tP ; thus Q is simple for sufficiently large t.

Applying Pick’s theorem to Q, we have

A(Q)− I(Q) =
B(Q)

2
− 1.

We observe that the number of grid points on any line segment of length l is at
most l + 1. We have

B(Q) ≤
m∑

i=1

(|uiui+1|+ 1)

≤
m∑

i=1

(|vivi+1|+ |uivi|+ |ui+1vi+1|+ 1)

≤
m∑

i=1

(|vivi+1|+
√
2 + 1)

= tL+ (
√
2 + 1)m.

Let Si be the convex region spanned by vi, vi+1, ui, ui+1. Note Si is covered
by four triangles ∆uivivi+1, ∆uiviui+1, ∆ui+1vi+1ui, and ∆ui+1vi+1vi exactly
twice. We have

A(Si) =
1

2
(A(∆uivivi+1) +A(∆uiviui+1) +A(∆ui+1vi+1ui) +A(∆ui+1vi+1vi))

≤ 1

2
(|vivi+1|+ |uiui+1|)

√
2

2

≤
√
2

4
(|vivi+1|+ |uivi|+ |vivi+1|+ |vi+1ui+1|)

≤
√
2

4
(2|vivi+1|+

√
2)

=

√
2

2
|vivi+1|+

1

2
.
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Summing up, we get

|A(Q)−A(v + tP )| ≤
m∑

i=1

A(Si)

≤
m∑

i=1

(

√
2

2
|vivi+1|+

1

2
)

=

√
2

2
Lt+

m

2
.

Let Ti be the set of grid points inside Si or on the line segment uiui+1. Let
Pi be the convex set spanned by Ti. Applying Pick’s theorem to Pi, we have

A(Pi) = I(Pi) +
B(Pi)

2
− 1.

Thus

|Ti| = I(Pi) +B(Pi)

≤ 2(A(Pi) + 1)

≤ 2(A(Si) + 1)

≤
√
2|vivi+1|+ 3.

Summing up, we get

|I(Q)− I(v + tP )| ≤
m∑

i=1

|Ti|

≤
m∑

i=1

√
2|vivi+1|+ 3

=
√
2tL+ 3m.

Putting together, we have

|I(v + tP )−A(v + tP )|
≤ |I(Q)−A(Q)|+ |A(Q)−A(v + tP )|+ |I(Q)− I(v + tp)|

≤ 1

2
(tL+ (

√
2 + 1)m)− 1 + (

√
2

2
tL+

m

2
) + (

√
2tL+ 3m)

=
3
√
2 + 1

2
Lt+ (4 +

√
2

2
)m− 1

< 3Lt+ 5m.

The proof of this lemma is finished. �

By counting grid points in (−x0/b,−y0/b) + (n/b)P , we get the following
corollary. Since the number of grid points on the boundary of nP is always a
lower order term, it does not matter whether grid points on the boundary are
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included or not. In fact, in latter applications, the polygon region P is often
defined with one part of boundary included while the other part of boundary
excluded.

Corollary 1 For any fixed point (x0, y0), let Lb be a lattice {(x0 + ib, y0 +
jb) : i, j ∈ Z} and P be a simple polygon. For n ≫ b, we have

|Lb ∩ nP | = n2

b2
A(P ) +O(

n

b
).

Proof of Lemma 1: Let B be a “good” 2-coloring/bit-string of Zb with
mk(Zb)b

2 monochromatic k-APs. Any k-AP in Zb can be parametrized by
a pair (a′, d′) satisfying 0 ≤ a′, d′ ≤ b−1. Let S be the set of parameters (a′, d′)
such that the corresponding k-APs in Zb are monochromatic. We have

|S| = mk(Zb)b
2.

For sufficiently large n, we write n = bt + r with 0 ≤ r ≤ b − 1. Consider
the periodic construction BB · · ·BR (see (7)). Note that the number of k-APs
containing some elements of R is O(n). We need estimate monochromatic k-APs
lying entirely in [bt].

Let P be a parallelogram defined by

P = {(x, y) : 0 < x ≤ 1 and 0 < x+ y(k − 1) ≤ 1}.
The area of P is clearly 1

(k−1) .

A k-AP (a, a + d, . . . , a + (k − 1)d) in [bt] is monochromatic if and only if

(a mod b, d mod b) ∈ S. Let L
(a′,d′)
b be the lattice {(a′+ ib, d′+ jb) : i, j ∈ Z}.

Applying Corollary 1, the number of monochromatic k-APs in [bt] is exactly
∑

(a′,d′)∈S

|L(a′,d′)
b ∩ (bt)P | =

∑

(a′,d′)∈S

A(P )t2 +O(t)

= |S|A(P )t2 +O(b2t)

=
1

k − 1
mk(Zb)(bt)

2 +O(b2t).

Thus,

mk([n], c) =
1

k − 1
mk(Zb)(bt)

2 +O(b2t).

Note that the number of k-APs in [n] is n2

k−1 +O(n). Taking the ratio, we have

mk([n]) ≤
mk([n], c)

AP ([n])
= mk(Zb) +O(

1

t
).

First taking (upper) limit as n goes to infinity, we get

lim
n→∞

mk([n]) ≤ mk(Zb).

Then taking (lower) limit as b goes to infinity, we have

lim
n→∞

mk([n]) ≤ lim
b→∞

mk(Zb).

The proof of Lemma 1 is finished. �
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3.2 Proof of Theorem 3

It suffices to consider the case that n is not divisible by b. Write n = bt+ r with
1 ≤ r ≤ b− 1. Recall the periodic construction

BB · · ·B
︸ ︷︷ ︸

t

R.

Here R is any bit-string of length r.
The number of 4-APs containing some bit(s) in R is O(n). The major term

in the number of all monochromatic 4-APs depends only on B and r. We divide
the set of all non-degenerated 4-APs in Zn into eight classes Ci for 0 ≤ i ≤ 7.

Classes the meaning in Zn

C0 a < a+ d < a+ 2d < a+ 3d < n
C1 a < a+ d < a+ 2d < n ≤ a+ 3d < 2n
C2 a < a+ d < n ≤ a+ 2d < a+ 3d < 2n
C3 a < a+ d < n ≤ a+ 2d < 2n ≤ a+ 3d < 3n
C4 a < n ≤ a+ d < a+ 2d < a+ 3d < 2n
C5 a < n ≤ a+ d < a+ 2d < 2n ≤ a+ 3d < 3n
C6 a < n ≤ a+ d < 2n ≤ a+ 2d < a+ 3d < 3n
C7 a < n ≤ a+ d < 2n ≤ a+ 2d < 3n ≤ a+ 3d < 4n

These 8 classes can be viewed as 8 regions in the parameter space of (a, d)
as shown in Figure 1. Let us normalize the parameters so that the area of the
whole square is 1. For 0 ≤ i ≤ 7, let ai be the area of the i-th normalized region.
We have

a0 =
1

6
, a1 =

1

12
, a2 =

1

6
, a3 =

1

12
, a4 =

1

12
, a5 =

1

6
, a6 =

1

12
, a7 =

1

6
.

0

1

2

3

4

5

6

7

2n/3

n/2 n/2

2n/3

n/3 n/3

n

n

0 a

d

C

C

C

C

C

C

C

C

1/6

1/12
1/6

1/12

1/12

1/6
1/12

1/6

a/n

d/n

1

1

2/3

1/2

1/3 1/3

1/2

2/3

0

Figure 1: The eight regions in the pa-
rameter space of all 4-APs in Zn.

Figure 2: The areas of the eight nor-
malized regions.
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For r1, r2, r3 ≥ 0, an (r1, r2, r3)-generalized 4-term arithmetic progression is
of form

a, a+ d− r1, a+ 2d− (r1 + r2), a+ 3d− (r1 + r2 + r3).

Here (a, d) are the parameters determining the (r1, r2, r3)-generalized 4-term
arithmetic progression.

We have the following Lemma.

Lemma 4 For 0 ≤ i ≤ 7, write i as a bit-string x1x2x3 of length three. Let ci be
the number of all monochromatic (x1r, x2r, x3r)-generalized 4-term arithmetic
progressions in B. Then the number of monochromatic 4-APs in BB · · ·BR is

7∑

i=0

aicit
2 +O(t).

In particular, we have

m4(Zn) ≤
7∑

i=0

ai
ci
b2

+ o(1).

Proof: A 4-AP is said on the boundary of some Ci if it is in Ci and contains
an element in R. Note that the number of 4-APs on the boundary is O(n). We
can ignore these 4-APs in the calculation below.

For any 0 ≤ a′, d′ ≤ b−1, the lattice L
(a′,d′)
b = {(a′+ub, d′+vb) : 0 ≤ u, v < t}

distributes evenly in the square [0, n)× [0, n). Applying corollary 1, we have

|L(a′,d′)
b ∩ Ci| = ait

2 +O(t)

for 0 ≤ i ≤ 7. We also observe any monochromatic 4-term arithmetic pro-
gression with parameter (a, d) = (a′ + ub, d′ + vb) ∈ Ci if and only if the
(x1r, x2r, x3r)-generalized 4-term arithmetic progression with parameter (a′, d′)
is monochromatic in B. Thus the number of monochromatic 4-term arithmetic
progressions with parameter (a, d) ∈ Ci is

ciait
2 +O(t).

Hence the number of monochromatic 4-term arithmetic progressions inBB · · ·BR
is
∑7

i=0 aicit
2 +O(t) and m4(Zn) ≤

∑7
i=0 aici/b

2
i +O(1/n). �

We are ready to prove Theorem 3.
Proof of Theorem 3: RecallB20 = (1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)
and B22 = (1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0).

When n is odd, we use the periodic construction B20B20 · · ·B20R. We write
n = 20t + r, where r = 1, 3, 5, . . . , 19. For each odd r, it turns out that the
values of ci depends only on i but not on r. These values are given in Table 1.

By Lemma 4, we have

m4(Zn) ≤
7∑

i=0

aici
b2

+ o(1) =
17

150
+ o(1).

13



c0 c1 c2 c3 c4 c5 c6 c7
36 50 50 50 50 50 50 36

Table 1: The values of ci’s for B20 and any odd r satisfying 1 ≤ r ≤ 19.

When n is even, we prove only a weaker result m4(Zn) ≤ 175
1452 + o(1) <

0.12052342 here and postpone the proof of actual bound until the end of next
section. We write n = 22t + r where r = 0, 2, 4, . . . , 20. We use the periodic
construction B22B22 · · ·B22R. If r = 0, then we have

m4(Zn) ≤ m4(Z22) =
21

242
< 0.086777.

We are done in this case. For r = 2, 4, 6, . . . , 20, the values ci depends only on
i, but not on r. These values are given in Table 2.

c0 c1 c2 c3 c4 c5 c6 c7
42 63 70 63 63 70 63 42

Table 2: The values of ci’s for B22 and each even r such that 2 ≤ r ≤ 20.

By Lemma 4, we have

m4(Zn) ≤
7∑

i=0

aici
b2

+ o(1) =
175

1452
+ o(1).

�

3.3 The Proof of Theorem 4

Let B be a ”good” 2-coloring of Zb. We consider the periodic construction
c = BB · · ·BR.

Similar to the proof of Theorem 3, we can divide all non-degenerated 5-APs
into 14 classes Ci with index i in S = {0, . . . , 15} \ {3, 12}, see table below and
Figure 3; let ai be the area of i-th normalized region (see Figure 4). We have

a0 =
1

8
, a1 =

1

24
, a2 =

1

12
, a4 =

1

12
, a5 =

1

12
, a6 =

1

24
, a7 =

1

24
,

a8 =
1

24
, a9 =

1

24
, a10 =

1

12
, a11 =

1

12
, a13 =

1

12
, a14 =

1

24
, a15 =

1

8
.
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type the meaning in Zp

C0 a < a+ d < a+ 2d < a+ 3d < a+ 4d < n
C1 a < a+ d < a+ 2d < a+ 3d < n ≤ a+ 4d < 2n
C2 a < a+ d < a+ 2d < n ≤ a+ 3d < a+ 4d < 2n
C4 a < a+ d < n ≤ a+ 2d < a+ 3d < a+ 4d < 2n
C5 a < a+ d < n ≤ a+ 2d < a+ 3d < 2n ≤ a+ 4d < 3n
C6 a < a+ d < n ≤ a+ 2d < 2n ≤ a+ 3d < a+ 4d < 3n
C7 a < a+ d < n ≤ a+ 2d < 2n ≤ a+ 3d < 3n ≤ a+ 4d < 4n
C8 a < n ≤ a+ d < a+ 2d < a+ 3d < a+ 4d < 2n
C9 a < n ≤ a+ d < a+ 2d < a+ 3d < 2n ≤ a+ 4d < 3n
C10 a < n ≤ a+ d < a+ 2d < 2n ≤ a+ 3d < a+ 4d < 3n
C11 a < n ≤ a+ d < a+ 2d < 2n ≤ a+ 3d < 3n ≤ a+ 4d < 4n
C13 a < n ≤ a+ d < 2n ≤ a+ 2d < a+ 3d < 3n ≤ a+ 4d < 4n
C14 a < n ≤ a+ d < 2n ≤ a+ 2d < 3n ≤ a+ 3d < a+ 4d < 4n
C15 a < n ≤ a+ d < 2n ≤ a+ 2d < 3n ≤ a+ 3d < 4n ≤ a+ 4d < 5n

a

d

n

n

n/2
n/2

n/3

n/4

2n/3

3n/4

n/4

n/3

2n/3

3n/4

0

1

2

4

5

6

7

8

9

10

11

13

14

15

C

C

C

C

C

C

C
C

C

C
C

C

C

C

a/n

d/n

1

1

1/2 1/2

1/3

1/4

2/3

3/4

1/4

1/3

2/3

3/4

1/8

1/24

1/12
1/12

1/12

1/24

1/24

1/24

1/24

1/12

1/12

1/12

1/8

1/24

Figure 3: The 14 regions of the param-
eter space of all 5-APs in Zn.

Figure 4: The areas of the 14 normal-
ized regions.

Assume ri ≥ 0 for 1 ≤ i ≤ 4. An (r1, r2, r3, r4)-generalized 5-term arithmetic
progression is of form

a, a+ d− r1, a+ 2d− (r1 + r2), a+ 3d−
3∑

i=1

ri, a+ 4d−
4∑

i=1

ri.

Given (r1, r2, r3, r4), an (r1, r2, r3, r4)-generalized 5-term arithmetic progression
is determined by (a, d). We have the following lemma; we will omit the proof
since it is similar to Lemma 4.

Lemma 5 Let S = {0, . . . , 15} \ {3, 12}. For each i ∈ S, write i as a bit-
string x1x2x3x4 of length four. Let ci be the number of all monochromatic
(x1r, x2r, x3r, x4r)-generalized 5-term arithmetic progressions in B. Then the
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number of monochromatic 5-APs in BB · · ·BR is

∑

i∈S

aicit
2 +O(t).

In particular, we have

m5(Zn) ≤
∑

i∈S

ai
ci
b2

+ o(1).

Proof of Theorem 4: Recall the 2-coloring B74 of Z74 as following
{1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0}.
Write n = 74t+ r, where 0 ≤ r ≤ 73. If r = 0, then m5(Zn) ≤ m5(Z74) =

73
2738 ; we are done in this case. Now we assume r 6= 0 and use the periodic
construction B74B74 · · ·B74R, where R is any bit-string of length r.

The values ci in Lemma 5 depend on i and r. These values are given in
Table 3.

values c0 c1 c2 c4 c5 c6 c7 c8 c9 c10 c11 c13 c14 c15
even r 6= 0 146 293 377 377 378 359 293 293 359 378 377 377 293 146

odd r 6= 37 146 293 375 375 374 357 293 293 357 374 375 375 293 146

r = 37 146 144 144 144 144 144 144 144 144 144 144 144 144 146

Table 3: The values of ci’s for B74 and various r’s.

By Lemma 5, we have

m5(Zn) ≤
∑

i∈S

ai
ci
b2

+ o(1) =







3629/65712+ o(1) for odd r 6= 37,
289/10952+ o(1) r = 37,
3647/65712+ o(1) for even r 6= 0.

The proof of Theorem 4 is finished. �

4 Proof of Theorem 4

Recall the good coloring of Z22:

B22 = (1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0).

We observe that the first 11 coordinates and last 11 coordinates differ only by
1 bit. Let B11 = (1, 1, 1, 0, 1, ∗, 0, 1, 0, 0, 0), where ‘∗’ could be either 0 or 1. B11

has the following property. (This is because B22 contains no non-degenerated
monochromatic 4-APs.)

Property 1 No matter which bit-value the ‘∗’ takes, B11 contains no non-
degenerated monochromatic 4-APs of Z11.
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Lemma 6 For any t ≥ 2, we have

m4(Z11t) ≤
10 +m4(Zt)

121
. (24)

Proof: Let Bt be a 2-coloring/bit-string of Zt which has exactly m4(Zt)t
2

monochromatic 4-APs. First we consider the periodic construction

B11B11 · · ·B11
︸ ︷︷ ︸

t

.

Each block B11 has exactly one ‘∗’; there are t ∗’s in total. Finally, we replace
these ∗’s by the values of Bt in the cyclic order. We denote the coloring by
B11 ⋉ Bt. (For example, B22 = B11 ⋉ (1, 0).)

Because of Property 1, a 4-AP of B11⋉Bt with parameter (a, d) is monochro-
matic only if 11 | d. The number of monochromatic 4-APs is exactly 10t2 +
m4(Zt)t

2. We have

m4(Z11t) ≤
10t2 +m4(Zt)t

2

(11t)2
=

10 +m4(Zt)

121
.

The proof of this lemma is finished. �

A similar construction can be applied to 5-APs. Let
B37 = (1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, ∗, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0).

Let Bt be a 2-coloring/bit-string of Zt which has exactlym5(Zt)t
2 monochro-

matic 4-APs. We can define B37⋉Bt similarly. For example, B74 = B37⋉(1, 0).
Note that B74 contains no non-degenerated monochromatic 5-APs. We have the
following property.

Property 2 No matter which bit-value the ‘∗’ takes, B37 contains no non-
degenerated monochromatic 5-APs of Z37.

Using this property and the construction B37⋉Bt, we have the following lemma.
The proof is omitted.

Lemma 7 For any t ≥ 2, we have

m5(Z37t) ≤
36 +m4(Zt)

372
. (25)

Proof of Theorem 5: Applying Lemma 6 recursively, we have

m4(Z11s) ≤ 10

112
+

1

112
m4(Z11s−1)

≤ 10

112
+

10

114
+

1

114
m4(Z11s−2)

≤ · · ·
≤ 10

112
+

10

114
+ · · ·+ 10

112s
+

1

112s
m4(Z1)

=
10

112
1− 1

112s

1− 1
112

+
1

112s

=
1

12
+

1

12× 112s−1
.
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Thus,

lim
n→∞

m4(Zn) ≤ lim
s→∞

m4(Z11s)

≤ lim
s→∞

(
1

12
+

1

12× 112s−1
)

=
1

12
.

Similarly, from Lemma 7, we can show limn→∞ m5(Zn) ≤ 1
38 . �

Proof of Theorem 3 for even n: Here we assume n is even and not divisible
by 22. Let B = B11 ⋉ B20 which is a 2-coloring of Z220. Write n = 220t + r
with 0 ≤ r ≤ 218. Here r is even and not divisible by 22. Consider the periodic
construction BB · · ·BR as before. For these r, the values ci depends only on i
but not on r. These values are given in Table 4.

c0 c1 c2 c3 c4 c5 c6 c7
4882 7563 8230 7563 7563 8230 7563 4882

Table 4: The values of ci’s for B = B11 ⋉ B20 and even r = 2, 4, . . . , 218 such
that r is not divisible by 22.

By Lemma 4, we have

m4(Zn) ≤
7∑

i=0

aici
b2

+ o(1) =
8543

72600
+ o(1) < 0.11767722.

The remaining case is proved. �

5 Proof of Theorem 2

In this section, we will deal with lower bound of m4(Zn).
Proof of Theorem 2: Given a 2-coloring c of Zn, we will establish an inequality
which is similar to equation (4.8) in [2]. For each 0 ≤ i ≤ 4, let ui be the number
of 4-APs with exactly i red numbers. We have

u1 + u3 = |A1 ∩B2 ∩B3 ∩B4|+ |B1 ∩A2 ∩B3 ∩B4|+ |B1 ∩B2 ∩A3 ∩B4|
+ |B1 ∩B2 ∩B3 ∩ A4|+ |B1 ∩A2 ∩ A3 ∩ A4|+ |A1 ∩B2 ∩ A3 ∩ A4|
+ |A1 ∩ A2 ∩B3 ∩A4|+ |A1 ∩ A2 ∩ A3 ∩B4|.

Note that

|A1 ∩B2 ∩B3 ∩B4| = |B2 ∩B3 ∩B4| − |B1 ∩B2 ∩B3 ∩B4|. (26)

Applying equations similar to (26), we get

4u0 + u1 + u3 + 4u4 =
∑

1≤i<j<k≤4

(|Ai ∩ Aj ∩ Ak|+ |Bi ∩Bj ∩Bk|). (27)
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By the inclusion-exclusion formula, for any 1 ≤ i < j < k ≤ 4, we have

|Ai ∪Aj ∪ Ak| =
∑

s∈{i,j,k}
|As| −

∑

{s,t}∈({i,j,k}
2 )

|As ∩ At|+ |Ai ∩ Aj ∩Ak|.

Since |Ai ∪ Aj ∪ Ak| = n2 − |Bi ∩Bj ∩Bk|, we have

|Ai∩Aj ∩Ak|+ |Bi∩Bj ∩Bk| = n2−
∑

s∈{i,j,k}
|As|+

∑

{s,t}∈({i,j,k}
2 )

|As∩At|. (28)

By the symmetry of Ai’s and Bi’s, we get

|Ai∩Aj ∩Ak|+ |Bi∩Bj ∩Bk| = n2−
∑

s∈{i,j,k}
|Bs|+

∑

{s,t}∈({i,j,k}
2 )

|Bs∩Bt|. (29)

Combining equations (28) and (29) and summing over 1 ≤ i < j < k ≤ 4, we
get

2
∑

1≤i<j<k≤4

(|Ai ∩ Aj ∩Ak|+ |Bi ∩Bj ∩Bk|)

=
∑

1≤i<j<k≤4




2n2 −

∑

s∈{i,j,k}
(|As|+ |Bs|) +

∑

{s,t}∈({i,j,k}
2 )

(|As ∩ At|+ |Bs ∩Bt|)






= 8n2 − 12n2 + 2
∑

1≤i<j≤4

(|Ai ∩Aj |+ |Bi ∩Bj |)

= −4n2 + 2
∑

1≤i<j≤4

(|Ai ∩Aj |+ |Bi ∩Bj |).

Combining the equation above with equation (27), we have

4u0 + u1 + u3 + 4u4 = −2n2 +
∑

1≤i<j≤4

(|Ai ∩ Aj |+ |Bi ∩Bj |). (30)

Lemma 2 implies |Ai ∩ Aj | ≥ (αn)2 and |Bi ∩ Bj | ≥ (n − αn)2 for (i, j) ∈
{(1, 2), (2, 3), (3, 4), (1, 4)}. We get

u1 + u3 + 4u0 + 4u4 ≥ 2n2 − 8αn2 + 8α2n2 + |A1 ∩ A3|
+ |A2 ∩ A4|+ |B1 ∩B3|+ |B2 ∩B4|. (31)

Let E be the collection of all even-colored 4-term progressions and O be the
collection of all odd-colored 4-term progressions. We have |E| = u0 + u2 + u4

and |O| = u1 + u3. Inequality (31) together with
∑4

i=0 ui = n2 give that

m4(Zn, c) = u0 + u4

=
1

4
(u1 + u3 + 4u0 + 4u4 + |E| − n2)

≥ (
1

4
− 2α+ 2α2)n2 +

|E|
4

+
1

4
(|A1 ∩ A3|+ |B1 ∩B3|)

+
1

4
(|A2 ∩ A4|+ |B2 ∩B4|). (32)
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We aim to modify the method in [12] to find a lower bound on |E| which gives
a lower bound on m4(Zn, c). Assume S is a 3-term progression in Zn. Let pS
be the number of even-colored 4-APs containing S and qS be the number of
odd-colored 4-APs containing S. Observe that pS + qS = 2. If a, a+ d, a+2d is
a 3-AP, then it determines a pair of integers x, y ∈ Zn such that x, a, a+d, a+2d
and a, a + d, a + 2d, y are two 4-APs containing S; the pair (x, y) is the frame
pair of S. We have

ESpS = 2|E| and ESqS = 2|O|,
where the expectation operator ES runs over all 3-APs. The following equality
which ensures us to obtain a lower bound on E. We have

2|E| = 2|O|+ ES(pS − qS)

= 2(n2 − |E|)− ES(|pS − qS |) + 2ES(pS − qS |pS > qS). (33)

Solving for |E| in equation (33) gives

|E| = 1

2
n2 − 1

4
ES(|pS − qS |) +

1

2
ES(pS − qS |pS > qS). (34)

We have the following claim which will be proved at the end of this section.

Claim 1 ES(pS − qS |pS > qS) ≥ n2/12 for any positive integer n.

Observe that |pS − qS | 6= 0 if and only if the frame pair of S is monochromatic.
Furthermore, |pS − qS | = 2 if |pS − qS | 6= 0. Note that when n is prime,
each frame pair belongs to a unique 3-term progression as 4 is invertible in
Zn. However, if n is not prime, then each frame pair may belong to more than
one 3-term progression or does not belong to any 3-term progressions. We will
compute the value of ES(|pS − qS |) case by case according to n modulo 4.

Case 1: n ≡ 1, 3 mod 4. In this case, each frame pair belongs to a unique
3-term progression since 4 is invertible in Zn. We have ES(|pS−qs|) equals twice
of the number of monochromatic pairs in the coloring c, that is ES(|pS − qs|) =
2(αn)2 + 2(n− αn)2. We obtain

|E| ≥ α(1− α)n2 +
n2

24
.

By Lemma 2, we have |A1∩A3| = |A2∩A4| ≥ (αn)2 and |B1∩B3| = |B2∩B4| ≥
(n− αn)2. Therefore, in this case, inequality (32) is

m4(Zn, c) ≥
(3 − 11α− 11α2)n2

4
+

n2

96
. (35)

It is straightforward to check that the minimum value of the right hand side of
inequality (35) is 7n2/96 and it is achieved at α = 1/2. We have m4(Zn) ≥ 7/96
in this case.

Case 2: n ≡ 2 mod 4. For 0 ≤ i ≤ 3, let Z
i
n = {z ∈ Zn : z ≡ i mod 4},

ai = |A ∩ Z
i
n|, and bi = |B ∩ Z

i
n|. A pair (x, y) is a frame pair if and only if
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y−x = 4d for some d ∈ Zn. Assume n = 4r+2. If d is a solution for 4d = y−x,
then d+ 2r + 1 is another solution. We have

ES(|pS − qS |) = 4(a0 + a2)
2 + 4(a1 + a3)

2 + 4(b0 + b2)
2 + 4(b1 + b3)

2. (36)

By the same argument, we have

|A1 ∩ A3| = |A2 ∩ A4| = 2(a0 + a2)
2 + 2(a1 + a3)

2

and
|B1 ∩B3| = |B2 ∩B4| = 2(b0 + b2)

2 + 2(b1 + b3)
2.

Therefore, |E|+ |A1 ∩ A3|+ |A2 ∩ A4|+ |B1 ∩B3|+ |B2 ∩B4| is at least

1

2
n2 + 3((a0 + a2)

2 + (a1 + a3)
2 + (b0 + b2)

2 + (b1 + b3)
2) +

n2

24
.

We have the following inequality

|E| + |A1 ∩ A3|+ |A2 ∩ A4|+ |B1 ∩B3|+ |B2 ∩B4| (37)

≥ 1

2
n2 +

3

2
(

3∑

i=0

ai)
2 +

3

2
(

3∑

i=0

bi)
2 +

n2

24
.

=

(
1

2
+

3

2
α2 +

3

2
(1− α)2 +

1

24

)

n2.

Combining inequalities (32) and (37), we get

m4(Zn, c) ≥
(3 − 11α+ 11α2)n2

4
+

n2

96
.

Note the minimum is reached at α = 1/2. It follows m4(Zn) ≥ 7/96.
Case 3: n ≡ 0 mod 4. This method fails in this case; which suggests that

it is possible to find a good 2-coloring of Zn which contains few monochromatic
4-term progressions when n is a multiple of 4. Replacing the terms on the right
hand side of inequality (31) by the lower bounds from Lemma 2, we obtain

u1 + u3 + 4u0 + 4u4 ≥ 4n2 − 12αn2 + 12α2n2. (38)

Combining with
∑4

i=0 ui = n2, we have

u0 + u4 ≥ u2

3
+ 1− 4αn2 + 4α2n2 ≥ u2

3
. (39)

The remark following the proof of Theorem 4.4 in [2] gives

u0 + u2 + u4 ≥
8n2

33
. (40)

Combining inequalities (39) and (40), we get

m4(Zn, c) = u0 + u4 ≥ 2n2

33
.
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It implies m4(Zn) ≥ 2/33. We completed the proof of Theorem 2. �

We finish this section by proving Claim 1.
Proof of Claim 1: Observe that pS > qS if and only if the coloring pattern

of the 5-APs (S and its frame pair (x, y)) is in the following set
F = {(1, 1, 1, 1, 1), (1, 0, 0, 1, 1), (1, 0, 1, 0, 1), (1, 1, 0, 0, 1),

(0, 0, 0, 0, 0), (0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 0, 1, 1, 0)}.
Moreover, for each S, pS − qS = 2 if pS > qS . Therefore the value of

ES(pS − qS |pS > qS) is twice of the number of increasing 5-term progressions
with coloring pattern from F . Using an exhaustive search, one can show that for
any 2-coloring of [46], there is at least one increasing 5-AP of coloring pattern
in F .

A further computation shows that any 2-coloring of [74] contains at least 27
increasing 5-APs of coloring pattern in F . Note that the number of increasing
5-APs in [74] with d = 1 is 70, the number of 5-APs in [74] with d = 2 is 66,
etc. The number of 5-APs in [74] is

70 + 66 + 62 + · · ·+ 6 + 2 = 648.

For any 2-coloring of Zn, the number of 74-APs is exactly n2; each of them
(degenerated or not) contains 27 5-APs of coloring pattern in F . Each 5-AP
with coloring pattern in F is counted at most 648-times. Thus, the number of
5-APs with coloring pattern in F is at least

27

648
n2 =

1

24
n2.

Thus we have

ES(pS − qS |pS > qS) ≥
n2

12
.

We finished the proof of the claim. �
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